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NATURAL TRANSFORMATIONS OF SYMPLECTIC
STRUCTURES
INTO POISSON’S AND JACOBI'S BRACKETS

JACEK DEBECKI

ABSTRACT. A complete classification of natural transformations of symplectic
structures into Poisson’s brackets as well as into Jacobi’s brackets is given.

It is very well-known that on an arbitrary symplectic manifold (M,w) there is
the Poisson bracket Bys(w) : F(M) x F(M) — F(M), where F(M) denotes the
set of all smooth functions M — R. From the point of view of natural geometry
(see [2]) the operators By which map w to By (w) form a natural transformation
of symplectic structures into Poisson’s brackets as well as into Jacobi’s brackets.
The aim of this paper is to give the full classification of natural transformations of
these types. We will formulate and prove two propositions asserting that any such
natural transformation is of the form pB, where p is a real number. Of course, the
result in the Poisson case is an immediate corollary from the result in the Jacobi
case, but we will handle both problems separately, because the proof in the first
case 1s shorter and less complicated then in the second one.

First we recall the definition of the Poisson and Jacobi brackets (see for instance
[5]). Let M be a smooth manifold and let F'(M) denote the set of all smooth
functions M — R. A Poisson bracket on the manifold M is a map F(M) x
F(M)>(f,9) — {f,9} € F(M) such that:

(1) it defines a Lie algebra structure on the vector space F'(M), i. e.

(1) {f g+ ph} =alf g} + B{S h},
(3) {F g, h3+ g A SH+{h S g}} =0

forall o, € R, f,g9,h € F(M);
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(ii) it has a natural compatibility with the usual associative product of functions,
which is

(4) {f,9h} ={F 9 h +g{f h}

for all f,g,h € F(M). A Jacobi bracket is a generalization of the notion of a
Poisson bracket obtained by relaxing condition (4), and asking instead that the
bracket be just an operation of the local type, in the sense that

(5) support{ f, g} C support f Nsupportg

for all f,g € F(M).

We will denote by P (M) the set of all Poisson brackets on M and by J(M) the
set of all Jacobi brackets on M. The set of all symplectic structures on M will be
denoted by S(M). Let n be a fixed positive integer.

Definition. A family of maps Ay : S(M) — P(M) (Ap : S(M) — J(M)),
where M is an arbitrary 2n-dimensional smooth manifold, is called a natural trans-
formation of symplectic structures into Poisson’s brackets (Jacobi’s brackets), if
for every embedding ¢ : L — M of a 2n-dimensional smooth manifold L into a
2n-dimensional smooth manifold M the following condition holds:

(6) Ap(wo (T x T)p)(fop,go¢) = Au(w)(f g) o
for every w € S(M) and all f,¢g € F(M).
Suppose that w 1s a symplectic structure on a smooth manifold M. It is well

known that for each f € F(M) there is the unique vector field V,, ; on M such
that

(7) wo(ViVyys)=dfoV

for every vector field V on M. We call V,, ; the Hamilton vector field. Putting
{f,9} = wo (Vuys,Vug) forall fg € F(M), we obtain the standard Poisson
bracket on the symplectic manifold (M,w). We will also use the notation

(8) By (W) (f,9) =wo (Vs Vag)

Of course, if L and M are two 2n-dimensional smooth manifold, ¢ : L — M
is an embedding and w € S(M), then T o Viorxr)p,fop = Vs © ¢ for every
f € F(M). Therefore, for all f,g € F(M)

BL((") © (T X T)@)(f op,g° Qp) =wo (T X T)QD ° (Vwo(TxT)Lp,fOLpVwo(TxT)Lp,gOLp)
=wo (TQD © Vwo(TxT)Lp,fotpa Typo Vwo(TxT)Lp,gOLp) =wo (Vw,f o ¥, Vw,g o SD)
=wo (Vus,Vug)oe=Bu(w)(f,g)oe.

This means that the family of maps By : S(M) — P(M) for all 2n-dimensional
smooth manifolds M is a natural transformation of symplectic structures into
Poisson’s brackets.

