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ON THE ASYMPTOTICALLY PERIODIC SOLUTION OF SOME
LINEAR DIFFERENCE EQUATIONS

JERZY POPENDA AND EwA SCHMEIDEL

ABSTRACT. For the linear difference equation

T
Tn4l — Anln = g agzl)l’n-l-iy n €N
1=0
sufficient conditions for the existence of an asymptotically periodic solutions
are given.

In the paper by N, R, Ry we denote the set of positive integers, real numbers,
and nonnegative real numbers respectively.

For any function y : N — R the forward difference operator A is defined as
follows:

AYn = Ynt1 —Yn, nEN.

Using the method we have applied in [3] to get existence of constant approaching
solutions of difference equations, we consider existence of asymptotically periodic
solutions of the equation

r

() $n+1_anxnzzag)xn+ia neN.

i=0

Definition. The sequence v : N — R is periodic (o- periodic), if v,4, = v, for
all n € N. The sequence v : N — R is asymptotically periodic (asymptotically
o-periodic) if there exist two sequences w,w : N — R such that u is periodic
(o-periodic), limy, e wy, = 0, and v, = uy, + wy, for all n € N.

A sequence {x, },-, is called generalized solution of (E) if it satisfies (E) for all
n sufficiently large.
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Theorem 1. Let a) : N - R, a: N — R\{0} be o-periodic and such that

o
a; = 1, let furthermore
j=1

(1) Sa < oo, i=0,1,...,m
j=1

Then for arbitrary C € R, C # 0 there exists asymptotically o-periodic general-
ized solution x of (E) such that

n—1

(2) l’n:CHa]’—I—O(l).

j=1

If moreover

(3) ay, # —ay
for each n € N then these solutions can be extended to the left up ton = 1.
Proof. Let us observe that if w is a solution of (E) such that

n—1
up = C [ a; +0(1) with C' > 0, then the sequence {—u,} is also the solution
j=1

of (E) and have the same asymptotic properties with C' < 0. Therefore we restrict
our considerations to the case C' > 0.

Since C' > 0 there exists a positive constant ¢ such that ' — ¢ > 0. Let us
denote

C, = C+e,
() on = S| e,
i=0 j=n
where
1 n+i—1
(0) — = 400 p(1) — (1) p0) = (9)
(5) bn an Ap 7 bn Ap s bn (k_121+1 ak) ap

fori=2,...,r,nEN.
Notice that by periodicity of {a,} and condition (1) the series

oQ

STl i=0,1,.r

j=1

are absolutely convergent (also for i = 0 because of a,, # 0).
Therefore there exists ny € N such that «,, < ¢ for all n > ni. So we can define

I=[C—-¢,CHe], In=[C—anC+ ay)
for n > nq. It is evident that /,41 C I, and

(6) diam I, =+ 0asn — co.
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Let o, denotes the Banach space of bounded sequences x = {z,} ., with the
norm [[z]| = sup,> 4 [zn]-
Now T C ls be such a set that « = {z,},_, € T if

z,=C for n=12,... ,np—1
x, €1, for n>mnq.

It is easy to check that T is a closed, convex and compact subset of lo,. By (6), for
arbitrary ¢; > 0 we can set up a finite €1-net for the set T. Hence by Hausdorff’s
theorem T is really compact.

Define now an operator A. Let y = {y,}.-;, € T and Ay =n={n,},—, if

C for n=1,2,...,n1—1

_ r 00
In = C—ZZ ]_H for n>n;.
Z: :

By absolute convergence of series Z b and boundedness of the sequence y the
j=1
operator A is well defined on the set T. Furthermore

r (o] r (o]
w = CL< DY il < €YD 18]
i=0 j=n i=0 j=n
because |yn,| < C' 4+ ap < Cy forall n € N, so |n, — C| < «, that is 5, € I,.
Therefore A maps the set T into T. We now prove that A is continuous on T.

Take any 1 > 0. Let @ = {z,},_, and y = {yn},_, be any two elements of
the set T such that ||z —y|| < d; where §; = S22, Then the absolute convergence
ny

of series
r (o) . r (o) .
PIDBL LIS B DL
1=0 j=n; 1=0 j=n;
yields
[[Az — Ayl| = sup [(Az), — (Ay)s|
neN
r (o) r (o) .
< sup [[0= 303 b =10 =30 Y byl
n2ny i=0 j=n i=0 j=n
< sup ZZIb 2 4i = yjil < ||z = yl| sup ZZIb
””1i0]n ”nlz’O]n
< 4 I o Crr omy _ €1,

