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A POINTWISE INEQUALITY IN SUBMANIFOLD THEORY

P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken

We obtain a pointwise inequality valid for all submanifolds M n of all
real space forms N n+2(c) with n ≥ 2 and with codimension two, relating its main
scalar invariants, namely, its scalar curvature from the intrinsic geometry of M n,
and its squared mean curvature and its scalar normal curvature from the
extrinsic geometry of M n in Nm(c).

1. Introduction

Aiming for an answer to a question of S.S. Chern [Ch] concerning intrinsic
obstructions for a Riemannian manifold M n to allow a minimal immersion in the
Euclidean ambient space (besides the well-known compactness and the positivity
of the Ricci tensor), B. Y. Chen [C2] proved a basic pointwise inequality for all
submanifolds Mn in all real space forms Nm(c) of constant curvature c,

(1.1) δM ≤ n2(n−2)
2(n−1) ‖H‖

2 + 1
2 (n+ 1)(n− 2)c,

involving, besides c, the square length ‖H‖2 of the mean curvature vector of Mn in
Nm(c) and a new intrinsic invariant, δM = n(n−1)/2 ρ−inf K, where ρ and K are
respectively the normalized scalar curvature and the sectional curvature function
on Mn. In the same paper, Chen also obtained a neat characterization in terms
of the second fundamental form of the case when the equality is satisfied in (1.1).
Then this inequality was extended to, for instance, all totally real submanifolds
in complex space forms and several interesting classes of submanifolds in these
ambient spaces could be characterized as those actually satisfying Chen’s equality
([CDVV1], [CDVV2], [CDVV3], [CDVV4], [CY], [Da1], [Da2],[DV]).
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Later, B. Y. Chen [C3] obtained a second general and optimal pointwise in-
equality,

(1.2) ‖H‖2 ≥ ρ − c,
this time involving, besides ‖H‖2, only the normalized scalar curvature.

In the light of the study related to those two inequalities of B. Y. Chen, we
aimed for a new inequality, also to be pointwise, and to contain as main scalar
invariants for the submanifolds under consideration, as intrinsic ones: the scalar
curvature ρ and as extrinsic ones: the square ‖H‖2 of the mean curvature and
also the normal scalar curvature function ρ⊥, as defined below. In this respect, at
the geometry meeting at Nordfjordeid in 1995, B. Y. Chen pointed out to us the
work of Wintgen [W] in this direction for surfaces in Euclidean 4-space. Wintgen’s
inequality is extended to surfaces in real space forms by I.V. Guadalupe and L.
Rodriguez [GR]. We could however also make progress in the higher dimensional
case. Our main aim here is to prove the following theorem.

Main Theorem. Let φ : Mn → Nn+2(c) be an isometric immersion. Then at
every point p, we have

(1.3) ‖H‖2 ≥ ρ + ρ⊥ − c.
We remark that for n = 2, the inequality (1.3) is Wintgen’s inequality. Further,

we give examples of several classes of submanifolds realizing the equality in (1.3)
and we will also obtain classification theorems about various classes of submani-
folds realizing the equality in (1.3). In view of the above main theorem, we would
like to conjecture the following.

Conjecture. Let φ : Mn → Nm(c) be an isometric immersion. Then at every
point p, we have

(1.4) ‖H‖2 ≥ ρ + ρ⊥ − c.
As said above, this conjecture is proved for n = 2, m = 4 and c = 0 by Wintgen

[W]; for n = 2 and m ≥ 4 by Guadalupe and Rodriguez [GR]; in both cases
equality is realized in (1.4) at a point p if and only if the ellipse of curvature at p
is a circle. In case of trivial normal connection, (1.4) reduces to Chen’s inequality
(1.2). For 3-dimensional totally real submanifolds in the nearly Kaehler 6-sphere,
the conjecture is also true [DDVV].

2. Preliminaries

We will use the following three trivial inequalities.