That there are no natural transformations of this type essentialy different from
the above one is the content of the following proposition.
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Proposition 1. If A is a natural transformation of symplectic structures into Pois-
son’s brackets, then there is one and only one real number y such that Ay (w)(f, ¢) =
u{f, g} for any 2n-dimensional smooth manifold M, any w € S(M) and all
f,g € F(M), where {, } is the standard Poisson bracket on the symplectic manifold
(M,w).

Proof. Fix a 2n-dimensional smooth manifold M, w € S(M) and f € F(M). The
basic remark is the following obvious consequence of (1) and (4): F(M) > ¢ —
Apm(w)(f,g) € F(M) is a derivation. Hence there exists a well defined vector field
U, ; on M such that

(9) A (@W)(f,9) = U,z (9)

for every ¢ € F(M). Moreover, if L and M are two 2n-dimensional smooth
manifolds, ¢ : L — M is an embedding, w € S(M), f,g € F(M), then

Uso(rx1)p,fop(g 0 9) = Ar(w o (T X T)g)(f o p,9 0 p)
= ApuW)(f,9) e =Uuslg)op,
and so T'polU,o(TxT)p,fop = Uw s 0. This means that the family of maps Kz ) :
FM)> f— U,y € V(M), where (M,w) is an arbitrary 2n-dimensional sym-
plectic manifold and V(M) denotes the set of all vector fields on M, is a natural
transformation of Hamiltonians into vector fields, according to the definition from

[1].The form of all natural transformations of this type is described in [1]. Using
this result we can write

(10) Uu,r(9) = (Ao f)Vi s (9)

for every 2n-dimensional smooth manifold M, every w € S(M) and all f,g €
F(M), where A : R — R is a smooth function. Clearly, from (1), (2) and (9) we
get that

(11) Us,af(9) = alu, 1 (9)

for every & € R.. Let (z,y) denote the standard system of coordinates on R"” x R"*.
Then (10), (11) and a trivial computation show that

(12) (/\ o axl)vdx’/\dy,,ocxl(yl) = de’/\dy,,ocxl(yl)
= ade’Ady,,xl(yl) = a(/\ o l‘l)vdxl/\dy,,xl(yl) = a(/\ o xl)

for every a € R. Replacing the function 2! by 1 in (12) we obtain A(a) = A(1),
and so A is constant. Write p = A(1). Finally, from (9), (10), (7), (8) we conclude
that

An(W)(f,9) = Uus(g9) = 1Vi 1 (9)
= ﬂdg © Vw,f = pwo (Vw,fa Vw,g) = NBM(W)(f,g)~

This proves the proposition.
We now state the analogue of Proposition 1 for Jacobi’s brackets.
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Proposition 2. If A is a natural transformation of symplectic structures into
Jacobi’s brackets, then there is one and only one real number p such that

mW)(f,9) = p{f, g} for any 2n-dimensional smooth manifold M, any w € S(M)
and all f,g € F(M), where {,} is the standard Poisson bracket on the symplectic
manifold (M, w).

Proof. First we observe that if M is a 2n-dimensional smooth manifold, w €
S(M), f,g € F(M) and if U is an open subset of M then we have

(13) Av (@|@xnyo)(flo, 9lv) = Au(W)(f; 9)]u-

To see this, it suffices to replace the embedding ¢ in (6) by the inclusion U — M.
The equahty (13) makes it obvious that if e, h € F(M) are such that el = f|v,
hlu = g|ly then

