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THE NATURAL AFFINORS ON (JrT ∗)∗

WLODZIMIERZ M. MIKULSKI

For natural numbers r and n ≥ 2 a complete classification of natu-
ral affinors on the natural bundle (J rT ∗)∗ dual to r-jet prolongation J rT ∗ of the
cotangent bundle over n-manifolds is given.

0. The r-jet prolongation JrT ∗M of the cotangent bundle T∗M of an n-manifold
M is the space of all r-jets of 1-forms on M , i.e.

JrT ∗M = {jrxω | ω is a 1-form on M , x ∈M} .

It is a vector bundle overM with respect to the source projection. Let (JrT ∗)∗M =
(JrT ∗M )∗ be the dual bundle and let π : (JrT ∗)∗M → M be its projection.
Clearly, every embedding ϕ : M → N of two n-manifolds induces functorially (in
obvious way) a vector bundle mapping (JrT ∗)∗ϕ : (JrT ∗)∗M → (JrT ∗)∗N over
ϕ, and we obtain a natural vector bundle (JrT ∗)∗ :Mn → VB ⊂ FM.

In general, a natural affinor A on a natural bundle F :Mn → FM is a system
of affinors

A : TFM → TFM

(i.e. tensor fields of type (1,1) on FM ) for any n-manifold M which is invariant
with respect to local embeddings between n-manifolds.

For example, the family id = idTFM : TFM → TFM for any n-manifold M is
a natural affinor on F .

Another example of a natural affinor on (JrT ∗)∗ is the family

δ : T (JrT ∗)∗M → (JrT ∗)∗M ×M TM ⊂ (JrT ∗)∗M ×M (JrT ∗)∗M=̃V (JrT ∗)∗M ,

where the arrow is the system (πT , Tπ) : T (JrT ∗)∗M → (JrT ∗)∗M ×M TM ,
πT : T (JrT ∗)∗M → (JrT ∗)∗M is the tangent bundle projection, the inclusion ⊂
is induced by the bundle map dual to the target projection JrT ∗M → T ∗M , =̃ is
the standard canonical identification E×M E=̃V E for any vector bundle E →M ,
V E ⊂ TE is the vertical bundle of E.

The main result of this note is the following classification theorem.
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Theorem 1. If n ≥ 2 and r are natural numbers, then any natural affinor A on
(JrT ∗)∗ over n-manifolds is a linear combination (over R) of id and δ.

In [7], we proved that if r and n ≥ 2 are natural numbers, then any natural
affinor A on JrT , the r-jet prolongation of the tangent bundle T , is proportional
to the identity affinor. Then (as a corollary of Theorem 1) the natural bundles
JrT and (JrT ∗)∗ are not naturally isomorphic for r and n as above.

Natural affinors on F play a very importrant role in the differential geometry.
For example, they can be used to define torsions of a connection on F , see [5].
That is why classifications of natural affinors on some natural bundles has been
studied in many papers, see e.g. [1]-[3] and [6]-[8].

Throughout this note the usual coordinates on Rn are denoted by x1, . . . , xn

and ∂i = ∂
∂xi , i = 1, . . . , n.

All manifolds and maps are assumed to be of class C∞.

1. We have a linear natural transformation δ̃ : T (JrT ∗)∗ → (JrT ∗)∗ given by

δ̃ : T (JrT ∗)∗M → TM ⊂ (JrT ∗)∗M

for any n-manifold M , where the arrow is Tπ : T (JrT ∗)∗M → TM and the
inclusion TM ⊂ (JrT ∗)∗M is defined in Item 0. The linearity of δ̃ means that δ̃
induces a linear map Ty(JrT ∗)∗M → (JrT ∗)∗π(y)M for any y ∈ (JrT ∗)∗M .

The crucial point in the proof of Theorem 1 is the following proposition.

Proposition 1. If n ≥ 2 and r are natural numbers, then any linear natural
transformation A : T (JrT ∗)∗ → (JrT ∗)∗ over n-manifolds is proportional (by a
real number) to δ̃.

