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THE PROOF OF THE ISOMORFPHISM
OF THE n - DIMENSIONAL
PROJECTIVE SPACES DEFINED AXIOMATICALLY

V. BALINT, P. GRESAK, M. KASTIEL AND {J. KATERINAK

ABSTRACT. The paper gives a proof (without of using of "great” Desargues’ axiom)
that any two axiomatically defined n - dimensional projective spaces are isomorphic.

1. AXIOMS AND AUXILIARY THEOREMS.

The projective space P, of dimension n > 2 is meant to be a non-empty set
with n — 1 systems of non-empty subsets (so called subspaces) fulfilling the gener-
alized Hilbert’s axioms of incidence J1- J5, the projective axiom P and a special
Desargues’ axiom GP, on which separation relation v C P,, x P, x P, x P, 1is
defined so that it is fulfilling the separation axioms N1-IN6 and Dedekind’s axiom
DN. The points (i.e. the elements) of space P, we will note by 4 , B, C', B’

B”, and similarly, or also Py , Py, P”p, ... as one-point sets. The subspaces of
dimension k = 1,2,...,n—1 (i.e. the subsets of the k-th system) of the space P,
we will note by P, P’, Py, ... . The empty set we will note also by P_1, P'_1,
Py,

Definition. By, ..., By € P, are independent in P,, (and we write By ...By) <
for every Prp_1 C P, at least one B; & Pp_1.

Generalized Hilbert’s arioms of incidence ([4], p.69)

J1 P, C P, = there are independent By, B; € P .

J2 Forevery k=0,1,...,n there are independent By,..., By € P,.

J3 Independent By,..., By € P, = there is one and only one P, C P,, such
that By, ..., Bi € Py (we write Py, = By ... By ).

J4 Py, Pry1 C P, andindependent By, ..., By € PrNPry1 = Pr CPrya .

J5 Py, P, C Prys C P, and Py, NP, # 0 = there are independent
Bo,...,Bx_1 € Py ﬂP;c.
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Projective ariom and special Desarguesian ariom
P P,PCP,CP, =P NP #0.
GP Independent A, B,C € P> C P,,, independent D, £, F € Ps, ADNBE =
=ADNCF =BENCF=Q Py CPy, ABNDE=X € P;, ACNDF =
=YeP,=BCNEF=2€P;.

Separation azioms and Dedekind’s ariom ([3], p. 262-263 and 278;
(A, B,C, D) € v we read: the pair A, C separates the pair B, D )

N1 (A, B,C,D)ev= A,B,C,DeP; CP, mutually distinct,
(C,B,A,D)€ev,(B,ADC)Ev.

N2 A, CePy CP,, A#C = thereis (A, B,C, D) €v.

N3 Mutually distinct A, B,C', D € Py C P,, = 1t holds just one of the follow-
ing three relations: (4, B,C, D) € v, (A,C,B,D) ev, (A, B,D,C) €v.

N4 ABC,D,EeP, CP,, A£C#B,(ACB,D)&v, (A,C,BE)¢
v= (A D B E)¢v.

N5 (A,C,B,D),(A,C,B,Eyev= (A, D,B E)&v.

N6 A BC,DeP,CP,CP, EEFFGHeP, CPy,, QePy Q¢Py,
Q¢ P, E e AQ, F € BQ, G € CQ, H € DQ, (A,B,C,D) € v
= (E,F,G,H) €.

DN HABCeP, CPy, A#B#+C#A XeDs (A4X,B,C) € v,
W+£D CcD,0#D"CD,

a) D)UD" =D, D'nD" =0,

hYeD (AX,Y,C)ev=>XelD

aYeD" (V,X,B,C)ev=X €D

then there is H € D such that

d) (A X,HC)ev=XeD
(H,X,B,CYev=XeD"

The affine space A, of dimension n > 2 is meant to be non-empty set together
with n—1 systems of non-empty subsets (so called subspaces) fulfilling the general-
ized Hilbert’s axioms of incidence J1-J5, (Euklid’s) parallel axiom E and a special
Desargues’ axiom GE, on which the betweenness relation p C A, x A, X A, ful-
filling the axioms M1-M4 and Dedekind’s axiom DM, is defined. The subspaces
of A, will be denoted by Ap, AL A ....

The parallel ariom and the special Desarguesian ariom (see [4], p.70)

E A, CA;CA, BeAy— A, = there is exactly one A} C A such that
B e Al and A;NA, =0.

GE Independent A, B,C' € As C A,,, independent D, E, F € Ay, ADNBE =

= ADNCF = BENCF =0, ABNDE =0, ACNDF = ( = BCNEF = {.

The arioms of betweenness relation and Dedekind’s aziom (see [4], p.70, and
[3], pp.44-45; (A, B,C) € pu we read: the point B is between the points A,C')

M1 (A,B,C)enu=ABCecA CA,, AXB+C#A, (C,B,A) €.