(14) Ap(W)(e, Wlo = Am (@) (S, 9)|v-

For each f € F(R" x R™) we can define the map ®; : F(R* x R"™) 3 g —
Arnxres (dzt Ady;)(f, g) € F(R™ x R™). This map is linear, which is clear from
(1), and is local, i. e. if U is an open subset of R” x R™ and g € F(R” x R™)
is such that g|y = 0, then ®;(g)|r = 0 too, which is clear from (14). It is known
that a linear and local operator is a differential operator (see [3], [4]). This means
that there are smooth functions cf ¢, s5) : R" x R™ — R for (y,d) € N" x N"
such that for every g € F(R” x R™)

oltdlg
(15) ()= D, i 0y

(v,0)EN"XN"

where the family of functions (¢ (y,6))(y,6)eNnxN» 18 locally finite, i. e. for every
point of R™ x R™* there is a neighbourhood U of this point such that the number
of non-vanishing functions c; (, syl for (y,d) € N x N” is finite. It is easy
to check that the functions cf (,s) for (v,6) € N" x N” in (15) are uniquely
determined. Therefore for each (y,d) € N x N™ we can define the map ¥, s :
FR" x R"™) 3 f — ¢f,(v,6) € F(R” x R""), which is linear and local from (1),
(2), (14), (15). Hence there are smooth functions dio g (4,5 : R" x R* — R
for (a, f) € N™ x N” such that for every f € F(M)

dle+ol f
(16) Voolf)= D dameogags
(a,8)EN™xNn

where the family of functions (d(ayﬁ)y(vyé))(ayﬁ)eNnXNn is locally finite. Combining
(15) and (16) we get for all f,g € F(R™ x R™)

(17) Arnxros (da' Ady;)(f, 9)

Z d olotpl glv+aly
- (0.8).(v.0) T a5 7 :
(e,0),(7,6)EN™ x N= JxdyP 0x7 Oy

where the family of functions (d(a,),(v,6))(a,8),(v,6)eN»xN» is locally finite.
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Let (s,t) € R" xR™. We define the embedding ¢(; ;) : R" x R"* — R x R"*
to be such that (T, y) = (z+sy + t) for (x,y) € R™ x R™. We check at
once that dz' A dy; o (T' x T)¢(s 1) = dx' A dy;. From (17) and (6) it follows that
for all f,g € F(R"™ x R"¥)

dlo+ol ¢ oltdlg
Z d(ap).x (31‘0‘33//3 £l ) (31‘733/ SD(S’t))

(e,8),(v,0)EN™" XN
Hletsl (fo Sp(syt)) v+l (go Sp(syt))

- > d(a,p),(v,9) s -
(a,8),(v,6)EN" x N= x>y 0x7Y 0y

= Arnxree (d2' A dys) (o 9,00, 90 (s.t))
:ARann*(dl‘i/\dyi o (T'x TYp(s,))(f 0 @(s,6), 9 © P(s,1))
= ARrnxree (d2' Adyi)(f,9) © 0(s.0)

_ Z Ay o) olatpl g glv+aly .
(a8, ( B QuedyP dun oy’ "

J(7,0)EN"™ X N™

Composing with go(_slt) we can rewrite the above equality as

S Sl oy

(Oé,ﬁ),(’y,(;) © Sp(s’t) Tﬁ 5
(0,B),(v,6)ENT xN™ dwdyP 0z dy
_ olotpl glv+aly

a 2 Up).(v0) Gragy? =
(e,0),(7,6)EN™ x N= JxdyP 0x7 Oy

Consequently

(18) d(a,),(1,8) © Play = A(a,8),1.6)

for all (o, 8), (y,d) € N"xN". Taking (18) at the point (s, ) yields d(4,s),(y,6)(0,0) =

8),(v,5)(s,t). Since (s,t) is an arbitrary point of R™ x R™*, the functions
d( )7(%5) for (@, 8), (7,0) € N" xN" are constant. Put e, ) (v,6) = d(a,5),(~,6)(0,0)
for (a,ﬁ),( J) € N™ x N™. Thus (17) becames

(19) Agn g (da’ A dy;)(f,9)

olotpl glv+aly

= D A0 Tragy GGy
(e,8),(v,0)EN" XN™

where e(q,),(v,6) € R for all (a,3),(7,6) € N” x N and e(q4 gy (y,6) = 0 for all
(a, B), (7,d) € N™ x N” but a finite number