2ab ≤ a2 + b2(2.1)

= if and only if a = b

(a+ b)2 ≥ 4ab(2.2)

= if and only if a = b

(a+ b)2 ≤ 2(a2 + b2)(2.3)

= if and only if a = b.
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Putting a = A− B and b = B − C in (2.3), we obtain that

(A − C)2 ≤ 2
(
(A− B)2 + (B − C)2

)
(2.4)

= if and only if A− B = B − C, i.e. B = 1
2(A + C)

Lemma 2.1. Let a1, . . . , an ∈ R and define A =
∑
i<j(ai − aj)2. Then

(1) A ≥ n
2 (a1 − a2)2 and equality holds if and only if 1

2 (a1 + a2) = a3 = a4 =
· · · = an.

(2) Let k, ` be integers such that 1 ≤ k < ` ≤ n and (k, `) 6= (1, 2). If

A = n
2 (a1 − a2)2 = n

2 (ak − a`)2,

then a1 = a2 = a3 = · · · = an.

Proof. First, notice that if n = 2, then the lemma is trivial. Let us now assume
that the lemma is satisfied for some integer number n ≥ 2. Then, using (2.4), we
find that

n+1∑
i<j=1

(ai − aj)2 =
n∑

i<j=1

(ai − aj)2 +
n∑
i=1

(ai − an+1)2

≥ n
2 (a1 − a2)2 + (a1 − an+1)2 + (a2 − an+1)2

≥ n
2 (a1 − a2)2 + 1

2 (a1 − a2)2 = n+1
2 (a1 − a2)2,

and if the equality is realized, then a3 = a4 = · · · = an = an+1 and an+1 =
1
2 (a1 + a2). The converse follows by a straightforward computation.

In order to prove (2), we first remark that if k, ` > 2 it follows from (1) that
ak = a`; then A = 0 and the conclusion follows. Therefore, we may assume that
` > 2 and that k = 2. Applying then (1) for both the indices (1, 2) and (2, `), we
find that

a` = 1
2(a1 + a2)

a1 = 1
2 (a` + a2).

From these two equations, we find that a` = a1 = a2, so again A = 0. �

3. The normal scalar curvature

From now on we will assume that φ : Mn → Nm(c) is an isometric immersion
of Mn into a real space form of constant sectional curvature c. To avoid confusion
we recall that the normalized scalar curvature ρ of Mn is defined by

ρ = 2
n(n−1)

n∑
i<j=1

〈R(ei, ej)ej , ei〉 ,



118 P. J. DE SMET, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN

where {e1, . . . , en} is any orthonormal basis. Denoting the connection on Nm(c)
by D, we have the standard formulas of Gauss and Weingarten which state for
tangent vector fields X,Y and a normal vector field ξ that

DXY = ∇XY + h(X,Y ),

DXξ = −AξX +∇⊥Xξ.

We denote the curvature tensor of ∇⊥ by R⊥. The equations of Gauss, Codazzi
and Ricci respectively state that

〈R(X,Y )Z,W 〉 = c(〈Y, Z〉 〈X,W 〉 − 〈X,Z〉 〈Y,W 〉)
+ 〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉 ,

(∇h)(X,Y, Z) = (∇h)(Y,X,Z),〈
R⊥(X,Y )ξ, η

〉
= 〈[Aξ, Aη]X,Y 〉 .

We now propose the following notion of normal scalar curvature ρ⊥. We define
for all p ∈Mn

(3.1) ρ⊥(p) = 2
n(n−1)

√√√√ n∑
i<j=1

(m−n)∑
r<s=1

〈R⊥(ei, ej)ξr , ξs〉2,

where {e1, . . . , en} (resp. {ξ1, . . . , ξm−n}) is an orthonormal basis of the tangent
space (resp. normal space) at the point p. For n = 2, this definition is compatible
with the definition of normal curvature for surfaces as introduced by Wintgen (if
m = 4) and by Guadalupe and Rodriguez. Remark that up to a constant factor,
ρ⊥ corresponds to the square length of the normal curvature tensor, from which
we observe that the normal connection of Mn is flat if and only if ρ⊥ = 0, and by
a result of Cartan, this is equivalent to the simultaneous diagonalisability of all
shape operators Aξ .