Ch 279 Ch

from there we can deduce that operator A is continuous on the set T. Hence
by Schauder fixed point theorem there exists a solution of the operator equation
r=Azx in T. Let z = {z,},_, be this fixed point of .A. Then

2=4C,...,C zpnyy oy 2n, - }
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while from the other hand

Ar=0C, .= 0 0= b
1=0 j=n; i=0j=n
Therefore
(7) 2n = C — Z Z b;i)zj+i, for n>ny.
i=0j=n

Notice that by (6) and z € T, we have z, — C because z, € I,,. In other words
(8) z=C+o(l).
Let us take

n—1 n—1 1
(9) Vp = ( ak) Zn, le. 2z, = ( —) Uy
k=1 k=1 A

From there

Hence, by (5)

Un+41 — AnUn

Il
p
o B e
2
I
AN g
M%
<~
3
[l
3
T
H
=3
T
2|
kol

1=
n
1 (0) 1 (1) 1
Ak {Zan Un kH an + ap Vg1 knl ﬁ-l-

n4+r—1 (r n4+r—1
+...+ H A | Gn " Un4r H i

Il
TN
ES
ﬂ

oQ

That is the sequence {v,},_,
(E)). By (8) and (9) we have

(nl:[ i) va = C+o(1),

a
k=1 k

fulfils (E) for n > ny (is generalized solution of

from there

(10) Up, :C’Hak—l— (1:[ ak) o(1).

=1
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o
However ¢-periodicity of the sequence {a,}, and condition [] a; = 1 yields

j=1

(o]
n
o- periodicity of the sequence { I1 a]} . This in turns yields boundedness of

j=l1 n=1

( T ak) o(1) = o(1).

Therefore from (10) we get (2).
If furthermore the condition (3) is fulfilled then we can transform (E) to the
form

1 L
(11) l‘n:—i(()){—l‘n+1+za£f)l‘n+i} .
i=1

an + an

n—1
ag ), and consequentl
) q y
k=1

Substituting in (11) n = ny — 1, &, = v, for n > ny we obtain #,,_1. Proceeding
this way, we find step by step #,,-2,...,21. Consequently, we obtain sequence
{xn}zozl which fulfills (E) for all n € N, and because z, = v, for n > n;y this
(ordinary) solution of (E) has the property (2).

Notice that in fact Theorem 1 gives some sufficient conditions for the linear
equation

(E1) cglr)xn+r + ...+ cgll)xn_H + cglo)xn =0

to possess asymptotically periodic solutions, because (E1) can be transformed into

(0)

the form (E). Therefore if ¢5 ’ differs from some o-periodic sequence {a,} (pos-
sessing properties defined in the Theorem 1) up to absolute summable sequence

{aglo)}, cﬁf) differs from 1 up to absolute summable sequence {aﬁf)}, and
Z|C§i)|<oo for i=2,...,r
j=1

then (E1) possesses asymptotically o-periodic solutions.
In [4] we have given condition (with b almost o-periodic) for the equation

oQ

Tn4l — Ln = Za;xn+i + by,
i=0

possesses such type of solutions. For general viewpoint on this problem for first
order linear equations see e.g. [1].
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Following the referee suggestion we can generalize Theorem 1. Using similar
method we can get suitable result for the equation:

r

(EQ) LTn4l — QpnTp = Za%)fz(xn+z)a neN.

i=0

Theorem 2. Let ') : N = R, a: N — R\{0} be o-periodic and such that

Il ¢; =1, and
j=1

Z|a;i)|<oo, i=0,1,...,r.
j=1

Let furthermore f; : R — R, t = 0,1,...,7 be odd and satisfy Lipschitz
conditions i.e.

|fi(u) = fi(v)| < Lifu — vl
for u,v € R and some positive constant L;. Then for arbitrary C' € R, C #0
there exists asymptotically o- periodic generalized solution x of (E2) such that

n—1

xn:C’Haj—l—o(l).

j=1

Proof. Proof of Theorem 2 follows similar way as the proof of Theorem 1. The
main difference is in definition of the operator A.
Let y = {yn},—, € T then we define n = {n,} _, = Ay if

C for n=1,2,...,n1—1
Nn = rooo Jj4i—1
! C_ZOZ Z(( kl_ll ak)yj+z’) for n>n;.
1= ]:

Furthermore we should take
an:CliaZZU)y)L neN,
i=0 j=n

where

, | ,
b%):(H—)a%), for ¢=0,1,...,r, n€EN,
k:lak

Q |

= s s ot} 2=

New definition of A is the consequence of {v, },_ —,,» defined by (9), have to be
the solution (generalized) of (E2). Now new ay, allows us to get A maps T into
T, while the Lipschitz conditions yield continuity of A.
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