Let p € R\ {0}. We define the embedding ¢, : R" x R — R” x R™" to be

such that ¢, (z,y) = (pz', 2%, ... ,x”,%yl,yz, ooy ) for (z,y) € R® x R™. We
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check at once that dz® A dy; o (T x T)¢, = dz' A dy;. From (19) and (6) it follows
that for all f,g € F(R" x R™)

1_gl 1 _ 51 8|a+ﬁ|f 3|7+5|g
a— -4
Z €(a,),(,6)P P (3360‘33/@ OSDP) <6l’76y6 OSDP)

(e,8),(v,0)EN"XN"
B 3|o«+ﬁ|(fo¢p) 3|7+5|(gogpp)

— Z €(a,8),(7,6) P .
(e,8),(v,6)EN" x N~ dx*dy 0x7Y 0y

= AR"XR"* (dl’l A dyz)(f o Qopag © SDP)
= ARrn g (dz' Ady; o (T x T)p)(f o 0y, 90 @p)

olatpl g glv+aly
= Z 6(0«@%@6)@@ °Pp -
(a,8),(

¥,0)EN™"XN®

Composing with gozjl we can rewrite the above equality as

gyt OO gl

> eGP R
(0,8),(v,6)ENm X N™ JrxOyP Oz Oy

olotpl glv+aly

B Z a,0),(V ) 5 a8 Ay A8
(a,8),(7,6)EN"xN" x>0y’ 9z dy

Consequently
(20) al = B+t =8 F 0= e(a,9),(7,0) =0,

because p € R\ {0} is arbitrary.
According to (19) and (2), we have for all f,g € F(R" x R"*)

Z 3|a+ﬁ|g 3|v+5|f
€(a,B),(18) 3 27,8 At o
(,8),(v,6)EN»xX N~» x>0y’ 9z dy
= ARnxRn+ (dxl A dyi)(ga f) = —ARr«Rn* (dl‘l A dyi)(f,g)
olotpl glv+aly

- > €(0f), (1) T a7 .
(a,8),(7,6)EN"xN" dx>dyP 0z dy

Consequently e(y s, (a,5) = —€(a,8),(~,6) for all (o, 8),(y,d) € N* x N, and so

(21) €(0,0),(0,0) = 0.
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Taking ¢ = 2! in (19) and writing e1,...,e, for the canonical basis of the
module Z" we get for every f € F(R" x R™)

(22)  Arexres (de’ Ady)(f, ")
dlo+ol ¢
_ 1
- Z (e(ocyﬁ),(QO)x +6(°‘7ﬁ) 617 )6x066yﬁ
(@,8)EN™xN»
Let k € {1,... ,n}. Wedefine the embedding ¢ : R* xR™ — R” xR"* to be

such that ¢x(z,y) = (z, 1, -+, Yk-1, Uk + 2", Yk+1, - Yn) for (z,y) € R" x R,
We check at once that dz’ A dy; o (T' x T)¢r = dz' Ady; and ' o o = z'. From
(22) and (6) it follows that for every f € F(R" x R"*)

Hletsl f ook
(23) > (€(e,8),(0,0)(%" © k) + €(a8), (1,0 >)—o€ 5 )
Ox*dy
(o, 8)EN7™xN*

3|o«+ﬁ|(fo¢k)
= Y aneor +eeneo) " gags
(0, B)ENT x N =
= Apnxree (dz' Ady)(f o o, ')
= Amrnxree (dz' Ady; o (T x i) (f o pr, &' 0 or)
= Arrxree (do’ Ady)(f,2") o g
dle+ol f

= D (Cwn 00 e, ) Fpaays ° P
(a,B)EN" X N™ 4

It is easy to prove by induction on of that
DletBl(f o o) of ok pla+al ¢
(24) P ope) g~ (@) O
Oz dyP —\J Oro—derJyP+iex
]:

Applying (24) and composing with ¢ ' we can rewrite (23) as

ok olo+8l
(25) Y Cap o0 +e@p ) X ( ; ) Guo—derggitier
(a,B)EN" X N™ 7=0

dle+ol f

_ 1

= 2 (amoor +e@o o) gag,s
(0,)EN" XN

Now we are going to prove that for every (a, 5) € N” x N”

(26) £ 0 = (€(0,0),(0,0)s €(a,8),(e1,0)) = (0,0).