One could ask “why the normalization factor in (3.1)?”. The main reason is
that this normalization enables us to write the inequality (1.3) in an elegant form.
Further, we do not want to have the codimension involved, since we do not want
the normal scalar curvature to change when enlarging the codimension artificially.
Secondly, one can also ask “why the square root factor in (3.1)?”. Two reasons for
that : then the definition is compatible with earlier definitions and it ensures that
the inequality (1.3) does not change when applying a homothetical transformation.

4. A pointwise inequality

In this section, we restrict to the case that the codimension is two, i.e. we
assume that φ : Mn → Nn+2(c) is an isometric immersion in a space form of
dimension n+ 2.
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Theorem 4.1. Let φ : Mn → Nn+2(c) be an isometric immersion. Then at every
point p, we have

(4.1) ‖H‖2 ≥ ρ + ρ⊥ − c.

Moreover, the equality in (4.1) holds at a point p of Mn if and only if there exists
an orthonormal basis {e1, . . . , en} of the tangent space and an orthonormal basis
ξ1, ξ2 of the normal space such that

Aξ1 =


λ µ 0 . . . 0
µ λ 0 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ

 Aξ2 =


µ 0 0 . . . 0
0 −µ 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


Proof. Let p ∈Mn. We choose ξ1 in the direction of the mean curvature vector
and choose ξ2 orthogonal to it. We take an orthonormal basis {e1, . . . , en} such
that Aξ2 is diagonal. Putting 〈h(ei, ej), ξk〉 = hkij , the equation of Ricci states that〈

R⊥(ei, ej)ξ1, ξ2
〉

= 〈Aξ2ei, Aξ1ej〉 − 〈Aξ1ei, Aξ2ej〉 = (h2
ii − h2

jj)h
1
ij.

From the definition of the mean curvature vector, it follows that

n2‖H‖2 = (
n∑
i=1

h1
ii)

2 + (
n∑
i=1

h2
ii)

2

= 1
n−1

∑
i<j

(h1
ii − h1

jj)
2 +

∑
i<j

(h2
ii − h2

jj)
2

+ 2n
n−1

∑
i<j

(h1
iih

1
jj + h2

iih
2
jj).

So, by applying the Gauss equation and also using our choice of basis, we deduce
that

n2(n−1)‖H‖2 =
∑
i<j

(h1
ii−h1

jj)
2 +
∑
i<j

(h2
ii−h2

jj)
2 +n2(n−1)(ρ−c)+ 2n

∑
i<j

(h1
ij)

2.

Applying (2.2), Lemma 2.1 and the Ricci equation to this formula gives us

n2(n− 1)(‖H‖2 − ρ+ c) ≥
∑
i<j

(
(h2
ii − h2

jj)
2 + 2n(h1

ij)
2
)

≥

8n
∑
k<`

∑
i<j

(h2
ii − h2

jj)
2(h1

k`)
2

1/2

≥ 2n

(∑
k<`

(h2
kk − h2

``)
2(h1

k`)
2

)1/2

= n2(n− 1)ρ⊥,



120 P. J. DE SMET, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN

which completes the proof of the inequality.
Let us now assume that the equality in (4.1) holds at a point p. Then, all the

inequalities obtained above become equalities. Hence, applying again Lemma 2.1
and (2.2), we find for 1 ≤ k < ` ≤ n that

h1
kk − h1

`` = 0,(4.2) ∑
i<j

(h2
ii − h2

jj)
2 = 2n

∑
i<j

(h1
ij)

2,(4.3)

h1
kl = 0 or 1

2 (h2
kk + h2

``) = h2
mm for all m 6= k, `.(4.4)

Let us first assume that the second part of (4.4) is valid for 2 pairs (k, `). Then
it follows from Lemma 2.1 that h 2

11 = h2
22 = · · · = h2

nn. Since ξ2 is orthogonal to
the mean curvature vector, we have h2

ii = 0 for all i. From (4.3) it then follows
that h1

ij = 0, for i 6= j. (4.2) now implies that Mn is totally umbilical.
Next assume that the second part of (4.4) is valid for only one pair (k, `).

