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Abstract. This note is an attempt to show the possibility to deal with
discrete equations in the frame of generalized ordinary differential equa-
tions defined by Jaroslav Kurzweil in 1957.
Generalized ordinary differential equations form a tool which makes it pos-
sible to use a unified approach to classical ordinary differential equations
as well as discrete systems.
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1. Integration

The concept of a generalized ordinary differential equation is based on a special
integration process wich is interesting by itself and plays a nice and important role
in integration theory and in real analysis in general.

Assume that a bounded interval [a, b] ⊂ R is given, −∞ < a < b < ∞.

A finite set of points

D := a = α0 ≤ τ1 ≤ α1 ≤ · · · ≤ αk−1 ≤ τk ≤ αk = b

with α0 < α1 < · · · < αk is called a partition of the interval [a, b].

A positive function δ : [a, b] → (0,∞) will be called a gauge on the interval
[a, b].

The partition D is called δ- fine (with respect to the gauge δ) if

[αj−1, αj ] ⊂ [τj − δ(τj), τj + δ(τj)].
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Assume that a function U(τ, t) : [a, b] × [a, b] → Rn is given.

For a partition D we denote by

S(U,D) =
K∑

j=1

(U(τj , αj) − U(τj , αj−1))

the integral sum corresponding to the function U and the partition D. The fun-
damental definition reads as follows.

Definition 1. The function U : [a, b] × [a, b] → Rn is called Kurzweil integrable
over [a, b] (shortly U ∈ K([a, b])) if there is a J ∈ Rn such that for every ε > 0
there is a gauge δ on [a, b] and

‖S(U,D) − J‖ < ε

if D is a δ-fine partition of [a, b].

We use the formal notation J =
∫ b

a
DU(τ, t) for the generalized Kurzweil

integral of U over [a, b].

Remark 1. Typical situations are for example U(τ, t) = f(τ) · t or U(τ, t) = f(τ) ·
g(t) where f, g : [a, b] → R or f : [a, b] → Rn , g : [a, b] → R or f : [a, b] → R,
g : [a, b] → Rn .

Looking for example at the sum S(U,D) if U(τ, t) = f(τ) · t, we can see easily
that

S(U,D) =
K∑

j=1

f(τj)(αj − αj−1)

is the usual Riemann integral sum corresponding to the function f : [a, b] → R.

Reading the definition of the integral
∫ b

a
DU(τ, t) =

∫ b

a
f(s)d(s) we can see that

it differs from the classical Darboux type definition of the Riemann integral in only
one point, namely our δ is a gauge, i.e. a function which need not be a constant,
instead of the positive constant gauge used for defining the Riemann integral.

Nevertheless, this slight change in the definition has dramatic consequences for
the concept of the integral and integrability of functions.

It is well known that a function f : [a, b] → R is integrable in the sense of
our definition for U(τ, t) = f(τ) · t if and only if it is integrable in the sense of
Perron (the narrow Denjoy integral) and this is a nonabsolutely convergent integral
including the Lebesgue integral.

The definition of the integral is based strongly on the following statement which
goes back to a paper of P. Cousin from 1895.
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Lemma 1. If δ is an arbitrary gauge on [a, b], then there is a partition D of [a, b]
which is δ-fine.

(See e.g. [2], [3].)

The generalized Kurzweil integral given by Definition 1 has all the good prop-
erties usual in reasonable integration theories. Among others we have the following

Theorem 1. If U, V ∈ K([a, b]) and c1, c2 ∈ R, then c1U + c2V ∈ K([a, b]) and

∫ b

a

D[c1U(τ, t) + c2V (τ, t)] = c1

∫ b

a

DU(τ, t) + c2

∫ b

a

DV (τ, t).

If U ∈ K([a, b]), then U ∈ K([c, d]) for every [c, d] ⊂ [a, b].

If c ∈ [a, b] and U ∈ K([a, c]) and U ∈ K([c, b]), then U ∈ K([a, b]) and

∫ b

a

DU(τ, t) =

∫ c

a

DU(τ, t) +

∫ b

c

DU(τ, t).