M2 A BeA,, A# B = thereis (A, B,C) € pu.

M3 (A, B,C)epn=(BAC), (AC B)¢pn.

M4 If independent A, B,C' € As C A,, A1 C Ay, A, B,C & Ay and there is
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D € Ay, (A, D,B) € u, then there is either & € Ay, (A, E,C) € p, or
FeA, (B FC)epn.
DM IfABeA, A#B XeDo (A X,B)eu, 0D CD B+#D"CD,
a) D'UD”" =D, D'nD" =10,
HYeD, (A X,YYep=>XeD
A)YeD' (Y, X,B)e u= X € D",
then there is H € D such that
d) (A X, Hyep=XeD
(H,X,B)eu=XeD".

The projective space P, is isomorphic with the projective space P!, if there is
a bijective mapping f of the space P,, onto the space P/, (so called isomorphism)
such that the (isomorphic) image of a subspaces P, C P, are the subspaces
P, C P, and the (isomorphic) image of a separation » in P, is a separation
vin PL.

Given the projective space P, , let us choose a subspace Pp° | C P, and let us
put A, =P, —P> ;. Fork=1,2,...,n—1 we define the subsets Ay C A, and
a subset 4 C A, x A, x A, as following:

(1) Ay, =Py, — on_l for Py C P, P, Q: on_l;

(2) (B,D,C)eps (B,D,C,Z)cvand Z € P | for the separation v in

P,.

Now A, 1s the affine space of dimension n, A are its subspaces of dimension k
and p is the betweenness relation in A,,. Axioms J1-J5 and P imply the following
statements:

3) Pi,P, CPry1,P1 ¢ P, 1<k<n—-1=P;NP,=B.

4) Py, P, CPry1, PP 1<h<k<n—-1=P,NP,=P/_,.

2. THE MEAN STATEMENT AND ITS PROOF.

Theorem 1. Any two projective spaces P,, and PJ, are isomorphic.

Proof. Let us choose a subspace P>, C P, and a subspace P/, C P/, and
construct the affine spaces A,, = P, — P, and A/, = P’,, — P'>° |. By [4] there
is an isomorphic mapping f of space A, onto the space A/ such that f(Ay) = A},
and f(u) = y'. Let us define the mapping f as follows:

(5) F(X) = f(X)=X'€ Al for every X € A,,.
ForY € P;2 , let us choose B € A, and let us put Py = BY , A; =P, —-P;°

n—1
f(A))= A, C P, f(Y)=Y' =P, NP, . We are going to show that in (5) it
does not depend on the choosing of the point B; therefore let us choose C' € A,,,
P,=CY#BY, A\ =P, —P> |, f(A))= A, CP|, f(Y)=Y' =P/ NP7 ,.
Because the points B, C,Y are independent, there is only one P = BCY D
P., Py and therefore also only one Ay = Py — P>, DAy A, and it is true that
ANA, =0 (because Py N P, =Ye€ P2 ). For the images in the isomorphism
f we have A, = f(Ay) D A}, A} and Aj N A} = 0. For P}, D A, we have
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P, O P, P/ and by the axiom P the point Z’ = P{ NP} is unique (if P} = P1,
then also A7 = A/) and in consequence of A} N A} = § it must be Z' € P’ |
and Y= 7' =Y’ too.

Further we have the following statement:

6) )Y, ZeP,, Y #Z=fY)#f(2),
b) Y € P, = there is Y € P, such that f(V) =Y".

Proof of a). It is true FY)=f(Y) # f(7) = f(Z)for Y, 7 € A,; for 7 € A,

Y € P2, we have f(Z) = f(Z) € AL, and f(Y) € P/, , and so f(Z) # f(Y).
Let us Py = BZ, A1 =P, — P> |, f(A\)= A, CP,, f(Z)=2 =P, NP},
for Y,Z € P2 |;if now Y/ = Z' then P, = P|, Al = A, A, = A, P, = P,
and by (3) also Y = 7, what is a contradiction.

Proof of b). For Y/ € A/ there is Y € A, such that f(Y) = f(Y) = Y.
Let us Y/ € P’.°, ; let us choose B’ € A/ and let us put P}, = B'Y' A} =
— P, - P f(B) = B, f(A\) = A}, P, D A, 3 B, Y = P, 0 P> ; then
evidently f(Y)=Y".

By (5) and (6) f is a bijective mapping of the space P, onto the space P/.
Now we show

(7) P, C P, = f(Py) =P} CP,.

First of all we have f(P5% ) = P/;" | for P2 ;. Let us Py ¢ P22 ;. Let us take
Ay =Pr— P2y, f(Ay) = A}, = P, — P/, and we show that f(Py) = P.
For X € Ay we have f(X) = f(X) = X' € A, C Pj, and, the other way round,
FFUX) =X €Ay for X' € Aj;for Y € Py NP thereis B € Ay, and Py =
=BY CPy, Ay =P, -P,, B = f(B) € f(A;) = A} C P, =BY CP,
Y’ =P, NP7, and so Y’ € P/, and the other way round f~}(Y') = Y €
€ P,NP, for Y € P/, NP’° ;. Simultaneously we have proved f(Py_;) =
=P, =P, NP, for Py_y = P, NP, and therefore f(Py_1) = P, , C
Cc P for Pr_i C P> .