Clearly, (26) holds provided that (e(qa,5Y,(0,0), €(a,8),(e1,0)) = (0,0) for every (o, §) €
N” x N”. In another case let us denote by (p, ¢) the element of N” x N™ with
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the properties that

(27) (€(p,),(0,0) €(p,9),(e1,0)) # (0,0)
and
(28) (€(0,8),(0,0): €(a,9),(e1,0)) 7 (0,0) => o* < p*

for every (a,3) € N" x N™. Suppose, contrary to our claim, that p* > 1. Under
this assumption we will compute the coefficients of

olrtal 7
8xp—€k 8yq+€k

on both sides of (25). In order to do this, we take j € N such that there is (a, 8) €
N7"x N" satisfying (a—jey, f+jer) = (p—ek, ¢+ex) and (e(oéﬁ)y(oyo), 6(a,ﬁ),(e1,0)) +
(0,0). Thus a* —j = p* — 1, and so j = o* — p* + 1. Tt follows that j = 0 or
j =1, as according to (28) o < p*. Therefore from (25) we deduce that

1 pr—-1
(Ep-crgten), 0,0 + Ep-crgten )|

1 Pk
e, 008+ €(pa) (e1,0) ( . )
= Elp—erqten) (00T T+ E(pmergten),(e1,0)

and so e(pyq)y(oyo)xl + €(p,q),(e1,0) = 0, contrary to (27). Hence our assumption is
false and thus p* = 0. This means, by (28), that (26) holds.

Let l € {2,...,n}. We define the embedding ¢; : R” x R"* — R” x R™* to be
such that ¥ (z,y) = (2}, ..., 2/ 2l +y, 2! .0 2™ y) for (z,y) € R x R™*.
We check at once that dz® Ady; o (T x Ty = dz' A dy; and z* o ty; = x!, because
[ # 1. From (22) and (6) it follows that for every f € F(R™ x R™)

(29)

ANtBL(f o 4y
> (apooton) + 6<a,@>,<e1,o>)W
(o, B)EN™ xN™ y

oltPl(f o ay)
= Z (e(ayﬁ)y(oyo)xl +6(o¢7ﬁ),(81,0)) 6$a6yﬁ
(o, B)EN™ xN™

= Arnxges (da' Adyi)(f oty 2!)
= Apnxree (d' Ady; o (T x TY)(F o ¥, 2t o 1y)
= Arnxroe (dz’ Adys)(f,2') ot

dlo+ol ¢

- Z (6(0470)7(070)131 + 6(&,@),(61,0))W oy .
(o, B)ENT X N7 Yy
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It is easy to prove by induction on & that

3|oc+ﬁ| f o) g i dla+bl g
(30) = Z( )Ww

Applying (30) and composing with ¥, ! we can rewrite (29) as

Ca |61
B 0 /
(31) Yo (@m0 F Eap) e ﬂ; <J) Dzotieidyp—ict

(o, B)ENT X N7

dle+ol f

= Z (e(avﬁ)V(Ovo)xl +6(Oc,ﬁ) el, )W
(o, B)EN™ xN™ y

Now we are going to prove that for every (a, 5) € N” x N”

(32) B # 0= (€(a,8),0,0)r (), (e1,0) = (0,0).

Clearly, (32) holds provided that (e(q,5Y,(0,0), €(a,8),(e1,0)) = (0,0) for every (o, §) €
N” x N™. In another case let us denote by (r, s) the element of N™ x N with the
properties that

(33) (€(r,5),(0,0): €r,5),(e1,0)) # (0,0)
and
(34) (€(0,8),(0,0): €(a,8),(e1,0)) 7 (0,0) => B < &'

for every (o, ) € N® x N™. Suppose, contrary to our claim, that s' > 1. Under
this assumption we will compute the coefficients of