(See Theorems 1.9, 1.10 and 1.11 in [3].)

Also a less usual result holds for the integral.

Theorem 2. If U ∈ K([a, c]) for every c ∈ [a, b) and

lim
c→b−

(

∫ c

a

DU(τ, t) − [U(b, c) − U(b, b)]) = J ∈ R,(1)

then U ∈ K([a, b]) and ∫ b

a

DU(τ, t) = J.

If U ∈ K([c, b]) for every c ∈ (a, b] and

lim
c→a+

(

∫ b

c

DU(τ, t) + U(a, c) − U(a, a)) = J ∈ R,(2)

then U ∈ K([a, b]) and ∫ b

a

DU(τ, t) = J.

(See Theorem 1.14 in [3].)

Remark 2. The property of the integral presented in the previous Theorem 2 is
sometimes called Hake’s Theorem and it is essential when considering generalized
ordinary differential equations.
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Let us mention that e.g. in the special case of U(τ, t) = f(τ) · t the relation (1)
represents the existence of the limit

lim
c→b−

∫ c

a

f(s)ds = J ∈ R
and by Theorem 2 we have the existence

∫ b

a
f(s)ds as well as the equality

lim
c→b−

∫ c

a

f(s)ds =

∫ b

a

f(s)ds.

This property is not possessed by the Riemann or Lebesgue integral. This is a
typical property of the Denjoy-Perron integral.

2. Generalized ordinary differential equations

Let us have a function F : R × R → R and assume that [α, β] ⊂ R is a compact
interval.

A function x : [α, β] → Rn is called a solution of the generalized ordinary
differential equation

dx

dτ
= DF (x, t)(3)

on the interval [α, β] if

x(s2) − x(s1) =

∫ s2

s1

DF (x(τ), t)

for every s1, s2 ∈ [α, β]. (The integral on the right hand side of this relation is the
integral presented in Definition 1 in the previous section.)

It can be shown easily that x : [α, β] → Rn is a solution of (3) if and only if

x(s) = x(γ) +

∫ s

γ

DF (x(τ), t)

for every s ∈ [α, β] where γ ∈ [α, β] is fixed.

Theorem 2 yields the following

Proposition 1. If x : [α, β] → Rn is a solution of (3) then

lim
s→σ

[x(s) − [F (x(σ), s) − F (x(σ), σ)]] = x(σ)

for every σ ∈ [α, β].
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Moreover, if the limit

lim
s→σ+

[F (x(σ), s) − F (x(σ), σ)] = J+(σ) ∈ Rn

or
lim

s→σ−
[F (x(σ), s) − F (x(σ), σ)] = J−(σ) ∈ Rn

exists, then
lim

s→σ+
x(s) = x(σ+) = x(σ) + J+(σ)

or
lim

s→σ−
x(s) = x(σ−) = x(σ) + J−(σ),

respectively.

This proposition shows that in the solution of the generalized ordinary differ-
ential equation (3) discontinuities can occur if J+(σ) or J−(σ) is different from
zero. Consequently, a solution of (3) can be a discontinuous function in general.

Details on these concepts and properties of a solution of a generalized ordinary
differential equation (3) can be found in [3].

Let us now turn our attention to a class of functions F : Rn × R → Rn which
leads to a reasonable theory for equations of the form (3).

Assume that h : R → R is a nondecreasing function and that ω : [0,∞) → R is
continuous, increasing with ω(0) = 0 (a modulus of continuity).

Let us define the class F(h, ω) of functions F : Rn × R → Rn satisfying

‖F (x, t2) − F (x, t1)‖ ≤ |h(t2) − h(t1)|(4)

and

‖F (x, t2) − F (x, t1) − [F (y, t2) − F (y, t1)]‖ ≤ ω(‖x− y‖) · |h(t2) − h(t1)|(5)

for x, y ∈ Rn , t1, t2 ∈ R. (See 3.8 Definition in [3].)

The main statement concerning the class F(h, ω) is a local existence result for
a solution of (3) which has to satisfy a given initial condition.

