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GREEN’S D-RELATION FOR THE MULTIPLICATIVE REDUCT
OF AN IDEMPOTENT SEMIRING

F. PASTIJN AND XIANZHONG ZHAO

Abstract. The idempotent semirings for which Green’s D-relation on the
multiplicative reduct is a congruence relation form a subvariety of the vari-

ety of all idempotent semirings. This variety contains the variety consisting
of all the idempotent semirings which do not contain a two-element mono-

bisemilattice as a subsemiring. Various characterizations will be given for the
idempotent semirings for which the D-relation on the multiplicative reduct is

the least lattice congruence.

1. Introduction

We shall assume that the reader is familiar with the basics concerning semigroup
theory. We refer to [1] for a general background. Recall that a band is a semigroup
where every element is an idempotent. Green’s D-relation is the least semilattice
congruence on a band.

An idempotent semiring (S,+, ·) is an algebra with two binary operations +
and · such that both (S,+) and (S, ·) are bands and such that the distributive
laws

x(y + z) ≈ xy + xz , (x+ y)z ≈ xz + yz(1.1)

hold. Thus the idempotent semirings form a variety which will be denoted by I.
The intriguing feature about the study of idempotent semirings is the investigation
of how the distributive laws (1.1) force the structural characteristics of the two
reducts to interact. The present paper is a contribution to this line of investigation.

The variety Bi of bisemilattices is the subvariety of I determined by the addi-
tional identities

x+ y ≈ y + x , xy ≈ yx .(1.2)
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Thus, Bi consists precisely of the idempotent semirings for which the two reducts
are semilattices. Monobisemilattices are bisemilattices for which the two reducts
are equal semilattices: monobisemilattices are bisemilattices which satisfy the iden-
tity

x+ y ≈ xy .(1.3)

The variety of monobisemilattices will be denoted by M and the variety of dis-
tributive lattices by D. In [2] it was found that the lattice L(Bi) of subvarieties of
Bi consists of the five varieties Bi,D,M,D∨M and the trivial variety T = D∩M.

On an idempotent semiring (S,+, ·) one may introduce the relations ≤
+

and
≤· by the following: for a, b ∈ S,

a ≤
+
b ⇔ a+ b = b = b+ a(1.4)

a ≤· b ⇔ ab = a = ba .(1.5)

The relations ≤
+

and ≤· are partial orders. Thus D consists of the bisemilattices
for which ≤

+
= ≤· and M consists of the bisemilattices for which ≤

+
= ·≥. The

members of D ∨M satisfy the dual distributive laws

x+ yz ≈ (x+ y)(x + z) , xy + z ≈ (x+ z)(y + z) .(1.6)

The three element bisemilattice (S,+, ·) for which S = {a, b, c} with a ≤
+
b ≤

+
c

and a ≤· c ≤· b does not satisfy these dual distributive laws and thus generates
Bi. It follows also that D ∨M is the subvariety of Bi determined by (1.6).

An idempotent semiring is said to be an idempotent distributive semiring if
it satisfies the dual distributive laws (1.6). The lattice L(ID) of subvarieties of
the variety ID of idempotent distributive semirings was determined in [3]. It is
countably infinite and distributive. According to the above mentioned remarks we
have ID∩Bi = D ∨M.

An identity u ≈ v is said to be a regular identity if the set of a variables occurring
in u coincides with the set of variables occurring in v. A semiring variety contains
M if and only if it is determined by a set of regular identities. The variety M
satisfies all regular identities. An identity which is not regular is called a nonregular
identity . A nonregular identity of the form x ≈ v, with x a variable, is called a
strongly nonregular identity .

Theorem 1.1. For an idempotent semiring S the following are equivalent:
(i) S does not contain a two-element monobisemilattice,
(ii) S satisfies a nonregular identity,
(iii) S satisfies the strongly nonregular identity

x ≈ x+ xyx+ x .(1.7)

Proof. A two-element monobisemilattice does not satisfy a nonregular identity.
Therefore (iii)⇒(ii)⇒(i) holds. Assume that S is an idempotent semiring which
does not contain a two-element monobisemilattice and let a, b ∈ S. Then {a, a+
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aba+ a} forms a monobisemilattice, whence a = a+ aba+ a. Therefore (i)⇒(iii).

The subvariety of I determined by (1.7) will be denoted by N.

Corollary 1.2. For a subvariety V of I, either M ⊆ V or V ⊆ N.

For a subvariety V of I and S ∈ I there exists a smallest congruence ρ on S
such that S/ρ ∈ V. This congruence will be called the least V-congruence on S.

Corollary 1.3. For any S ∈ I, the congruence relation on S generated by ≤
+

∩ ·≥ is the least N-congruence on S.

Proof. Let ν be the least N-congruence on S. If a, b ∈ S and a (≤
+
∩ · ≥) b,

then {aν, bν} form a monobisemilattice, and since S/ν does not contain nontriv-
ial monobisemilattices, we have aν = bν. Therefore ν contains the congruence
generated by ≤

+
∩ ·≥.

