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AN EXAMPLE RELATED TO STRONGLY
POINTWISE SELF-HOMEOMORPHIC DENDRITES

PAVEL PYRIH

ABSTRACT. Such spaces in which a homeomorphic image of the whole space can
be found in every open set are called self-homeomorphic. W.J. Charatonik and A.
Dilks posed a problem related to strongly pointwise self-homeomorphic dendrites.
We solve this problem negatively in Example 2.1.

1. Introduction.

W.J. Charatonik and A. Dilks introduced four types of self-homeomorphic
spaces (see [1], p.217).

Definition 1.1. A topological space X is called self-homeomorphic if for any open
set U C X there is a set V C U such that V' is homeomorphic to X.

Definition 1.2. A topological space X is called strongly self-homeomorphic if for
any open set U C X there is a set V' C U with nonempty interior such that V is
homeomorphic to X.

Definition 1.3. A topological space X is called pointwise self-homeomorphic at
a point x € X if for any neighborhood U of x there is a set V such that x € V C U
and V is homeomorphic to X. The space X is called pointwise self-homeomorphic
if it is pointwise self-homeomorphic at each of its points.

Definition 1.4. A topological space X is called strongly pointwise self-homeo-
morphic at a point x € X if for any neighborhood U of x there is a neighborhood
V of & such that x € V C U and V is homeomorphic to X. The space X is called
strongly pointwise self-homeomorphic if it is strongly pointwise self-homeomorphic
at each of its points.
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Moreover they formulated two conditions (see [1], p.235 conditions 6.15.3 and
6.15.4):

1* for any point p, any neighbourhood U of p, there is an embedding h : X —
U with h(p) = p and p € int h(X);

2% for any point p, any neighborhood U of p, there is a neighborhood V' of p
with V- C U and an embedding h : X — U satisfying hly =id .

W.J. Charatonik and A. Dilks posed in [1], p.237 in Problem 6.25 the following
problem.

Problem 1.5. Does every strongly pointwise self-homeomorphic continuum (den-
drite) satisfy 1* or 2* 7

We give the negative answer to this problem in Example 2.1.

By a continuum we mean a compact, connected metric space. By a dendrite
we mean a locally connected continuum containing no simple closed curves. For a
dendrite X, the order of a point x € X is the number of components of X \ {z}.
It is denoted ord(x). If there are infinitely many components of X \ {z} we say
ord(z) = w, where w > n for every natural number n. Points of order one are
called endpoints , and points of order three or more are called ramification points.

2. Counterexample.
The presented dendrite is from [1], pp. 232-233, Example 6.11.

Example 2.1. There is a strongly pointwise self-homeomorphic dendrite where
the conditions 1* and 2* do not hold.

Proof. Such a dendrite is pictured in Figure 1. The dendrite X has points of
order four on vertical arcs and points of order three on some horizontal arcs.

We say that an arc A in a topological space Y is of type k if all non endpoints
of A are of order 2 or k in Y and points of A of order k in Y are dense in A.

(1) One can check that X it is a strongly pointwise self-homeomorphic dendrite
(see [1], p.232).

(ii) We show that the condition 1* (and hence 2* as well) does not hold.

(Proof. We denote G the longest horizontal arc in X and R the longest vertical
arc in X. We denote s the common point of the ground G and main root R. Any
arc in X disjoint with the ground G is called an underground arc.

We choose p some point of order 3 in X belonging to some (horizontal) under-
ground arc Gy, touching the main root.

We choose some neighborhood U of p disjoint with the main root R and show
that there is no embedding h : X — U with h(p) = p and p € int h(X).

Let h is such, we conclude a contradiction. We see that the points p and s are
joined in X via the arc Ay C R and Az C Gj, where Ay is of type 4 in X and A3
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FIGURE 1 ( EXAMPLE 2.1 ).

is of type 3 in X. Their common point ¢ is of order 4 in X and it is an endpoint
of just two maximal arcs of type 4 in X and just two maximal arcs of type 3 in X.

The point h(g) must have the same property in 2(X). But such a point cannot
be joined with p = h(p) in h(X) with an arc of type 3 in h(X) C U. Clearly. If
h(As) C G, we cannot reach any point of the desired type. We can reach in U
such a point only when we go downstairs the roots of X and cut out some branches
in X to obtain the type 3 of the arc originally being of type 4. But we just enter
the desired point having cut one of his 'legs’ from type 4 to type 3. So we see that
the point with the desired properties cannot be reached. This is a contradiction.
Q) The proof is complete. O
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Remark 2.2. In fact the strongly piecewise self-homeomorphic dendrite X in
Example 2.1 does not satisfy even this weaker form of 1* and 2* :

3* for any point p, any neighborhood U of p, there is an embedding h : X —
U with h(p) = p.
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