Theorem 3. If x̃ ∈ Rn , t0 ∈ R and F ∈ F(h, ω), then there exist ∆−,∆+ > 0
such that on [t0 −∆−, t0 +∆+] there exists a solution x : [t0 −∆−, t0 +∆+] → Rn

of the generalized ordinary differential equation (3) for which x(t0) = x̃.

(See 4.2 Theorem in [3].)

3.10 Lemma in [3] states the following:

If F ∈ F(h, ω) and x : [α, β] → Rn is a solution of (3), then for every
s1, s2 ∈ [α, β] we have

‖x(s2) − x(s1)‖ ≤ |h(s2) − h(s1)|.(6)
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This implies immediately that if F ∈ F(h, ω) and x : [α, β] → Rn is a solution
of (3) on [α, β] then x ∈ BV ([α, β]) (x is a function of bounded variation on [α, β])
and

varβ
αx ≤ h(β) − h(α) < ∞

if −∞ < α < β < ∞.

Moreover, if h is continuous from the left (i.e. lims→t− h(s) = h(t−) = h(t))
then x(t−) = x(t) and the solution of (3) is continuous from the left. This is an
easy consequence of the inequality (6).

Concerning the uniqueness of solutions of (3) we have the following general
result.

Theorem 4. If F ∈ F(h, ω), h(t−) = h(t) and

lim
v→0+

∫ u

v

1

ω(r)
dr = ∞

for some u > 0, then every solution of (3) with x(t0) = x̃ is locally unique for
t > t0.

(See 4.8 Theorem in [3].)

Remark 3. If g : Rn × R → Rn and g(x, ·) is Lebesgue measurable for x ∈ R and

‖g(x, s)‖ ≤ m(s),

‖g(x, s) − g(y, s)‖ ≤ l(s)ω(‖x− y‖),

where m, l ∈ L1
loc(R), then for

G(x, t) =

∫ t

0

g(x, s)ds : Rn × R → Rn

we have G ∈ F(h, ω) with

h(t) =

∫ t

0

m(s)ds +

∫ t

0

l(s)ds.

The following result connects generalized ordinary differential equations with the
classical ordinary differential equations in the Carathéodory sense.

A function x : [α, β] → Rn is a solution of

ẋ = g(x, t)

if and only if x is a solution of the generalized ordinary differential equation

dx

dτ
= DG(x, t)



GENERALIZED DIFFERENTIAL EQUATIONS AND DISCRETE SYSTEMS 389

on [α, β].

If Ji : Rn → Rn satisfies

‖Ji(x) − Ji(y)‖ ≤ ω(‖x − y‖)

for i ∈ N, x, y ∈ Rn and if Hd : R → R is given for d ∈ R by the relations

Hd(t) = 0, t ≤ d, Hd(t) = 1, t > d,

then define

F (x, t) = G(x, t) +
∞∑

j=1

Jj(x)Hj(t).

The function F : Rn ×R → Rn is well defined, it belongs to a certain class F(h, ω)
and the generalized ordinary differential equation

dx

dτ
= DF (x, t)

is equivalent to the so called system with impulses given by the ordinary differential
equation

ẋ = g(x, t)

and the conditions

x(i+) = x(i) + Ji(x(i)), i ∈ N
describing the jumps of a solution at the instants i ∈ N.

Let us now consider the function

F (x, t) =
∞∑

i=1

Ji(x)Hi(t).

with Ji,Hi, i ∈ N given above and assume for simplicity that

‖Ji(x)‖ < K = const., x ∈ Rn .(7)

Then F ∈ F(h, ω) with h(t) = K
∑

∞

i=1 Hi(t).

Note that the assumption (7) of the uniform boundedness of the functions Ji

is very strong and restrictive. We use it for simplicity only, in fact for a reasonable
theory it is sufficient to require (7) on compact subsets of Rn only and moreover
the constant K need not be the same for all i ∈ N.