3|r+s|f
6$r+616ys—el
on both sides of (31). In order to do this, we take j € N such that there is (a, 8) €
N”™ x N” satisfying (a+je;, f—je;) = (r—i—el,s—el) and (e(a,4),(0,0) € (e1,0))
(0,0). Thus g —j = s —1 and so j = ' —s' + 1. IthHOVVSthatj—OOI'j 1,

as according to (34) 8! < s'. Therefore from (31) we deduce that
st—1
(6(r+el,s—el),(0,0)$1 + e(r+el,s—el),(el,0)) ( 0 )

Sl
H(E(9),0,0)2" F €(r,5),(e2,0)) (1)

1
= €(rte;,5—e1),(0,0)F + €(r+e;,5—e1),(e1,0)s

and so e(rys)y(oyo)xl + €(r,s),(e2,0) = 0, contrary to (33). Hence our assumption is

false and thus s' = 0. This means, by (34), that (32) holds.
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Using (26) and (32) we can rewrite (22) as

ARn R7* (dl‘ A dyz Z 0,7e1),(0,0) $ + 6( Jei),(e1,0 ) f
7=0 8%
and next, using (20), as
ARnXRn*(dl‘ /\dyi)(f, )—600 (0,0) f+60€1 (e1,0 83/

and finally, using (21), as

: 0
(35) AR"XR"* (d$l A dyl)(fa ) = €(0,e1),(e1,0 aj;
A trivial computation shows that
: 0
(36) Brrsres (dz' A dy)(f,2') = —%.
1

Hence denoting yt = —€(0,¢,),(e,,0) and combining (35) with (36) we obtain

(37) Arnxros (dz' Ady;)(f,2') = pBroxres (da' A dyi)(f, ")
for every f € F(R™ x R™).

Fix a 2n-dimensional smooth manifold M, w € S(M), m € M and f,g € F(M).
If dpg # 0 then it is possible to prove that there exists a chart ¢ : U — R x R™*
on M such that m € U, dz* Ady; o (T x T = wlrxryv, p(m) = (g(m)er, 0) and
zl o p = g|y (see the lemmain [1]). Let e € F(R™ x R™*) be such that there is a
neighbourhood V of (g(m)e1, 0) such that V' C ¢(U) and ey = (fop~1)|v. From

(13), (14), (6), (37) we have

(Am (W) (], 9))(m) = (Av (@l <o) (flo, 9lv))(m)
= (Au(de’ Adyi o (T x T)p)(f o~ 0,2t 0 p))(m)
= (Av(da’ Ady; o (TxT)so)(eoso,x °p))(m)

= (Ar XRn*(dx A dy;)(e, z') o @)(m)

= (uBrnxroe (dz' Ady;)(e, x') 0 0)(m)
= (uBu(de' Ady; o (T x T)p )(60%1‘ °p))(m)
(uBU(dx Ady; o (T x TYe)(f o

= (uBu (wl(r )(fIU,glU))(m)
= (uBm (W)(f g))(m),

and so

(38) (An (W) (£, 9))(m) = (uBur (w)(F, 9)) (m).

Log, 'l ogp))(m)

If dpmg = 0, then (38) also holds. In order to prove this, we take an open U C M,
m; € M for i € N, and h € F(M) such that m € U, limjsoo m; = m, hly = glv
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and dp,,h # 0 for i € N. By (14) and the continuity of the functions Axr(w)(f, 9),
Apm(w)(f, h), we have (Ap(w)(f,9))(m) = (Am(w)(f, h))(m). Moreover, (38)

implies
(Apr (@) (f, h))(m) = lim (Apr (W) (f, 7)) (mi)
= lim (uBar (W) (f, 7)) (mi) = (nBar (@) (f, 7)) (m) -

By (14) and the continuity of the functions By (w)(f, h), Ba(w)(f,g), we have
(uBar(w)(f, R))(m) = (uBar (w)(f, ¢))(m). Combining these we obtain (38).

The uniqueness of p is clear, which completes the proof.

Remark. We have not used (3) and (5) in the proof of Proposition 2.
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