Let ρ be a congruence on S which does not contain ν, that is, S/ρ 6∈ N. By
Theorem 1.1 there exist a, b ∈ S such that

aρ 6= (a+ aba+ a)ρ

in S/ρ. Since a (≤
+
∩ · ≥) a + aba + a this entails that ρ does not contain the

congruence generated by ≤
+
∩ · ≥. It follows that the congruence generated by

≤
+
∩ ·≥ contains ν.

For an idempotent semiring (S,+, ·) we denote Green’s D-relation on the addi-

tive [multiplicative] reduct by D
+

[Ḋ]. For a ∈ S, we denote the D
+

-class [Ḋ-class]

containing a by D
+

a [Ḋa]. Similarly, corresponding to Green’s L- and R-relation

we have the relations L
+

, L̇ and R
+

, Ṙ, respectively. Recall that D
+

[Ḋ] is the least
semilattice congruence on the band (S,+) [(S, ·)].

Theorem 1.4. For an idempotent semiring (S,+, ·), D
+

∨ Ḋ = D
+

Ḋ D
+

and the

congruence relation generated by D
+

∨Ḋ is the least Bi-congruence. The congruence

generated by D
+

∨ Ḋ ∨ (≤
+
∩ ·≥) is the least D-congruence.

Proof. Assume that a, b, c, d ∈ S such that a Ḋ cD
+

d Ḋ b. From c = c + d + c
and a = aca we deduce that a = aca = aca + ada + aca = a + ada + a. From
d = d+ c + d and a = aca we find that ada = ada+ aca+ ada = ada + a+ ada.
We found that aD

+

ada, and similarly we can prove that bD
+

bcb. Since Ḋ is the
least semilattice congruence on (S, ·) we have from aḊ c and d Ḋ b that ada Ḋ bcb.
Therefore aD

+

ada Ḋ bcbD
+

b. We proved that ḊD
+

Ḋ ⊆ D
+

ḊD
+

and consequently that

D
+

∨ Ḋ = D
+

ḊD
+

.
The least Bi-congruence on S contains the least semilattice congruence D

+

on
(S,+) and the least semilattice congruence Ḋ on (S, ·). Clearly each congruence
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on the semiring S containing both D
+

and Ḋ is a Bi-congruence. Therefore the

congruence generated by D
+

∨Ḋ is the least Bi-congruence. From Corollary 1.3 and

since D ⊆ N we now have that the least D-congruence contains D
+

∨Ḋ∨(≤
+
∩ ·≥).

We have that Bi ∩N = D and therefore by Corollary 1.3 and the above we have

that the congruence generated by D
+

∨ Ḋ ∨ (≤
+
∩ · ≥) contains the least D-

congruence.

We include the following result for later reference.

Theorem 1.5. Let (S,+, ·) be an idempotent semiring. Then D
+

is a congruence

relation on the semiring (S,+, ·), while L
+

and R
+

are congruence relations on the

band (S, ·). The L
+

- and R
+

-classes form subsemirings.

The dual of a statement (P ) is the statement which results from (P ) by in-
terchanging the role of · and +. It should be noted that the dual of a statement

which holds true for all idempotent semirings need not be true. Indeed, while D
+

is
a congruence relation on any idempotent semiring, Ḋ need not be, as can be seen
from the following

Example 1.6. Let (S,+, ·) have the following addition and multiplication table

+ a b c w
a a b c w
b b b c c
c c c c c
w w c c w

· a b c w
a a a a a
b b b b b
c b b c c
w a b c w

One verifies that (S,+) is a semilattice, and (S, ·) a band with L̇ = Ḋ. Fur-
ther, the distributive laws (1.1) hold and so (S,+, ·) is an idempotent semiring.
However, though a L̇ b we have that a + w = w and b + w = c are not Ḋ-related,
and thus Ḋ = L̇ is not a congruence. We note that {w, c} forms a two-element-
monobisemilattice, and so S 6∈ N. Nevertheless the greatest bisemilattice homo-
morphic image of S is a two-element distributive lattice and thus belongs to N.

From the following we see that the idempotent semirings whose Ḋ-relation is a
congruence form a subvariety of I. This variety is necessarily a proper subvariety
of I because of Example 1.6.

Theorem 1.7. Let S be an idempotent semiring. Then the Ḋ-relation on S is a
congruence if and only if S satisfies the identities

(xy + z)(yx + z)(xy + z) ≈ xy + z ,

(x+ yz)(x + zy)(x + yz) ≈ x+ yz .(1.8)

Proof. Assume that Ḋ is a congruence on S and let a, b, c ∈ S. Then ab Ḋ ba and
also ab+c Ḋ ba+c, whence (ab+c)(ba+c)(ab+c) = ab+c, and in a left-right dual
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way for the addition one show that (a + bc)(a + cb)(a + bc) = a + bc. Therefore
the identities (1.8) are satisfied in S.

Conversely, assume that the idempotent semiring S satisfies the identities (1.8).
Let a Ḋ b, thus a = (ab)(ba) and b = (ba)(ab). Let c be any element of S. Substi-
tuting x by ab, y by ba and z by c in the first identity of the statement we obtain
(a + c)(b + c)(a + c) = a + c. By symmetry also (b + c)(a + c)(b + c) = b + c
holds and thus a+ c Ḋ b+ c. From the second identity one obtains similarly that
c+ a Ḋ c+ b. Since Ḋ is also a congruence on (S, ·) we may thus conclude that Ḋ
is a congruence on S.