Consider the generalized ordinary differential equation

dx

dτ
= DF (x, t) = D[

∞∑

i=1

Ji(x)Hi(t)],
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i.e. the integral equation

x(s) = x(γ) +

∫ s

γ

D[
∞∑

j=1

Jj(x(τ))Hj(t)], s ∈ [0,∞),

or more conveniently

x(s) = x(γ) +

∫ s

γ

∞∑

j=1

Jj(x(t))dHj(t), s ∈ [0,∞),(8)

where γ ∈ R is fixed.

Since F (x, s2)−F (x, s1) = 0 for s1, s2 ∈ (j, j + 1], j ∈ N and for s1, s2 ∈ [0, 1],
we get for a solution x of (8) on [0,∞) the relation

x(s2) = x(s1)

if s1, s2 ∈ (j, j + 1], j ∈ N or s1, s2 ∈ [0, 1], i.e the solution x is constant on [0, 1]
and on intervals (j, j + 1], j ∈ N.

Moreover, we have

x(j+) = x(j) + Jj(x(j)), j ∈ N.

If we assume that γ = 0 and x(γ) = x(0) = x̃ ∈ Rn , then for a solution x of
(8) on [0,∞) we have

x(s) = x̃, s ∈ [0, 1],

x(s) = x(1) + J1(x(1)), s ∈ (1, 2],

x(s) = x(k) + Jk(x(k)), s ∈ (k, k + 1], k ∈ N.

The solution of (8) is evidently a piecewise constant function defined on [0,∞)
which is constant on the intervals [0, 1], (k, k + 1], k ∈ N

3. Discrete equations

Let us consider equations of the form

xk+1 = Sk(xk), k ∈ N(9)

where Sk : Rn → Rn with

‖Sk(x) − Sk(y)‖ ≤ ω1(‖x − y‖)(10)

and ω1 : [0,∞) → [0,∞) has the character of a modulus of continuity.

Given x1 = x̃ ∈ Rn , by (9) a sequence (xk), k ∈ N in Rn is uniquely determined.
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Also, if xk∗ ∈ Rn is given for some k∗ ∈ N, the values xk for k ≥ k∗, k ∈ N can
be computed according to (9).

In this situation it is sometimes useful to know the ”ancestors” of xk∗ , i.e. the
values xk for k ∈ N, k < k∗ for which (9) is satisfied and of course it is nice to
have these values determined uniquely. For this reason we require that

the inverse S−1
k : Rn → Rn to Sk exists for k ∈ N

and S−1
k is defined on the whole Rn , i.e. the range R(Sk) of Sk equals Rn for every

k ∈ N.

Let us set

Jk(x) = Sk(x) − x(11)

for x ∈ Rn , k ∈ N. Then by (10) we have

‖Jk(x) − Jk(y)‖ ≤ ω1(‖x − y‖) + ‖x− y‖ = ω(‖x− y‖)

and ω : [0,∞) → [0,∞) has again the shape of a modulus of continuity.

Let us now consider the generalized ordinary differential equation of the form
(8) with Jk given by (11).

It can be seen immediately that given x̃ ∈ Rn the sequence (xk), k ∈ N defined
by the discrete system (9) with x1 = x̃ is such that the piecewise constant function
defined by x(s) = x1 = x̃ for s ∈ [0, 1], x(s) = xk for s ∈ (k, k + 1], k ∈ N is a
solution of the generalized ordinary differential equation (8) and vice versa: if x

is a solution of the generalized ordinary differential equation (8) on [0,∞) with
x(0) = x̃ then xk+1 = x(s), s ∈ (k, k + 1], k ∈ N gives the sequence in Rn defined
by (9) with x1 = x̃.

We conclude this section by stating that

there is a one-to-one correspondence between sequences (xk), k ∈ N given by
(9) and solutions of the generalized ordinary differential equation in the special
form (8), where Jk(x) = Sk(x) − x for x ∈ Rn , k ∈ N.

4. Some possible applications

Results known for generalized ordinary differential equations can be used for the
investigation of discrete systems of the form (9).

For example, there are many stability concepts known for discrete systems
(9) (see e.g. the book [1]). They are mostly motivated by analogous concepts for
classical ordinary differential equations.