Reordering the basis {e1, . . . , en} we may assume that k = 1 and ` = 2. Then,
if we put h2

11 = µ and h2
22 = ν, (4.4) reduces to h2

mm = 1
2(µ + ν). Since ξ1

is orthogonal to the mean curvature vector, we obtain by taking the trace that
ν = −µ. Using our assumption it also follows from (4.4) that h1

k` = 0 for k < `
with (k, `) 6= (1, 2). Now (4.3) reduces to

2n(h1
12)2 = 4µ2 + 2(n− 2)µ2 = 2nµ2.

Therefore, replacing e2 by −e2, if necessary, together with (4.2) completes the
proof in this case.

Finally, we assume that the second part of (4.4) is never valid. Hence h1
k` = 0

for all indices k < `. From (4.3) it then follows that h2
11 = · · · = h2

nn, which
contradicts our assumption that the second part of (4.4) is never satisfied. �

Remark that, if the equality is satisfied at a point p, we have at that point that

‖H‖2 = λ2,(4.5)

ρ⊥ = 4
n(n−1)µ

2.(4.6)

In the remainder of this Section, we will construct several classes of examples
which realize the equality in (4.1).

Example 1. Totally umbilical submanifolds of real space forms, trivially realize
the equality in (4.1). For a classification of totally umbilical submanifolds in real
space forms, we refer to [C1].

Example 2. If M2 is a surface in a real space formN4(c) with ellipse of curvature
a circle, then the equality is realized in (4.1).

Example 3. A special case of the surfaces in Example 2 are the superminimal
(i.e. minimal and ellipse of curvature a circle) surfaces in R4. Also a cylinder on
a superminimal surface in R4 satisfies equality in (4.1).
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Example 4. Examples of superminimal surfaces in R4 are holomorphic curves
in C2 . Hence also complex cylinders on holomorphic planar curves realize the
equality in (4.1). More general, any complex hypersurface of Cn+1 with rank of
the shape operator at most 2, realizes the equality in (4.1). Recall that any such
complete hypersurface must be a complex cylinder [A].

Example 5. A further class of examples is obtained by considering any warped
product decomposition of the real space form Nn+2(c) as Nn+2(c) = Nn−2(c)×ρ
N4(c′) (it can be necessary to restrict to open subsets of the real space forms).
For details and a description of all possible such decompositions, we refer to [N]
or [DN]. Then taking a superminimal surface M 2 in N4(c), and considering the
submanifold N n−2(c)×ρM2 of Nn+2(c), we again obtain a submanifold realizing
equality in (4.1), as follows from the basic formulas in [N].

Example 6. It is well known that the complex structure of C3 induces a Sasakian
structure (ϕ, ξ, η, g) on S5(1). We only need to know that ϕ is the projection
of the complex structure J of C3 onto the tangent bundle of S5(1) and that
ξ = JN , where N is the outer normal of S5(1). For more details, see [B]. Let
π : S5(1)→ CP2(4) be the Hopf fibration corresponding to the complex structure
J . Let φ : N1 −→ CP2 (4) be a holomorphic curve and let PN1 be the circle
bundle over N1 induced by the Hopf fibration. Let ψ be the immersion such that
the following diagram commutes:

(2.8)

PN1
ψ−−−−→ S5(1)y yπ

N1
φ−−−−→ CP2(4)

Then ψ is an invariant immersion (in the sense of [YI], i.e. ψ∗(TpPN1) is ϕ-
invariant) in the Sasakian space form S5(1) with structure vector field ξ tangent
along ψ. Let h denote the second fundamental form of ψ and α the second funda-
mental form of φ. The basic formulas for such submanifolds imply that h(X, ξ) = 0,
h(ξ, ξ) = 0 and h(X,Y ) = α(X,Y ), where X denotes both any tangent vector field
on N1 and its horizontal lift on PN1. Since φ is holomorphic, it follows from The-
orem 4.1 that ψ is minimal and realizes the equality in (4.1).

Remark that all of the above examples are either umbilical (and thus have zero
normal curvature) or minimal, at least if n > 2. So far we do not have an example,
if n > 2, which is not minimal and not totally umbilical.