Proof. Clearly, any element from the fibre (JrT ∗)∗0Rn is a linear combination of
the (jr0(xαdxi))∗ for all α ∈ (N ∪ {0})n with |α| ≤ r and i = 1, . . . , n, where the
(jr0(xαdxi))∗ form the basis dual to the jr0(xαdxi) ∈ (JrT ∗)0Rn for α and i as
beside.

Any natural transformation A as in the proposition is uniquely determined by
the values 〈A(u), jr0(xαdxi)〉 ∈ R for u ∈ (T (JrT ∗)∗Rn)0=̃Rn × (V (JrT ∗)∗Rn)0

=̃ Rn × (JrT ∗)∗0Rn × (JrT ∗)∗0Rn, α ∈ (N ∪ {0})n with |α| ≤ r and i = 1, . . . , n,
where =̃ is the standard trivialization and the canonical identification.

Since A is invariant with respect to the coordinate permutations, it is uniquely
determined by the 〈A(u), jr0(xαdx1)〉 for any u and α as above.

If |α| ≥ 1, then the local diffeomorphisms ϕα = (x1, x2 + xα, x3, . . . , xn)−1

sends jr0(x2dx1) into jr0(x2dx1)+jr0 (xαdx1). Then (using the invariancy of A with
respect to the ϕ’s) A is uniquely determined by the 〈A(u), jr0(x2dx1)〉 ∈ R and the
〈A(u), jr0(dx1)〉 ∈ R for any u ∈ (T (JrT ∗)∗Rn)0=̃Rn× (JrT ∗)∗0Rn× (JrT ∗)∗0Rn.

At first we study the 〈A(u), jr0(dx1)〉 ∈ R for u as above.

By the naturality of A with respect to the homotheties at = (t1x1, . . . , tnxn) for
t = (t1, . . . , tn) ∈ Rn

+, 〈A(T (JrT ∗)∗(at)(u)), jr0(dx1)〉 = t1〈A(u), jr0(dx1)〉 for any
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t = (t1, . . . , tn) ∈ Rn
+. For any t ∈ Rn, any i = 1, . . . , n and any α ∈ (N∪{0})n we

have T (JrT ∗)∗(at)((jr0 (xαdxi))∗) = tα+ei(jr0(xαdxi))∗. Then by the homogeneous
function theorem, see [4], we have

(1.1) 〈A(u), jr0(dx1)〉 = λu1
1 + µu2,(0),1 + νu3,(0),1

for some λ, µ, ν ∈ R, where u = (u1, u2, u3), u1 = (u1
1, . . . , u

n
1 ) ∈ Rn, u2,α,i is

the coefficient of u2 ∈ (JrT ∗)∗0Rn corresponding to (jr0(xαdxi))∗, and u3,α,i is the
coefficient of u3 ∈ (JrT ∗)∗0Rn on (jr0(xαdxi))∗, (0) = (0, . . . , 0) ∈ (N ∪ {0})n.

Since A is linear, 〈A(u1, u2, u3), jr0(dx1)〉 is linear in (u1, u3) for any u2. Then
µ = 0. Replacing A by A− λδ̃, we can assume that λ = 0. Then

(1.2) 〈A(∂C1 |w), jr0(dx1)〉 = 〈A(e1, w, 0), jr0(dx1)〉 = 0

for w ∈ (JrT ∗)∗0Rn, where ( )C is the complete lift of vector fields to (JrT ∗)∗.
We prove that ν = 0.
It is sufficient to show that 〈A(0, 0, (jr0(dx1))∗), jr0(dx1)〉 = 0.
For showing the last equality we prove

(1.3)

0 = 〈A(((x1)r+1∂1)C|w), jr0(dx1)〉
= (r + 1)〈A(0, w, (jr0(dx1))∗), jr0(dx1)〉
= (r + 1)〈A(0, 0, (jr0(dx1))∗), jr0(dx1)〉 ,

where w = (jr0((x1)rdx1))∗.
The third equality of (1.3) is clear as in the formula (1.1) λ and µ are 0.
We can prove the first equality of (1.3) as follows. Vector fields ∂1 + (x1)r+1∂1

and ∂1 have the same r-jets at 0. Then, by the result of Zajtz [9], there exists a
diffeomorphism ϕ : Rn → Rn such that jr+1

0 ϕ = id and ϕ∗∂1 = ∂1 + (x1)r+1∂1

near 0. Clearly, ϕ preserves jr0(dx1) because of the jet argument. Then, us-
ing the naturality of A with respect to ϕ, from (1.2) it follows that 〈A((∂1 +
(x1)r+1∂1)C |w), jr0(dx1)〉 = 0 for any w ∈ (JrT ∗)∗0Rn. Now, applying the linearity
of A, we end the proof of the first equality.