Let us define a new stability concept for discrete equations (9)

xk+1 = Sk(xk), k ∈ N,
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where we assume that Sk(0) = 0 for every k ∈ N.

The sequence xk ≡ 0 evidently satisfies (9) and we will consider stability of
this sequence.

Definition 2. xk ≡ 0 is called variationally stable if for every ε > 0 there is a
δ = δ(ε) > 0 such that if yk0

, . . . , yk0+l, l ∈ N satisfies

‖yk0
‖ < δ and

k0+l∑

j=k0

‖Sj(yj)‖ < δ,

then ‖yj‖ < ε for j = k0, . . . , k0 + l.

xk ≡ 0 is called variationally attractive if there exists a δ0 > 0 and for every
ε > 0 there exist K(ε) ∈ N, γ(ε) > 0 such that if yk0

, . . . , yk0+l, l ∈ N satisfy

‖yk0
‖ < δ0 and

k0+l∑

j=k0

‖Sj(yj)‖ < γ(ε),

then ‖yj‖ < ε provided j = k0 + K(ε), . . . , k0 + l.

xk ≡ 0 is called asymptotically variationally stable if it is variationally stable
and variationally attractive.

Another concept is given by the following definition.

Definition 3. xk ≡ 0 is called stable with respect to perturbations if for every
ε > 0 there is a δ = δ(ε) > 0 such that if pk0

, . . . , pk0+l, l ∈ N satisfies

k0+l∑

j=k0

‖pj‖ < δ, yk0
∈ Rn , ‖yk0

‖ < δ

and
yk+1 = Sk(yk) + pk, k = k0, . . . , k0 + l,

then ‖yj‖ < ε for j = k0, . . . , k0 + l.

xk ≡ 0 is called attractive with respect to perturbations if there exists a δ0 > 0
and for every ε > 0 there exist K(ε) ∈ N, γ(ε) > 0 such that if

‖yk0
‖ < δ0 and

k0+l∑

j=k0

‖pj‖ < γ,

then for
yk+1 = Sk(yk) + pk, k = k0, . . . , k0 + l,

we have ‖yj‖ < ε if j = k0 + K(ε), . . . , k0 + l.

xk ≡ 0 is called asymptotically stable with respect to perturbations if it is stable
and attractive with respect to perturbations.
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Similar concepts have been presented for generalized differential equations in Chap-
ter 10 of [3]. Presenting the results from [3] in terms of discrete systems we can
state e.g. the following

Theorem 5. xk ≡ 0 is variationally stable if and only if it is stable with respect
to perturbations.

xk ≡ 0 is variationally attractive if and only if it is attractive with respect to
perturbations.

For characterizing e.g. the concept of variational stability of xk ≡ 0 for (9)
the following Ljapunov-type result can be derived using the theory of generalized
ordinary differential equations (see Theorems 10.13 and 10.23 in [3]).

Theorem 6. xk ≡ 0 is variationally stable if and only if there is a sequence of
functions Vk : Bd ⊂ Rn → R, d > 0 (Bd = {x ∈ Rn ; ‖x‖ ≤ d} is the closed ball inRn centered at 0 with radius d) such that

a(‖x‖) ≤ Vk(x), Vk(0) = 0,

|Vk(x) − Vk(y)| ≤ K‖x− y‖

for x, y ∈ Bd, K is a constant and a : [0,∞) → R is a continuous increasing
function such that a(r) = 0 if and only if r = 0.

There is a fairly complete theory for linear generalized ordinary differential
equations (see Chapter VI in [3]) which can be used in the above described way
for investigating linear discrete systems of the form

xk+1 = Skxk + bk, k ∈ N,

where Sk ∈ L(Rn ) are n × n-matrices, bk ∈ Rn , k ∈ N. With the assumption
of existence of the inverse S−1

k , k ∈ N we get a theory of linear systems with
nice properties and the results known for linear generalized ordinary differential
equations presented in [3] lead to results for linear discrete systems like variation-
of-constant formula, periodic systems, Floquet theory, multipliers, etc.
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