Corollary 1.8. Ḋ is not a congruence relation on the free idempotent semiring
generated by three free generators.

We remark that the idempotent semiring of Example 1.6 is generated by {a, c, w}
but not by any two of its elements. This leaves the question open whether Ḋ is a
congruence on the free idempotent semiring generated by two free generators.

We still have a weak analogue of Theorem 1.5.

Theorem 1.9. Let S be an idempotent semiring. Then the L̇-, Ṙ- and Ḋ-classes
form subsemirings of S.

Proof. If a L̇ b in S then ab = a, ba = b and so a(a + b) = a + ab = a + a = a,
(a + b)a = a + ba = a + b, and therefore aL̇a + b. From this follows that the
L̇-classes form subsemirings. The left-right dual for the multiplication yields that
the Ṙ-classes form subsemirings.

Assume that a Ḋ b in S. Then by the foregoing a Ṙ ab Ṙ ab+a and a L̇ ba L̇ ba+a.
Hence

a Ḋ (ba+ a)(ab + a) = bab+ ba+ ab+ a

= b+ ba+ ab+ a = (b + a)2 = b+ a .

We proved that the Ḋ-classes form subsemirings.

A set of identities is self-dual if for any identity in the set, interchanging the
role of + and · yields an identity which is again in the set. Clearly if a variety
can be given by a self-dual set of identities, and (P ) is a statement which holds
true for all the members of this variety, then its dual also holds true for all the
members of the variety. The variety ID of idempotent distributive semirings can
be given by a self-dual set of identities, and so Ḋ is a congruence on any S ∈ ID,

since D
+

is:

Theorem 1.10. Ḋ is a congruence on an idempotent distributive semiring.

Corollary 1.11. Ḋ is a congruence on any idempotent semiring whose additive
or multiplicative reduct is a rectangular band.
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Proof. An idempotent semiring whose additive or multiplicative reduct is a rect-
angular band belongs to ID [3].

The main objective of Section 2 will be to show that Ḋ is a congruence relation
on every member of N. In other words, we show that N is a subvariety of the
variety of idempotent semirings determined by (1.8). Using Theorem 1.4, this will
allow to represent the least lattice congruence on the members of N in a much
simpler form.

Of course N contains semirings which are not in ID:

Example 1.12. Let (S,+, ·) be such that S = {a, b, o}with the following addition
and multiplication table:

+ a b o
a a b a
b b b b
o a b o

· a b o
a a a o
b b b o
o o o o

Thus (S,+, ·) is an idempotent semiring which belongs to N. This idempotent
semiring has an additive reduct which is a semilattice. The dual distributive laws
(1.6) do not hold since bo + a = a whereas (b+ a)(o + a) = b. Ḋ = L̇ is the least
lattice congruence on S.

2. The Ḋ-relation on the members of N

We set out to prove that Ḋ is a congruence relation on every member of N,
that is according to Theorem 1.1, on every idempotent semiring which does not
contain a two-element monobisemilattice. This in particular explains the presence
of a two-element monobisemilattice in the counterexample 1.6. Our result then

entails in view of Corollary 1.3 and Theorem 1.4 that D
+

∨ Ḋ = D
+

Ḋ D
+

is the
least lattice congruence on any member of N. We conclude the section with the
investigation of the special situation where Ḋ itself is the least lattice congruence.

We proceed through a sequence of lemmas and draw our conclusions at the end.

Lemma 2.1. Let S ∈ I. If a, b, w ∈ S such that a(Ḋ∩L
+

)b then a+w (Ḋ∩L
+

) b+w.

Proof. Clearly aL
+

b implies that a+ wL
+

b+ w.

We shall assume that a(L̇ ∩ L
+

) b and we put u = a + w + a and v = b+ w + b.
Then

va = (b+ v)a = b+ va ,

whence
va = vb + va = v(b + a) = vb .

Again, from b+ v = v we then have

v = vb + v = va + v = v(a + v) .
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Thus, v = v(a + v) entails v L̇ (a + v)v, whereas v = b + w + b + a = v + a

entails v L
+

a+v. Since by Theorem 1.5 the L
+

-classes form subsemirings, this gives

v (L̇ ∩ L
+

) (a+ v)v.
We found that v = v(a+ v). Interchanging the role of a and b we find similarly

that u = u(b+ u). Since aL
+

b, the elements u, v, a+ v, b+ u and (a+ v)v belong

to the same D
+

-class. By Theorem 1.5 the D
+

-class D
+

u forms a subsemiring and by

Corollary 1.11 Ḋ is a congruence on D
+

u. Further, D
+

u satisfies the dual distributive

laws (1.6). Indeed, if a, b, c ∈ D
+

u, then

(a+ b)(a+ c) = (a+ b)a+ (a + b)c
= a+ ba+ ac+ bc = a+ bc

since a, ba, ac, bc ∈ D
+

u. Therefore by (1.6)

(a+ v)v + (b+ u) = (a+ v + b+ u)(v + b+ u)
= (a+ b+ w + b+ a+ w + a)(b+ w + b+ a + w + a)
= (a+ w + b+ w + a)(b + w + a)
= (a+ w + a)(b+ w + a) = u(b+ u) = u = a+ w + a(2.1)

where a+ w + b+ w = a+ w follows from aL
+

b.