It remains to prove the second equality of (1.3). Let ϕt be the flow of (x1)r+1∂1.
For any α ∈ (N ∪ {0})n with |α| ≤ r we have

〈((x1)r+1∂1)C|w, j
r
0(xαdxi)〉

= 〈 d
dt |t=0

(JrT ∗)∗0(ϕt)(w), jr0(xαdxi)〉

=
d

dt |t=0
〈(JrT ∗)∗0(ϕt)(w), jr0(xαdxi)〉

=
d

dt |t=0
〈w, jr0((ϕ−t)∗(xαdxi))〉

= 〈w, jr0(
d

dt |t=0
(ϕ−t)∗(xαdxi))〉

= 〈w, jr0(L(x1)r+1∂1
(xαdxi))〉

= 〈w, jr0(α1(x1)rxαdxi + (r + 1)δi1(x1)rxαdx1)〉 .
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Because of the definition of w, the last term is equal to r + 1 if jr0(xαdxi) =
jr0(dx1) and it is equal to 0 in the other cases. Then ((x1)r+1∂1)C|w = (r +

1)(jr0(dx1))∗ under the isomorphism Vw((JrT ∗)∗Rn)=̃(JrT ∗)∗0Rn. It implies the
second equality of (1.3).

To end the proof of the proposition it remains to show 〈A(u), jr0(x2dx1)〉 = 0
for any u ∈ (T (JrT ∗)∗Rn)0=̃Rn × (JrT ∗)∗0Rn × (JrT ∗)∗0Rn.

To prove this we use similar procedure as in the case of 〈A(u), jr0(dx1)〉.
By the naturality of A with respect to the homotheties at = (t1x1, . . . , tnxn)

for t = (t1, . . . , tn) ∈ Rn
+, the homogeneous function theorem and the linearity of

A, one can easily deduce

(1.4)
〈A(u), jr0(x2dx1)〉 = λu3,e2,1 + µu3,e1,2 + νu1

1u2,(0),2

+ ρu2
1u2,(0),1 + σu2,(0),1u3,(0),2 + κu2,(0),2u3,(0),1

for some λ, µ, ν, ρ, σ, κ ∈ R, where u = (u1, u2, u3), u1 = (u1
1, . . . , u

n
1) ∈ Rn,

u2, u3 ∈ (JrT ∗)∗0Rn, and uτ,α,i is the coefficient of uτ on (jr0(xαdxi))∗, τ ∈ {2, 3},
ei = (0, . . . , 1, 0, . . ., 0) ∈ (N ∪ {0})n, 1 in i-position.

Then

(1.5) 〈A(∂C1 |w), jr0(x2dx1)〉 = 0

for any linear combination w of the (jr0(xαdxi))∗ ∈ (JrT ∗)∗0Rn for |α| ≥ 1 and
i = 1, . . . , n.

At first we prove that λ = µ = 0, i.e. 〈A(0, 0, (jr0(x2dx1))∗), jr0(x2dx1)〉 = 0 and
〈A(0, 0, (jr0(x1dx2))∗), jr0(x2dx1)〉 = 0.

For showing the equality 〈A(0, 0, (jr0(x2dx1))∗), jr0(x2dx1)〉 = 0 we prove

(1.6)