5. Some Classifications

In this section, we want to investigate two special classes of submanifolds. First
we investigate the submanifolds Mn which realize the equality in Theorem 4.1
at every point p of Mn and have constant non zero mean curvature. Next, we
investigate the submanifolds Mn which realize the equality in (4.1) at every point
p of Mn and have constant non zero normal curvature.



122 P. J. DE SMET, F. DILLEN, L. VERSTRAELEN AND L. VRANCKEN

Lemma 5.1. Assume that M realizes equality in (4.1). Let p be a non totally
geodesic point of Mn. If one of the following conditions holds

(1) H(p) 6= 0 and ρ⊥(p) 6= 0,
(2) H(p) 6= 0 and ρ⊥ = 0 on a neighborhood of p,
(3) H = 0 on a neighborhood of p,

then there exist local orthonormal tangent vector fields E1, . . . , En, orthonormal
normal vector fields ξ1 and ξ2 and functions λ and µ such that

h(E1, E1) = λξ1 + µξ2, h(E1, Ei) = 0,

h(E1, E2) = µξ1, h(E2, Ei) = 0,

h(E2, E2) = λξ1 − µξ2, h(Ei, Ej) = δijλξ1,

where 3 ≤ i, j ≤ n.

Proof. We first assume that H(p) 6= 0 and ρ⊥(p) 6= 0. We then choose ξ1 as
a unit normal vector in the direction of the mean curvature vector and take ξ2
orthogonal to ξ1. It then follows from Theorem 4.1 that Aξ2 has three different
eigenvalues, two with multiplicity 1 and one with multiplicity n − 2. Then we
can find differentiable vector fields E1, . . . , En such that E1 and E2 span the
corresponding 1- dimensional eigenspaces and such that E3, . . . , En span the (n−
2)-dimensional eigenspace.

If ρ⊥ = 0 on a neighborhood of p, then Mn is totally umbilical around p and
we take an arbitrary local orthonormal basis.

If H = 0 on a neighborhood of p, we take for ξ1 and ξ2 arbitrary normal vector
fields and proceed as above. �

Let p be a non totally geodesic point of Mn and assume that n ≥ 3. Suppose
that Lemma 5.1 (1), (2) or (3) holds and let {E1, . . . , En} and {ξ1, ξ2} be as
constructed in Lemma 5.1.

Lemma 5.2. We have for 3 ≤ i, j, k ≤ n that

(1) Ek(λ) = 0,
(2) λ∇⊥Ekξ1 = 0,
(3) E1(λ) = −λ

〈
∇⊥E2

ξ1, ξ2
〉
,

(4) E2(λ) = λ
〈
∇⊥E1

ξ1, ξ2
〉
,

(5) µ 〈∇EiEj, E1〉 = −δijλ
〈
∇⊥E1

ξ1, ξ2
〉
,

(6) µ 〈∇EiEj, E2〉 = δijλ
〈
∇⊥E2

ξ1, ξ2
〉
,

(7) 〈∇E1E2 +∇E2E1, Ek〉 = 0,
(8) 〈∇E1E1 −∇E2E2, Ek〉 = 0,
(9) E1(µ) = λ

〈
∇⊥E1

ξ1, ξ2
〉
− µ

〈
∇⊥E2

ξ1, ξ2
〉

+ 2µ 〈∇E2E2, E1〉,
(10) E2(µ) = −λ

〈
∇⊥E2

ξ1, ξ2
〉

+ µ
〈
∇⊥E1

ξ1, ξ2
〉

+ 2µ 〈∇E1E1, E2〉,
(11) Ek(µ) = µ 〈∇E1E1, Ek〉 = µ 〈∇E2E2, Ek〉,
(12) µ

〈
∇⊥Ekξ1, ξ2

〉
+ 2µ 〈∇EkE1, E2〉 = −µ 〈∇E1E2, Ek〉.
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Proof. We take the local orthonormal frames constructed in the previous lemma.
We denote by k, ` ∈ {3, . . . , n}. Since