Further,

v + (b+ u) = b+ w + b+ a + w + a = b+ w + a .(2.2)

Since Ḋ is a congruence on D
+

u, we have from v L̇ (a + v)v that

(a + v)v + (b + u) Ḋ v + (b + u) .(2.3)

The equalities (2.1), (2.2) and (2.3) then yield

a+ w + a Ḋ b+ w + a .(2.4)

Again, since a+ w ∈ D
+

u and Ḋ is a congruence on D
+

u, we have from (2.4) that

a+ w = (a+ w + a) + (a + w)

Ḋ (b+ w + a) + (a + w)

= b+ w (since aL
+

b),

as required.

We proved that if a(L̇∩L
+

) b, then a+w(Ḋ∩L
+

) b+w. Applying left-right duality

for the multiplication we can show that if a (Ṙ ∩ L
+

) b then a + w (Ḋ ∩ L
+

) b+ w.

Thus, if instead we have a(Ḋ ∩ L
+

) b, then by Theorem 1.5,

a (L̇ ∩ L
+

) ba (Ṙ ∩ L
+

) b
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and so by the above

a+ w (Ḋ ∩ L
+

) ba+ w (Ḋ ∩ L
+

) b+ w .

Applying left-right duality for the addition we obtain similarly

Lemma 2.2. Let S ∈ I. If a, b, w ∈ S such that a (Ḋ ∩ R
+

) b, then w + a (Ḋ ∩
R
+

)w + b.

Lemma 2.3. Let S ∈N. If c, d, w ∈ S such that c(Ḋ ∩ R
+

) d and w + c = c, then

c+ w (Ḋ ∩ R
+

) d+ w.

Proof. From w + c = c and c R
+

d we also have w + d = d. Clearly c +

w R
+

c R
+

d R
+

d+ w.
We first assume that c Ṙ d. Applying (1.7) and w + c = c we obtain

w = w + wcw + w = w(w + c+ w)w
= w(c + w)w = w(cw + w)

and since also (cw+w)w = cw+w, we have that w L̇ cw+w. Similarlyw L̇ dw+w
and thus cw + w L̇ dw + w. Also

(cw + w) + (dw + w) = cw + (w + d)w+ w = cw + dw+ w

= (c + d)w + w = dw+ w ,

and similarly
(dw + w) + (cw + w) = cw + w .

Therefore cw + w (Ḋ ∩ R
+

) dw+ w, and so by Lemma 2.2,

d+ wd+ cw + w (Ḋ ∩ R
+

) d+ wd+ dw+ w ,

that is,
(c+ w)(d+ w) Ḋ (d+ w)2 = d+ w .

By symmetry we also have

(d+ w)(c+ w) Ḋ c+ w

and therefore c+ w Ḋ d+ w.
Using left-right duality for the multiplication one shows that if c(L̇ ∩ R

+

) d and

w + c = c, then again c + w (Ḋ ∩ R
+

) d+ w. Therefore, if instead c (Ḋ ∩ R
+

) d and
w + c = c, then in view of Theorem 1.5 we have

c (Ṙ ∩ R
+

) cd (L̇ ∩ R
+

) d

with w + cd = cd, and so by the above

c+ w (Ḋ ∩ R
+

) cd+ w (Ḋ ∩ R
+

) d+ w .
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Lemma 2.4. Let S ∈N. If a, b, w ∈ S such that a(Ḋ ∩R
+

) b, then w+ a+w (Ḋ ∩
R
+

)w + b+ w.

Proof. From Lemma 2.2 we have that w+a (Ḋ∩R
+

)w+b. If we put c = w+a, d =
w + b, then the desired result follows from Lemma 2.3.

Lemma 2.5. Let S ∈N. If a, b, u ∈ S such that a L̇ b, a+ b = b = b+a, a+u =
u = u+ a, then u+ b L̇ u L̇ b+ u.

Proof. We shall first assume that a L̇ b. From u = a+ u+ a and since S satisfies
the identity (1.7) we have that aua = a + aua + a = a. Since aL̇ b this also
implies that b = bub, whence a L̇ b L̇ ua L̇ ub and therefore also uau L̇ ubu. From
a+ u = u = u+ a we have uau+ u = u = u+ uau and from a+ b = b = b+ a we
have uau+ ubu = ubu = ubu+ uau. Therefore

ubu+ u+ ubu = uau+ (ubu)(uau) + u+ ubu

= (u + ubu)(uau) + u+ ubu = (u+ ubu)(uau+ u+ ubu)
= (u + ubu)2 = u+ ubu .

Applying left-right duality for the addition, we thus have

u+ ubu = ubu+ u+ ubu = ubu+ u.(2.5)

Since S satisfies the identity (1.7) we have from (2.5)

u = u+ ubu+ u = (u + ubu) + (ubu+ u) = u+ ubu = ubu+ u .

