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A NOTE ON SOME DISCRETE VALUATION RINGS OF
ARITHMETICAL FUNCTIONS

EMIL D. SCHWAB AND GHEORGHE SILBERBERG

Abstract. The paper studies the structure of the ring A of arithmetical

functions, where the multiplication is defined as the Dirichlet convolution. It
is proven that A itself is not a discrete valuation ring, but a certain extension

of it is constructed,this extension being a discrete valuation ring. Finally, the
metric structure of the ring A is examined.

1. Introduction

In [6], K. L. Yokom investigated the prime factorization of arithmetical functions
(mappings from N∗ into C) in a certain subring of the regular convolution ring.
In the unitary ring (A,+, ∗f) of the arithmetical functions, where the unitary
convolution ∗f of two arithmetical functions f, g ∈ A is defined by:

(f ∗f g)(n) =
∑

d|n,(d,nd )=1

f(d)g(
n

d
),(1)

K. L. Yokom considered the subring Bf:

Bf = {f ∈ A|ω(m) = ω(n) implies f(m) = f(n)} ,(2)

where ω(m) is the number of distinct prime divisors of m and proved the following:

Theorem 1.1. ([6]) The ring Bf contains only one prime π (up to associates)
and each nonzero f ∈ Bf can be written uniquely in the form

f = u ∗f πω(N(f)) ,

where u is a unit in Bf and N (f) is given by:

N (f) = min{n|f(n) 6= 0} .
We observe that η : C[[X]]→ Bf defined as

η(
∞∑
k=0

akX
k)(n) = ω(n)!aω(n)(3)
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is a ring-isomorphism (see [5]) and therefore (Bf,+, ∗f) is a discrete valuation
ring. This proves Yokom’s Theorem. (It is clear that π = η(X) and therefore
π(n) = 1 if n is a prime power pα > 1 and π(n) = 0 otherwise.)

In the lattice of the regular convolutions, the unitary convolution is the zero
element, and the Dirichlet convolution is the universal element (see [2]). The
Dirichlet convolution ∗D of two arithmetical functions f, g ∈ A is defined by:

(f ∗D g)(n) =
∑
d|n

f(d)g(
n

d
) .(4)

K. L. Yokom determined a discrete valuation subring of the unitary ring of arith-
metical functions (A,+, ∗f). Our purpose is to find a discrete valuation ring which
is an extension of the ring (A,+, ∗D).

2. Main results

First we will try to get some properties of the ring (A,+, ∗D).
It is well known that it is a local ring, his maximal ideal being
M = A \ U (A) = {f ∈ A|f(1) 6= 0}. Unlike (A,+, ∗f), the ring (A,+, ∗D) is an
integrity domain.

Let p1 < p2 < . . . be the set of the primes. If n = pα1
1 pα2

2 . . . pαrr is a nonzero
natural number, let Ω(n) be the total number of prime factors of n, each being
counted according to its multiplicity, that is

Ω(n) = α1 + α2 + . . .+ αr .

Ω is obviously a monoid-morphism between (N∗, ·) and (N,+).
For every k ∈ N we put

Ik = {f ∈ A|f(n) = 0 for every n ∈N∗ such that (n, p1p2 . . . pk) = 1}
and

Jk = {f ∈ A|f(n) = 0 for every n ∈N∗ such that Ω(n) < k} .

Proposition 2.1. a) Ik and Jk are ideals in (A,+, ∗D) for every k ∈N.

b) {0} = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ Ik+1 ⊂ . . . ,
⋃
k≥0 Ik = A.

c) A = J0 ⊃M = J1 ⊃ J2 ⊃ . . . ⊃ Jk ⊃ Jk+1 ⊃ . . . ,
⋂
k≥0 Jk = {0}.

In particular, the ring (A,+, ∗D) is neither noetherian, nor artinian.

Proof. a) Let f, g ∈ Ik, h ∈ A, and let n ∈ N∗ such that (n, p1p2 . . . pk) = 1.
Then for every divisor d of n we have (d, p1p2 . . . pk) = 1 and therefore

(f − g)(n) = f(n) − g(n) = 0 ,

(f ∗D h)(n) =
∑
d|n

f(d)h(
n

d
) = 0 .

Now let f, g ∈ Jk, h ∈ A, and let n ∈N∗ such that Ω(n) < k. For every divisor d
of n we have Ω(d) ≤ Ω(n) < k and therefore

(f − g)(n) = f(n) − g(n) = 0,
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(f ∗D h)(n) =
∑
d|n

f(d)h(
n

d
) = 0 .

b) and c) are obvious. 2

An interesting property of the ideals Jk is the following one.

Proposition 2.2. Let k, l be natural numbers and f, g be arithmetical functions,
f ∈ Jk \ Jk+1, g ∈ Jl \ Jl+1. Then f ∗D g ∈ Jk+l \ Jk+l+1.

Proof. At the beginning we will prove that f, g ∈ Jk+l.
Let n ∈ N∗ such that Ω(n) < k + l. If d is a divisor of n, then Ω(d) < k or
Ω(n

d
) < l. It results

(f ∗D g)(n) =
∑
d|n

f(d)g(
n

d
) = 0, that is f ∗D g ∈ Jk+l .