0 = 〈A(((x1)r∂1)C|w), jr0(x2dx1)〉
= r〈A(0, w, (jr0(x2dx1))∗), jr0(x2dx1)〉
= r〈A(0, 0, (jr0(x2dx1))∗), jr0(x2dx1)〉 ,

where w = (jr0(x2(x1)r−1dx1))∗ ∈ (JrT ∗)∗0Rn.
The third equality of (1.6) is clear, see (1.4).
We can prove the first equality of (1.6) as follows. Vector fields ∂1 + (x1)r∂1

and ∂1 have the same r − 1-jets at 0. Then, by the result of Zajtz, there exists
a diffeomorphism ϕ = ϕ1 × idRn−1 : Rn = R × Rn−1 → Rn = R × Rn−1 such
that ϕ1 : R → R, jr0ϕ = id and ϕ∗∂1 = ∂1 + (x1)r∂1 near 0. Let ϕ−1 send
w into w̃. Then w̃ is the linear combination of the (jr0(xαdxi))∗ ∈ (JrT ∗)∗0Rn

for |α| ≥ 1 and i = 1, . . . , n. (For, 〈w̃, j r0(dxj)〉 = 〈w, jr0(d(xj ◦ ϕ−1))〉 = 0
for j = 1, . . . , n.) Consequently 〈A(∂C1 |w̃), jr0(x2dx1)〉 = 0. Clearly, ϕ preserves
jr0(x2dx1). Then, using the naturality of A with respect to ϕ it follows that
〈A((∂1 + (x1)r∂1)C |w), jr0(x2dx1)〉 = 0. Now, applying the linearity of A, we end
the proof of the first equality.
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It remains to prove the second equality of (1.6). Using the flow argument one
can easily compute

〈((x1)r∂1)C|w, j
r
0(xαdxi)〉 = 〈w, jr0(α1(x1)r−1xαdxi + rδi1(x1)r−1xαdx1)〉 .

Because of the definition of w, the last term is equal to r if jr0(xαdxi) =
jr0(x2dx1) and it is equal to 0 in the other cases. Then ((x1)r∂1)C|w = r(jr0(x2dx1))∗

under the isomorphism Vw((JrT ∗)∗Rn)=̃(JrT ∗)∗0Rn. It implies the second equal-
ity of (1.6).

For showing the equality 〈A(0, 0, (jr0(x1dx2))∗), jr0(x2dx1)〉 = 0 we prove

(1.7)

0 = 〈A(((x1)r∂1)C|w), jr0(x2dx1)〉
= 〈A(0, w, (jr0(x1dx2))∗), jr0(x2dx1)〉
= 〈A(0, 0, (jr0(x1dx2))∗), jr0(x2dx1)〉 ,

where w = (jr0((x1)rdx2))∗.
The third equality of (1.7) is clear, see (1.4).
The first equality of (1.7) has similar proof as the first equality of (1.6).
It remains to prove the second equality of (1.7). Using the flow argument one

can easily compute ((x1)r∂1)C|w = (jr0(x1dx2))∗ under the obvious isomorphism. It
implies the second equality of (1.7).

We have proved that µ = λ = 0.
Now, we prove that σ = κ = 0.
Local diffeomorphism ψ = (x1 + 1

2(x1)2, x2

1+x1 , x
3, . . . , xn) preserves jr0(x2dx1),

it sends (jr0(x1dx2))∗ into (jr0(x1dx2))∗ − (jr0(dx2))∗, and it preserves (jr0(dx1))∗.
Now, using (1.4) with λ = µ = 0 and the naturality of A with respect to ψ we
obtain

(1.8)

0 = −〈A(0, (jr0(dx1))∗, (jr0(x1dx2))∗), jr0(x2dx1)〉
= −〈A(0, (jr0(dx1))∗, (jr0(x1dx2))∗) − (jr0(dx2))∗), jr0(x2dx1)〉
= 〈A(0, (jr0(dx1))∗, (jr0(dx2))∗), jr0(x2dx1)〉 .

Therefore in (1.4) we have σ = 0.
Similarly, starting from 0 = −〈A(0, (j r0(x1dx2))∗, (jr0(dx1))∗), jr0(x2dx1)〉 we ob-

tain 〈A(0, (jr0(dx2))∗, (jr0(dx1))∗), jr0(x2dx1)〉 = 0, i.e. κ = 0.
Now, we prove that in (1.4) we have ν = 0.
The above local diffeomorphism ψ sends the germ at 0 of ∂1 into the germ at 0

of ∂1 + . . . , where the dots is some vector field vanishing in 0 ∈ Rn. Now, using
(1.4) with λ = µ = σ = κ = 0 and the naturality of A with respect to ψ we obtain