Therefore

uau = uuau = (ubu+ u)uau = ubu uau+ uau

= ubu+ uau (since uau L̇ ubu)
= ubu .

Since uau Ṙ ua L̇ ub Ṙ ubu, this implies that ua = ub. Therefore

(b+ u)(a+ u) = ba+ ua+ bu+ u = b+ ub+ bu+ u

= (b+ u)2 = b+ u

and similarly (a + u)(b + u) = a + u. We proved that u = a + u L̇ b + u.
Applying left-right duality for the addition we find that u = u+ a L̇u+ b, whence
u+ b L̇u L̇ b+ u.

Lemma 2.6. Let S ∈N. If p, q, v ∈ S such that p L̇ q, q+ p = p = p+ q, v+ q =
q, q + v = v, then p+ v L̇ q + v.

Proof. Clearly v + p = v + q + p = q + p = p. Since S satisfies the identity (1.7)
we have

v = v + v(p + v)v + v = v(v + p+ v)v = v(p + v)v
that is,

q + v = (q + v)(p + v)(q + v) .(2.6)
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From q + v = v and v + p = p we have vq + v = v and v + pv = pv, and thus

(p + v)(q + v) = p+ pv + vq + v = p+ pv + v

= p+ v + pv + v = (p+ v) + (p+ v)v
= (p+ v)(p + v + v) = (p+ v)2 = p+ v .(2.7)

From (2.6) and (2.7) then follows that p+ v L̇ q + v.

Lemma 2.7. Let S ∈ N. If a, b, w ∈ S such that a Ḋ b and a + b = b = b + a,
then a+ w Ḋ b+ w and w + a Ḋw + b.

Proof. We shall first assume that a L̇ b. We put u = a+ w+ a and we infer from
Lemma 2.5 that u+ b L̇ u L̇ b+ u, that is,

(a + w + b) L̇ (a+ w + a) L̇ (b+ w + a) .(2.8)

From Theorem 1.9 we then have that a+ w+ a is L̇-related to (a+ w+ b) + (b+
w+a) = a+w+b+w+a. Putting p = a+w+b+w+a, q = a+w+a, v = a+w,
we have that p L̇ q, q + p = p+ q = p, v + q = q and q + v = v, and so according
to Lemma 2.6, p+ v L̇ q + v, that is,

a+ w + b + w + a+ w L̇ a+ w .(2.9)

The elements b+w+a, a+w+ b and b+w+a+w are D
+

-related. By Theorem

1.5 and Corollary 1.11 this D
+

-class forms an idempotent semiring for which Ḋ is
a congruence, hence from (2.8) we obtain

(b+ w + a) + (b+ w + a+ w) Ḋ (a+ w + b) + (b+ w + a + w)

that is,

(b+ w + a+ w) Ḋ (a+ w + b+ w + a+ w) .(2.10)

We have (b + w + a) + (a + w + b) = b + w + b since a + b = b. From (2.8)
and Theorem 1.9 we have that (b + w + b) L̇ (b + w + a) and evidently also

(b+ w + b) R
+

(b+ w + a) in the D
+

-class containing b+ w. Putting c = b + w + b

and d = b + w + a, we have c(Ḋ ∩ R
+

) d and so according to Lemma 2.4, w + c +

w (Ḋ ∩ R
+

) w + d+ w. Thus, in our former notation,

w + (b+ w + b) + w Ḋ w + (b + w + a) + w ,

that is,

w + b+ w Ḋ w + b+ w + a + w .(2.11)

Since the two elements mentioned in (2.11) belong to the D
+

-class of b + w and

since Ḋ is a congruence for this idempotent semiring D
+

b+w , we have from (2.11)
that

(b+ w) + (w + b+ w) Ḋ (b+ w) + (w + b+ w + a+ w)
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that is,

(b+ w) Ḋ (b+ w + a+ w) .(2.12)

From (2.9), (2.10) and (2.12) we thus find that a+ w Ḋ b+ w.
If a Ṙ b and a+ b = b = b+ a, then applying left-right duality for the multipli-

cation we find a + w Ḋ b + w. We now assume that a Ḋ b and thus a L̇ ba Ṙ b. If
a+ b = b = b + a, then a+ ba = ba = ba+ a and ba+ b = b = b+ ba, hence from
the foregoing we also have

a + w Ḋ ba+ w Ḋ b+ w .

We proved that if a Ḋ b and a + b = b = b + a, then a + wḊ b + w. Applying
left-right duality for the addition we find similarly that the same premise entails
w + a Ḋw + b.

Lemma 2.8. Let S ∈N and u, b ∈ S such that u+ b = u. Then (b+ bu+v)Ḋ b+
v Ḋ (b+ ub+ v) for all v ∈ S.

Proof. Since S satisfies the identity (1.7) we have that

b = b+ bub+ b = b(b+ u+ b)b = b(b+ u)b = (b+ bu)b

and therefore b+bu Ṙ b. Also bu+b = b(u+b) = bu. Thus, putting a = b+bu, we
have a Ṙ b, a+ b = a = b+ a, and so from Lemma 2.7 it follows that a+ v Ḋ b+ v
for all v ∈ S. We proved that b + bu + v Ḋ b + v for all v ∈ S. Applying left-
right duality for the multiplication, we find similarly that b+ ub+ v Ḋ b+ v for all
v ∈ S.