It remains to prove that there exists n ∈ N∗ such that Ω(n) = k + l and
(f ∗D g)(n) 6= 0.
If l = 0, then g(1) 6= 0 and we can find n ∈N∗ with

Ω(n) = k, f(n) 6= 0, f(d) = 0 ∀d ∈ N∗ \ {n}, d|n .
We get

(f ∗D g)(n) =
∑
d|n

f(d)g(
n

d
) = f(n)g(1) 6= 0 .

The assertion can be proved similarly if k = 0. Therefore one may assume that
k, l 6= 0.

From the hypothesis f 6∈ Jk+1 we obtain a natural number m with Ω(m) = k
and f(m) 6= 0. Let m = qα1

1 qα2
2 . . . qαss be the decomposition of m into prime

factors, where q1, q2, . . . , qs are mutually distinct, α1 ≥ α2 ≥ . . . ≥ αs > 0 and
α1 + α2 + . . .+ αs = k. We may choose m in the set
M = {m ∈N∗|Ω(m) = k, f(m) 6= 0} so that the vector

(α1, α2, . . . , αs, 0, . . . , 0︸ ︷︷ ︸
k−s

)

is maximal in the lexicographycal ordering. We keep fixed such a number m and
also the corresponding values s, q1, . . . , qs, α1, . . . , αs.
Similarly, there exists n ∈ N∗ with Ω(n) = l and g(n) 6= 0. Let n = qβ1

1 qβ2
2 . . .

qβss r
x1
1 rx2

2 . . . rxtt the decomposition of n into prime factors, where t ≥ 0, r1, r2,
. . . , rt are mutually distinct primes, {q1, . . . , qs} ∩ {r1, . . . , rt} = ∅, β1, . . . , βs,
x1, . . . , xt ∈ N, x1 ≥ x2 ≥ . . . ≥ xt > 0 and β1 + . . . + βs + x1 + . . . + xt =
l. We may choose n in the set N = {n ∈ N∗|Ω(n) = l, g(n) 6= 0} so that
β1 + . . . + βs is maximal and also the vector (α1 + β1, . . . , αs + βs) is maximal
in the lexicographycal ordering. We keep fixed such a number n and also the
corresponding values β1, . . . , βs, t, r1, . . . , rt, x1, . . . , xt.

Let now d ∈N∗, d|mn, with the property f(d)g(mn
d

) 6= 0. From the relations

Ω(d) ≥ k, Ω(
mn

d
) ≥ l, Ω(mn) = k + l
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we get Ω(d) = k and Ω(mnd ) = l. Hence

d = qγ1
1 . . . qγss r

y1
1 . . . rytt and

mn

d
= qα1+β1−γ1

1 . . . qαs+βs−γss rx1−y1
1 . . . rxt−ytt ,

where
γ1, . . . , γs, y1, . . . , yt ∈N, γi ≤ αi + βi ∀i ∈ {1, 2, . . . , s} ,

yj ≤ xj ∀j ∈ {1, 2, . . . , t},
s∑
i=1

γi +
t∑

j=1

yj = k =
s∑
i=1

αi .

We observe that mnd ∈ N . Because the way we have chosen n, it results succesively

β1 + . . .+ βs ≥ (α1 + β1 − γ1) + . . .+ (αs + βs − γs) ,
s∑
i=1

γi ≥
s∑
i=1

αi =
s∑
i=1

γi +
t∑

j=1

yj ,

y1 = y2 = . . . = yt = 0 .

Moreover, from the maximality of (α1 + β1, . . . , αs + βs) we get

(α1 + β1, . . . , αs + βs) ≥ (α1 + (α1 + β1 − γ1), . . . , αs + (αs + βs − γs)) ,
and therefore γ1 ≥ α1. If (γi1 , . . . , γis) is a permutation of the numbers (γ1, . . . , γs)
realized in such a way that γi1 ≥ . . . ≥ γis , then

d = q
γi1
i1

. . . q
γis
is
∈ M .

In accordance with the choosing of m one may write

(α1, . . . , αs, 0, . . . , 0︸ ︷︷ ︸
k−s

) ≥ (γi1 , . . . , γis , 0, . . . , 0︸ ︷︷ ︸
k−s

) .

We obtain γi1 = γ1 = α1 and, by induction, γi = αi for every i ∈ {1, 2, . . . , s}.
In conclusion,

d = m,
mn

d
= n, (f ∗D g)(mn) = f(m)g(n) 6= 0 ,

and therefore f ∗D g 6∈ Jk+l+1. 2

Now we can define the degree D(f) of a (nonzero) arithmetical function as
follows:

D(f) = max{k ∈N|f ∈ Jk} .(5)

Obviously, D(f) = 0⇔ f ∈ U (A).