(∇h)(Ek, E1, E2) = Ek(µ)ξ1 + µ(∇⊥Ekξ1 − 2 〈∇EkE2, E1〉 ξ2),

(∇h)(E1, Ek, E2) = µ(〈∇E1E1, Ek〉 ξ1 − 〈∇E1E2, Ek〉 ξ2),

(∇h)(E2, Ek, E1) = µ(〈∇E2E2, Ek〉 ξ1 + 〈∇E2E1, Ek〉 ξ2),

we obtain (7), (8), (11) and (12) from the Codazzi equation. Using these equations,
it now follows that

(∇h)(Ek, E1, E1) = Ek(λ)ξ1 + λ∇⊥Ekξ1 + Ek(µ)ξ2 + µ∇⊥Ekξ2 − 2 〈∇EkE1, E2〉µξ1,
(∇h)(E1, Ek, E1) = −〈∇E1Ek, E1〉µξ2 − 〈∇E1Ek, E2〉µξ1,

= Ek(µ)ξ2 + µ∇⊥Ekξ2 − 2 〈∇EkE1, E2〉µξ1.

Again the Codazzi equation implies (1) and (2).
The equations (3) to (6) are obtained in a similar way from (∇h)(E1, E`, Ek) =

(∇h)(E`, E1, Ek) and (∇h)(E2, E`, Ek) = (∇h)(E`, E2, Ek), whereas equations (9)
and (10) follow from (∇h)(E1, E2, E2) = (∇h)(E2, E1, E2). �

Theorem 5.3. Let φ : Mn → Nn+2(c) be an isometric immersion realizing at
every point the equality in (4.1). If Mn has constant non zero mean curvature,
then Mn is totally umbilical.

Proof. If λ is a non zero constant, then it follows from Lemma 5.2 (2), (3) and
(4) that ξ1 is parallel. Therefore Mn has trivial normal connection implying that
by (4.6) that µ = 0. It now follows immediately from Theorem 4.1 that M n is
totally umbilical. �

If µ = 0, then we have that Mn is totally umbilical. Therefore, from now on,
we will assume that µ 6= 0. We shall also assume that the normal curvature of
Mn is constant, which by (4.6) is equivalent to µ being constant. Then we have
the following proposition.

Proposition 5.4. Let φ : M n → Nn+2(c), n ≥ 3, be an isometric immersion
realizing at every point p of Mn the equality in (4.1). If ρ⊥ is a non zero constant,
then φ is minimal.

Proof. Suppose that λ 6= 0 and that µ is a non zero constant. Then it follows
from Lemma 5.2 (2) that ∇⊥Ekξ1 = 0. We can choose E3 in such a way that
[E1, E2] ∈ span{E1, E2, E3}. Since µ is constant it now follows from Lemma 5.2
that there exist local functions a, b, e and d such that

∇E1E1 = eE2, ∇E2E2 = dE1.

∇E1E2 = −eE1 + aE3, ∇E2E1 = −dE2 − aE3,
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Putting α =
〈
∇⊥E1

ξ1, ξ2
〉
, β =

〈
∇⊥E2

ξ1, ξ2
〉

and denoting by ∇1 the {E1, E2, E3}-
component of ∇, we also obtain that for k ≥ 3:

∇EkE1 = −1
2aδk3E2 + λ

µ
αEk,

∇1
E1
E3 = −aE2, ∇1

E2
E3 = aE1,

∇EkE2 = 1
2aδk3E1 − λ

µβEk,

∇1
E3
E3 = −λµαE1 + λ

µβE2.

Clearly, Lemma 5.2 implies that

e = 1
2µ (λβ − µα), d = 1

2µ (µβ − λα),

Now, we obtain from the Ricci equation that

0 = R⊥(E1, E3)ξ1 = −∇⊥E3
αξ2 −∇⊥[E1,E3]ξ1 = −E3(α)ξ2 + 1

2aβξ2.

Hence E3(α) = 1
2aβ. Similarly, we obtain thatE3(β) = −1

2aα. FromR⊥(E1, E`)ξ1
= 0 = R⊥(E2, E`)ξ1, ` ≥ 4, it now follows that E`(α) = E`(β) = 0. We now com-
pute R(E1, E2)E3.