Lemma 2.9. Let S ∈ N. If p, q, v ∈ S such that p (R
+

∩ Ḋ)q, pv = p, qv = q and
v + q = v. Then p+ v L̇ q + v.

Proof. We have that vp = vpv L̇ p Ḋ q L̇ vq = vqv. From v + q = v we see that

v + vq = v. Since p R
+

q we also have that vp R
+

vq and from Theorem 1.5 we see

that also vpq = vp vq and vqp = vq vp belong to the R
+

-class of vp and vq. We
have

vqp = vqpv = vqp(v + vq) = vqpv + vqpvq

= vqp+ vq = vq

since vqp R
+

vq. Similarly

vpq = (v + vq)pq = vpq + vqpq = vpq + vq = vq

since vpqR
+

vq. Consequently vq = (vpq)(vqp) = vp.

Now

(p+ v)(vp + v) = pvp+ pv + vp + v = (p+ v)2 = p+ v ,

(vp+ v)(p + v) = vp+ vpv + vvp + v = (vp + v)2 = vp+ v

and so p+ v L̇ vp + v. Similarly, q + v L̇ vq + v. However, since vp = vq we have
p+ v L̇ q + v, as required.
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Lemma 2.10. Let S ∈N. If a, b, w ∈ S such that a(Ḋ ∩R
+

)b, then a+w Ḋ b+w.

Proof. We shall first assume that a(Ṙ ∩R
+

)b. By Lemma 2.4 we have that

w + a + w Ḋ w + b+ w(2.13)

and by Lemma 2.2 that

w + a (Ḋ ∩R
+

)w + b .(2.14)

Putting u = w + b, we have that u = u+ b and so by Lemma 2.8, for all t ∈ S,

b+ t Ḋ b+ bu+ t Ḋ b+ ub+ t .

In particular then

b+ bu+ u Ḋ b+ u(2.15)

and

b+ au+ u Ḋ b+ ub+ au+ u = (a+ u)(b+ u) .(2.16)

Put p = b + au, q = b + bu and v = b + u. Since a(Ṙ ∩ R
+

)b we also have

au(Ḋ ∩R
+

) bu, and from Lemma 2.2 then b+au (Ḋ ∩R
+

) b+ bu, that is, p (Ḋ ∩R
+

) q.
Also p = b+au = a(b+u) = av, q = b+bu = b(b+u) = bv and so pv = p, qv = q.
Further b+ u+ b+ bu = b+ u+ bu = b+ (u+ b)u = b+ u since u+ b = u, whence
v + q = v. By Lemma 2.9 we have p+ v L̇ q + v, that is,

b+ au+ b+ u Ḋ b+ bu+ b+ u .(2.17)

Since
au+ b = a(u+ b) = au, bu+ b = b(u+ b) = bu ,

(2.17) can be rewritten as

b+ au+ u Ḋ b+ bu+ u .(2.18)

From (2.15), (2.16) and (2.18) we find

b+ u Ḋ (a + u)(b+ u) .(2.19)

Putting s = w + a and interchaning the role of a and b we similarly obtain

a+ s Ḋ (b+ s)(a + s) .(2.20)

Using Lemma 2.2 we have from (2.14) that

a+ w + a Ḋ a + w + b, b+ w + a Ḋ b+ w + b

and thus

a+ s Ḋ a + u , b+ s Ḋ b+ u .(2.21)

Therefore (2.20) can be rewritten as

a+ u Ḋ (b+ u)(a + u)(2.22)

and from (2.19) and (2.22) we infer that a+ u Ḋ b+ u. We found that

a+ w + b Ḋ b+ w + b .(2.23)
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The elements mentioned in (2.13) and (2.23) belong to the same D
+

-class, and

since this D
+

-class forms a subsemiring for which Ḋ is a congruence relation by
Theorem 1.5 and Corollary 1.11, we have from (2.13) and (2.23) that

(a+ w + b) + (w + a + w) Ḋ (b+ w + b) + (w + b+ w)

that is, a+ w Ḋ b+ w.

We proved that if a(Ṙ ∩ R
+

)b, then a + w Ḋ b + w. From this result and the

left-right dual for the multiplication we infer in the usual way that if a(Ḋ ∩ R
+

) b,
then a + w Ḋ b+ w.

We are now ready for our first conclusion.

Theorem 2.11. Ḋ is a congruence relation on every S ∈N.

Proof. Let a, b, w ∈ S, with S ∈ N, such that a Ḋ b. By Theorem 1.9 the
elements a, b, a + b + a, a + b and b + a + b are all Ḋ-related. By Lemma 2.7 we
have

a + w Ḋ a+ b+ a + w, b+ w Ḋ b + a+ b+ w .(2.24)

By Lemma 2.1 we have

a+ b+ w Ḋ b+ a+ b+ w .(2.25)

By Lemma 2.10 we have

a+ b+ w Ḋ a+ b+ a+ w .(2.26)

From (2.24), (2.25) and (2.26) we thus find that a + w Ḋ b + w. The left-right
dual for the addition follows similarly, thus w + a Ḋ w + b. Since evidently also
aw Ḋ bw Ḋwb Ḋwa, we conclude that Ḋ is a congruence.