The statement (7) is proved.

Now we show, that for the separation v in P, and v/ in P! it is true the
following statement:
(8) (B,D,C,FYev= f(B,D,C,F)=(B,D,C" F)ecv.
Let us (B, D,C, F) € v. By N1 the mutually distinct points B, D,C, F € P; C
C P, and there are two possibilities:
I. Py ¢ P ,. By (3) we have exactly one point 7 = P; NP2, and we

n—1-
can suppose that B # Z # C, Z # D (otherwise in N1 we change either the
points B, C'and D, F or the points D and F' ). Hence the mutually distinct points
B,D,C €A, =P — P, and by (2) we get
(9) (B,D,C,Z)€evand (B,D,C) € pu.
By [3], §89, Thm.7, p.264, there are the subsets K;, Ky C Py — B—C such that

(10) KUKy =P, —B—C,K;NKy =0
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XeKiandY €eKs = (B, X,C\Y)€ev
X,YeKior X, YeEKy= (B, X,C)Y) v
and we can suppose that D € K; and I, 7 € K, (otherwise we change the
indexes of the sets K;, Ks). Let us denote by B', D', C', F', 7' the images
of points B, D, C, F, Z at the mapping f, so f(B,D,C) = (B, D',C") € i,
B, D' C'e f(A)) = A, =P, -P'7,, 7' =P, NP, and by (2) - which is
true also for ' and v’ - we have (B, D', C', 7') € V.
According to [3], §89, Thm.7, p.264, there are the subsets K}, Ky ¢ P, —B'—(C’
such that
(1) KiUKL{=P, - B —C' K| nK,=10
X' eKjand Y €K, = (B, X', C'\Y)er
X'V €KY or X', Y € Ky = (B, X', C" V') ¢ v/
and we can supppose that D' € K/ and 7/ € K/ (otherwise we change the
indexes of the sets K/, Ki). By (2) - which is true also for g/ and v’ - we have
XeK, & (B,X,0,Z)cve (B,X,0)cpe f(BX,C)=(B,X,Ceu
& (B, X',C' 7Y € v & X' € K| and so f(K;) = f(Ki) = K|. Because
f(P1) = P by (7), we have - in accordance with (10) and (11) - also f(K») = Kj.
Itis D € K; and I € K, hence for the images at f we have D' € K and I’ € K,
and by (11) we conclude (B, D', C'| F') € v/'.

II. Py C P;>,. There is a point @) € P, — P2? ; and by N2 there is a point
B € BQ, B+ B, B# @ sothat B & P2, (otherwise it would be Q@ € BB C
C P2 ) and for Py = BF itis true Q & P, (otherwise it would be Q € QB =
= BB = BF = BF = P, C P> ). So there is a projection g from P; onto P
from the point @ such that g(B) = B=P,NBQ, ¢(D) =D =P, N DQ, g(C) =
=C=P,NCQ,g(F)=F=F=P,NFQ,and g(B,D,C,F)=(B,D,C,F) €v
by N6. Let us Q’, B, D/, C', F', B’, D', (', F' = F’ the images of the points @,
B, D,C,F,B, D, C, F=F at the mapping f so that B, D, C, F € P; ¢ P> |
and - according to the above proved point I - we get (B', D', C’, F') € v'. However

L at

by (7) there is a projection gl_1 which is the image of the inverse projection ¢~
the mapping f and g ~Lis a projection from P = f(P) onto P} = f(P) from the
such point @’ that gl_l(B’, D' C' F'y= (B D' C'F') and (B, D' C' F') €
according to N6.

From (7) and (8) we conclude that f is an isomorphism from P,, onto P/,.



482 V. BALINT, P. GRESAK, M. KASTIEL, J. KATERINAK

REFERENCES
[1] Cech, E., Zdklady analytické geometrie I, Praha 1951.
[2] Cech, E., Zdklady analytické geometrie II, Praha 1952.
[3] Efimov, N. V., Vyssaja geometria, Moskva 1971, (5. izdanie).
[4] Katerindk, J., Konstrukce vektorového prostoru v n-rozmérném afinnim prostoru, Sbornik

praci Vysoké skoly dopravni a Vyzkumného tstavu dopravniho 15, 1968, 69-83, NADAS
Praha.

UNIVERSITY ZILINA

01026 ZiLina, SLOVAK REPUBLIC

E-mail: balint@fpedas.utc.sk
gresak@fpedas.utc.sk



		webmaster@dml.cz
	2012-05-10T12:50:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