(1.9)

0 = −〈A(e1, (jr0(x1dx2))∗, 0), jr0(x2dx1)〉
= −〈A(e1, (jr0(x1dx2))∗)− (jr0(dx2))∗, u3), jr0(x2dx1)〉
= 〈A(e1, (jr0(dx2))∗, 0), jr0(x2dx1)〉
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for some u3 ∈ (JrT ∗)∗0Rn. Therefore in (1.4) we have ν = 0.
It remains to prove that in (1.4) we have ρ = 0.
From (1.4) with µ = λ = ν = σ = κ = 0 and the invariancy of A with respect

to the diffeomorphism permuting x1 and x2 we have

(1.10) 〈A(e2, (jr0(dx1))∗, u3), jr0(x1dx2)〉 = 0

for any u3 ∈ (JrT ∗)∗0Rn. From (1.1) with λ = µ = ν = 0 we have

(1.11) 〈A(e2, (jr0(dx1))∗, 0), jr0(dx1)〉 = 0 .

Now, using the invariancy of A with respect to Θ = (x1 +x1x2, x2, . . . , xn)−1 from
(1.11) we obtain

0 = 〈A(e2, (jr0(dx1))∗, u3), jr0(dx1) + jr0(x1dx2) + jr0(x2dx1)〉
= 〈A(e2, (jr0(dx1))∗, 0), jr0(x2dx1)〉

for some u3 because of (1.1) with λ = µ = ν = 0, (1.4) with λ = µ = ν = σ = κ = 0
and (1.10). Therefore in (1.4) we have ρ = 0.

The proof of Proposition 1 is complete. �

2. The tangent map Tπ : T (JrT ∗) ∗ M → TM of the bundle projection π :
(JrT ∗)∗M →M defines a linear natural transformation Tπ : T (JrT ∗)∗ → T over
n-manifolds.

Proposition 2. If r and n ≥ 2 are natural numbers, then any linear natural
transformation A : T (JrT ∗)∗ → T over n-manifolds is proportional (by a real
number) to Tπ.

Proof. Applying the inclusion TM ⊂ (JrT ∗)∗M , we have A : T (JrT ∗)∗M →
TM ⊂ (JrT ∗)∗M . Then by Proposition 1, A : T (JrT ∗)∗M → TM ⊂ (JrT ∗)∗M
is proportional to δ̃. Then A : T (JrT ∗)∗M → TM is proportional to Tπ. �

3. In Item 0, we defined natural affinor δ : T (JrT ∗)∗M → (JrT ∗)∗M ×M TM ⊂
(JrT ∗)∗M ×M (JrT ∗)∗M=̃V (JrT ∗)∗M .

Proposition 3. If r and n ≥ 2 are natural numbers, then any natural affinor
A : T (JrT ∗)∗M → V (JrT ∗)∗M on (JrT ∗)∗ over n-manifolds is proportional (by
a real number) to δ.

Proof. Define a linear natural transformation Ã = pr2 ◦ A : T (JrT ∗)∗M →
V (JrT ∗)∗M=̃(JrT ∗)∗M ×M (JrT ∗)∗M → (JrT ∗)∗M , where pr2 : (JrT ∗)∗M ×M
(JrT ∗)∗M → (JrT ∗)∗M is the projection onto second factor. By Proposition 1,
Ã = λδ̃ for some λ ∈ R. Then A = (πT , Ã) = λ(πT , δ̃) = λδ. �
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4. We are now in position to prove Theorem 1. Let A : T (JrT ∗)∗M → T (JrT ∗)∗M
be the natural affinor on (JrT ∗)∗ over n-manifolds. Then Tπ ◦A : T (JrT ∗)∗ → T
is a linear natural transformation. By Proposition 2, Tπ ◦ A = λTπ for some λ.
Clearly, Tπ ◦ id = Tπ. Then A − λid is an affinor on (JrT ∗)∗ of vertical type.
Now, applying Proposition 3 we end the proof. �
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[2] Doupovec, M., Kolář, I., Natural affinors on time-dependent Weil bundles, Arch. Math.
(Brno) 27 (1991), 205–209.
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