Lemma 2.12. Let S ∈ I and a, b ∈ S.

(i) a(Ḋ ∨ D
+

) b if and only if D
+

a and D
+

b are Ḋ-related in S/D
+

.

(ii) If Ḋ is a congruence relation, then a(Ḋ ∨ D
+

) b if and only if Ḋa and Ḋb

are D
+

-related in S/Ḋ.

Proof. We give a proof of (i) only. The proof of (ii) is similar. If a Ḋ b, then

obviously D
+

a and D
+

b are Ḋ-related in S/D
+

. Since D
+

∨ Ḋ is the transitive closure

of D
+

∪ Ḋ it then follows that if a(Ḋ ∨D
+

)b, then again D
+

a and D
+

b are Ḋ-related in

S/D
+

.

Assume that D
+

a and D
+

b are Ḋ-related in S/D
+

. Thus in S/D
+

we have D
+

a =

D
+

aD
+

bD
+

a = D
+

aba and similarlyD
+

b = D
+

bab. Therefore in S we have aD
+

aba Ḋ babD
+

b.
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Lemma 2.13. Let S be an idempotent semiring. Then Ḋ ∨D
+

is a congruence on

S if and only if the Ḋ-relation ḊS/D
+

on S/D
+

is a congruence relation on S/D
+

.

If this is the case, then S/(Ḋ ∨ D
+

) ∼= (S/D
+

)/ḊS/D
+

is the greatest bisemilattice
homomorphic image of S.

Proof. The first statement follows immediately from Lemma 2.12, the second
statement follows from Lemma 2.12 and Theorem 1.4.

Lemma 2.14. Let S be an idempotent semiring on which Ḋ is a congruence. Then

Ḋ ∨ D
+

is the least Bi-congruence on S, the D
+

-relation D
+

S/Ḋ on S/Ḋ is the least

Bi-congruence on S/Ḋ and S/(Ḋ ∨D
+

) ∼= (S/Ḋ)/D
+

S/Ḋ is the greatest bisemilattice
homomorphic image of S.

Proof. Immediate from Lemma 2.12 and Theorem 1.4.

Lemma 2.15. Let S be an idempotent semiring and ρ a congruence on S such

that ρ ⊆ D
+

or ρ ⊆ Ḋ. Then S contains a two-element monobisemilattice if and
only if S/ρ does.

Proof. If S contains a two-element monobisemilattice T = {a, b}, then a and b are

neither Ḋ- nor D
+

-related and so {aρ, bρ} forms a two-element monobisemilattice.
Conversely, if a, b ∈ S are such that {aρ, bρ} forms a two-element monobisemi-
lattice where aρ ≤· bρ and aρ+ ≥ bρ in S/ρ, then {b, b + bab + b} forms a
monobisemilattice in S and b 6= b+ bab+ b since bρ 6= aρ = (b+ bab+ b) ρ.

The following complements Theorem 1.1.

Theorem 2.16. For an idempotent semiring S the following are equivalent:
(i) S ∈N,

(ii) Ḋ ∨ D
+

is the least lattice congruence on S,

(iii) Ḋ
S/D

+ is the least lattice congruence on S/D
+

,

(iv) Ḋ is a congruence on S and D
+

S/Ḋ is the least lattice congruence on S/Ḋ,
(v) ≤

+
∩ ·≥ is the equality on S.

Proof. That (i) and (v) are equivalent follows from Corollary 1.3. The equivalence
of (ii) and (iii) follows from Lemma 2.13 and Theorem 1.4.

Assume that S ∈ N. Then Ḋ is a congruence relation on S by Theorem 2.11

and so D
+

S/Ḋ is the least bisemilattice congruence on S/Ḋ by Lemma 2.14. By

Theorem 1.1, S/Ḋ and (S/Ḋ)/D
+

S/Ḋ do not contain a two-element monobisemilat-

tice. Therefore D
+

S/Ḋ is the least lattice congruence. We proved that (i) implies
(iv).

Assume that (iv) holds. Then (ii) holds in view of Lemma 2.14. If (iii) holds,

then S/D
+

does not contain a two-element monobisemilattice in view of Lemma
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2.15 and therefore S does not contain a two-element monobisemilattice, again by
Lemma 2.15. Thus S ∈N by Theorem 1.1. Thus (iii) implies (i).

We now look at a special case.

Theorem 2.17. For an idempotent semiring S the following are equivalent:
(i) Ḋ is the least lattice congruence on S,

(ii) S ∈N and D
+

⊆ Ḋ for S,
(iii) ≤· ⊆ ≤+

for S,
(iv) S satisfies the identity

x ≈ xyx + x+ xyx .(2.27)

Proof. The equivalence of (iii) and (iv) was proved in [4]. If (i) is satisfied, then

S ∈ N by Theorem 1.1 and Lemma 2.15, and D
+

⊆ Ḋ for S since D
+

is the least
semilattice congruence on the additive reduct. Therefore (i) implies (ii). That (ii)
implies (i) follows from Theorem 2.16. We proved that (i) and (ii) are equivalent.