Proposition 2.3. The degree D : A \ {0} →N has the following properties:
i) D is a surjective mapping.

ii) D(f ∗D g) = D(f) + D(g) ∀f, g ∈ A \ {0}.

iii) D(f + g) ≥ min(D(f), D(g)) ∀f, g ∈ A \ {0}, g 6= −f.
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Proof. i) Let k ∈N. The function f : N∗ → C

f(n) =
{

1 if n = 2k

0 if n ∈N∗ \ {2k}

verifies D(f) = k.
ii) Is a direct consequence of Proposition 2.2.
iii) Let k = D(f), l = D(g). One may assume that k ≥ l. Then f ∈ Jk ⊆ J,l

g ∈ Jl, hence f + g ∈ Jl. We derive that D(f + g) ≥ l. 2

Now we can extend the degree mapping D to the field of fractions
K = {fg |f, g ∈ A, g 6= 0} of A, by putting

D̄ : K \ {0} → Z D̄(
f

g
) = D(f) −D(g) ∀f, g ∈ A \ {0} .(6)

D̄ is obviously well-defined.

Proposition 2.4. D̄ has the following properties:
i) D̄ is surjective.

ii) D̄(x ∗D y) = D̄(x) + D̄(y) ∀x, y ∈ K \ {0}.

iii) D̄(x+ y) ≥ min(D̄(x), D̄(y)) ∀x, y ∈ K \ {0}, y 6= −x.

Proof. The first two statements follow imediately from Proposition 2.3.
iii) If x = f1

g1
, y = f2

g2
, f1, f2, g1, g2 ∈ K \ {0}, then

D̄(x+ y) = D̄

(
f1 ∗D g2 + f2 ∗D g1

g1 ∗D g2

)
= D(f1 ∗D g2 + f2 ∗D g1)−D(g1 ∗D g2)

≥ min(D(f1 ∗D g2), D(f2 ∗D g1)) −D(g1) −D(g2)

= min(D(f1) +D(g2), D(f2) +D(g1)) −D(g1) −D(g2)

= min(D(f1) −D(g1), D(f2) −D(g2))

= min
(
D̄

(
f1

g1

)
, D̄

(
f2

g2

))
= min(D̄(x), D̄(y)) .

2

For any a ∈ (1,+∞) one defines v : K → R

v(x) =
{
a−D̄(x) if x 6= 0

0 if x = 0 .

Theorem 2.1. i) v is a non-archimedean valuation on K.

ii) BD = {f
g
∈ K|v(f

g
) ≤ 1} is a discrete valuation ring and A is canonically

embedded in BD.

iii) PD = {fg ∈ K|v(
f
g ) < 1} is the unique nontrivial prime ideal of BD.
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Proof. The first assertion follows from Proposition 3.1.10 of [1], and the other
two assertions are contained in Proposition 3.1.16 of [1]. 2

Remark 2.1. (A,+, ∗D) is not a discrete valuation ring, because the ideals {f ∈
A|f(1) = f(2) = 0} and {f ∈ A|f(1) = f(3) = 0} are not comparable.

If δm : N∗ → C (m ∈N∗) is the arithmetical function defined by

δm(n) =
{

1 if n = m
0 if n 6= m,

then we get the following obvious results:

Corollary 2.1. The ring BD contains only one nonzero prime, δ2
δ1

(up to asso-
ciates), and each nonzero element x ∈ BD may be written uniquely in the form

x = u ∗D
(
δ2
δ1

)D̄(x)

,

where u ∈ U (BD) = {x ∈ K|v(x) = 1}.

Corollary 2.2. Let f and g be two nonzero arithmetical functions such that
D(f) ≥ D(g). Then there are two arithmetical functions, h and k, with D(h) =
D(k) and

f ∗D k = g ∗D h ∗D δ2D(f)−D(g) .

One can define on K a distance, putting

d(x, y) = v(x − y) ∀x, y ∈ K .

The restriction of d to the ring (A,+, ∗D) is also a distance, defined by

d(f, g) =
{
a−D(f−g) if f 6= g

0 if f = g .

The structure of the metric space (A, d) is established by

Theorem 2.2. The metric space (A, d) is complete.

Proof. Let (fn)n≥0 be a Cauchy sequence in A. Then for every ε > 0 there exists
Nε ∈ N such that

a−D(fm−fn) < ε ∀m,n ≥ Nε.

For each k ∈N, taking ε = a−k we get:
there exists Nk ∈N such that

D(fm − fn) > k ∀m,n ∈N, m, n ≥ Nk,

that is fm(r) = fn(r) for every r ∈ N∗ with Ω(r) ≤ k. Choosing for each k ∈ N
the lowest natural number Nk with the property above, we have

N0 ≤ N1 ≤ . . . ≤ Nk ≤ Nk+1 ≤ . . .

One defines the function f : N∗ → C by

f(r) = fNΩ(r)(r) ∀r ∈ N∗

and one proves that f is the limit of the sequence (fn)n≥0.
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Let ε > 0, k = max([−lnε], 0) and Nk ∈ N defined as before. If n ≥ Nk and if
r ∈N∗ with Ω(r) ≤ k, then NΩ(r) ≤ Nk ≤ n. It follows

fn(r) = fNΩ(r)(r) = f(r) ,

hence D(fn − f) > k, and therefore d(fn, f) < ε.
Consequently, limn→∞ fn = f and the Theorem is proved. 2
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		webmaster@dml.cz
	2012-05-10T13:15:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