0 = ∇E1∇E2E3 −∇E2∇E1E3 −∇[E1,E2]E3

≡ ∇E1(aE1)−∇E2(−aE2) −∇−eE1+dE2+2aE3E3 mod{E1, E2, E3}⊥

≡ E1(a)E1 + aeE2 + E2(a)E2 + adE1

− aeE2 − adE1 − 2a(−λµαE1 + λ
µβE2) mod{E1, E2, E3}⊥

≡ (E1(a) + 2aαλµ)E1 + (E2(a)− 2aβλµ)E2 mod{E1, E2, E3}⊥,

from which we deduce that

E1(a) = −2aαλµ , E2(a) = 2aβ λµ .

In a similar way, we deduce from 〈R(E1, E3)E3, E1〉 = c+λ2 and 〈R(E2, E3)E3, E2〉
= c+ λ2 that

E1(α) = − (c+λ2)µ
λ + a2 µ

λ −
λ
2µβ

2 − λ
µα

2 + 3
2αβ,(5.1)

E2(β) = (c+λ2)µ
λ

− a2 µ
λ

+ λ
2µα

2 + λ
µ
β2 − 3

2αβ.(5.2)

Computing now
〈
R⊥(E1, E2)ξ1, ξ2

〉
= 2µ2 and 〈R(E1, E2)E2, E1〉 = c+ λ2 − 2µ2,

we find that

E1(β) − E2(α) + 1
2µ(2λαβ − µ(α2 + β2) = 2µ2,(5.3)

E1(d) +E2(e) − e2 − d2 − 2a2 = c+ λ2 − 2µ2.(5.4)
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Expressing e and d in terms of the unknown functions α and β, using Lemma 5.2,
(5.1), (5.2) and (5.3), the equation (5.4) reduces to

(5.5) (α2 + β2)λ2 − 6a2µ2 + 6µ4 = 0.

Deriving (5.5) with respect to E3, we find that E3(a) = 0. Similarly, deriving with
respect to E`, ` > 3 yields that E`(a) = 0. We now compute the integrability
condition for a. On one hand, we have

[E1, E3]a = E1(E3(a)) −E3(E1(a))

= −E3(−2aαλ
µ

) = 2aλ
µ
E3(α) = a2β λ

µ
,

while on the other hand, we have

[E1, E3]a = (∇E1E3 −∇E3E1)a = −1
2aE2(a) = −a2β λµ .

Hence a2λβ = 0. Similarly, we also obtain that a2λα = 0. If α = β = 0, then λ
is constant and a contradiction follows from Theorem 5.3. Therefore a = 0 and a
contradiction follows from (5.5). �

In the following theorem we prove that there is only one immersion with con-
stant non zero normal curvature satisfying equality in (4.1). We may restrict
ourselves to the cases that c = 1, 0,−1.

Theorem 5.5. Let φ : Mn → Nn+2(c), n ≥ 3 and c ∈ {−1, 0, 1}, be an immersion
realizing at every point the equality in (4.1). If Mn has constant non zero normal
curvature, then n = 3, c = 1 and φ is (locally) congruent to the lift of the
holomorphic curve of constant curvature 2 in CP2(4), lifted as in Example 6.

Proof. We choose E3 in such a way that [E1, E2] ∈ span{E1, E2, E3}. Since µ is
constant and λ = 0 it now follows from Lemma 5.2 that there exist local functions
a, e and d such that

∇E1E1 = eE2, ∇E2E2 = dE1.

∇E1E2 = −eE1 + aE3, ∇E2E1 = −dE2 − aE3,

Denoting by ∇1 the {E1, E2, E3}-component of ∇, we also obtain that

∇EkE1 = bkE2, ∇EkE2 = −bkE1,

∇1
E1
E3 = −aE2, ∇1

E2
E3 = aE1, ∇1

E3
E3 = 0,

where b3, . . . , bn are local functions. We have from Lemma 5.2 that

∇⊥E1
ξ1 = −2eξ2, ∇⊥E2

ξ1 = 2dξ2, ∇⊥E3
ξ1 = (−2b3 − a)ξ2.
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Next, we compute 〈R(E1, E2)E2, E1〉 = c− 2µ2. This yields that

(5.6) E1(d) +E2(e)− e2 − d2 − a2 + 2ab3 = c − 2µ2.