If (i) holds, then the absorption law in S/Ḋ yields that for every a, b ∈ S, we
have

Ḋa = Ḋa + Ḋa Ḋb
in S/Ḋ. Therefore also

Ḋa = Ḋa Ḋb Ḋa + Ḋa + Ḋa Ḋb Ḋa = Ḋaba+a+aba

in S/Ḋ and so a Ḋ (aba+ a+ aba) in S. Hence for all a, b ∈ S
a = a(aba+ a+ aba)a = aba+ a+ aba

and so S satisfies the identity (2.27). We proved that (i) implies (iv).

Assume that (iv) holds. Then S ∈ N by Theorem 1.1. Let aD
+

b in S, thus
b = b+ a+ b and so aba = aba+ a+ aba = a, and similarly bab = b, whence a Ḋ b.
Therefore D

+

⊆ Ḋ. We proved that (iv) implies (ii).

It is easy to see that the idempotent semirings for which D
+

⊆ Ḋ form a subva-
riety of I determined by the identity

(x+ y)(y + x)(x+ y) ≈ x+ y .(2.28)

Therefore the variety consisting of the idempotent semirings satisfying the equiv-
alent conditions of Theorem 2.17 is also determined by the identities (1.7) and
(2.28). In view of Theorem 1.1 this variety is also determined by

x ≈ x+ xyx ≈ xyx+ x .(2.29)

In view of Example 1.6, the idempotent semirings for which D
+

⊆ Ḋ do not nec-
essarily have the property that Ḋ is a congruence. Therefore the idempotent
semirings that satisfy the equivalent conditions of Theorem 2.17 form a proper
subvariety of the subvariety of I determined by (2.28).

The dual of Theorem 2.17 is also true:



92 F. PASTIJN, X. ZHAO

Theorem 2.18. [4] For an idempotent semiring S the following are equivalent:

(i) D
+

is the least lattice congruence on S,

(ii) S ∈N and Ḋ ⊆ D
+

for S,
(iii) ≤

+
⊆ ≤· for S,

(iv) S satisfies the identity

x = (x+ y + x)x(x+ y + x) .(2.30)

We remark at once that while our proof of Theorem 2.17 could be dualized to
prove Theorem 2.18, the dual of the proof in [4] for the results of Theorem 2.18 is
not valid.

For subvarieties V and W of I, the Mal’cev product V◦W of V and W (within
I) is the class of all idempotent semirings S on which there exists a congruence ρ
such that S/ρ ∈W and such that the ρ-classes belong to V. We denote the variety
consisting of the idempotent semirings whose additive [multiplicative] reduct is a

rectangular band by R
+

[Ṙ ]. Part (iii) of the following was proved in [4].

Theorem 2.19. (i) N = R
+

◦
(
Ṙ ◦D

)
= Ṙ ◦

(
R
+

◦D
)

,

(ii) Ṙ ◦D is the variety consisting of the idempotent semirings satisfying the
equivalent conditions of Theorem 2.17.

(iii) R
+

◦D is the variety consisting of the idempotent semirings satisfying the
equivalent conditions of Theorem 2.18.

Proof. (i) Let S ∈ N. Then by Theorem 2.16, S/D
+

∈ Ṙ ◦D and S/Ḋ ∈ R
+

◦D,

whence N ⊆ R
+

◦ (Ṙ ◦D) and N ⊆ Ṙ ◦
(

R
+

◦D
)

. If S ∈ R
+

◦ (Ṙ ◦D) then there

exist congruences ρ and σ on S and S/ρ respectively such that (S/ρ)/σ ∈D, σ ⊆
ḊS/ρ and ρ ⊆ D

+

. By Lemma 2.15 neither S/ρ nor S can contain a two-element

monobisemilattice and therefore S ∈N by Theorem 1.1. Thus N = R
+

◦
(
Ṙ ◦D

)
and similarly N = Ṙ ◦

(
R
+

◦D
)

.

(ii), (iii). Immediate from Theorems 2.17 and 2.18 by using 2.15 and 2.16.

The lattices L(N ∩ ID), L
((

R
+

◦D
)
∩ ID

)
and L

((
Ṙ ◦D

)
∩ ID

)
of sub-

varieties of N∩ ID,
(

R
+

◦D
)
∩ ID and

(
Ṙ ◦D

)
∩ ID respectively were described

in [3]. L(N∩ ID) is isomorphic to the direct product of a two-element lattice and
a lattice which is itself a subdirect product of four copies of the lattice of all band

varieties. One verifies easily from the results of [3] that both L
((

R
+

◦D
)
∩ ID

)
and L

((
Ṙ ◦ ID

)
∩ ID

)
are isomorphic to the direct product of a two-element
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lattice and a lattice which is itself a direct product of two copies of the lattice of
all band varieties. We remark that the semiring of Example 1.12 belongs to N, but
not to N ∩ ID. In fact, this semiring belongs to Ṙ ◦D but not to (Ṙ ◦D)∩ ID.
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