It then follows from
〈
R⊥(E1, E2)ξ1, ξ2

〉
= 2µ2 that

(5.7) 2c− 6µ2 + 4a2 = 0,

from which we deduce that a is constant. Next, we denote by V the {E1, E2, E3}⊥-
component of ∇E1E3 and compute

(5.8)
− c = 〈R(E1, E3)E1, E3〉 = 〈∇E1∇E3E1 −∇E3∇E1E1 −∇−aE2−b3E2+V E1, E3〉

= ab3 − (a+ b3)a = −a2.

So comparing (5.7) and (5.8), we obtain that c = 1 and a = ±1. By replacing
E3 by −E3, if necessary, we may assume that a = −1. By replacing ξ2 by −ξ2, if
necessary, it now follows from (5.7) that µ = 1.

Computing nowR(E1, E2)E2 = −E1, it follows that∇E1E3 ∈ span{E1, E2, E3}.
Similarly, it also follows that ∇E2E3 ∈ span{E1, E2, E3}. If the dimension is
greater than 3, a contradiction then follows from

1 = 〈R(E2, E4)E4, E2〉 =
〈
∇E2∇E4E4 −∇E4∇E2E4 −∇[E2,E4]E4, E2

〉
= 0.

Hence n = 3 and then (5.6) reduces to

(5.9) E1(d) +E2(e) − e2 − d2 = 2b,

where b = b3. Computing further Ricci equations, we still obtain the following
differential equations for b, e and d:

E1(b)− E3(e) = d(b− 1)(5.10)

E2(b) + E3(d) = e(b − 1)(5.11)

The equations (5.9), (5.10) and (5.11) turn out to be the integrability conditions
for the system of differential equations

E1(θ) = −e E2(θ) = d, E3(θ) = −b.

We now define

F1 = cos θE1 + sin θE2, F2 = − sin θE1 + cos θE2, F3 = E3,

η1 = cos 2θξ1 − sin 2θξ2, η2 = cos 2θξ2 + sin 2θξ1,
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It then follows, after straightforward computations, that

∇F1F1 = 0, ∇F2F2 = 0, ∇F3F3 = 0,

∇F1F2 = −F3, ∇F2F3 = −F1, ∇F3F1 = 0,

∇F2F1 = F3, ∇F3F2 = 0, ∇F1F3 = F2,

h(F1, F1) = η2, h(F2, F2) = −η2, h(F1, F2) = η1,

h(F1, F3) = 0, h(F2, F3) = 0, h(F3, F3) = 0,

∇⊥F1
η1 = 0, ∇⊥F2

η1 = 0, ∇⊥F3
η1 = η2.

We now consider S5 as a hypersurface in R6, and denote the position vector by
F . Using the above formulas, a straightforward computation shows that

JF1 = F2, JF3 = −F, Jη1 = −η2,

defines a parallel complex structure J on R6. For example, we have

(DF1J)F1 = DF1F2 − JDF1F1 = −F3 + η1 − J(η2 − F ) = 0,

(DF1J)F = DF1F3 − JDF1F = F2 − JF1 = 0,

(DF1J)η1 = −DF1η2 − JDF1η1 = F1 + JF2 = 0.

Considering now the corresponding Sasakian structure on S5(1), we notice that
M3 is an invariant submanifold tangent to the structure vector field. If π : S5(1)→
CP2(4) is the Hopf fibration, then p(M3) is a holomorphic curve N2 in CP2(4).
Since E1 and E2 are horizontal vector fields for the submersion p : M3 → N2, and
since 〈R(E1, E2)E2, E1〉 = −1, it follows from the basic equations for submersions
(see [O]) that N2 has constant curvature 2. �
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