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EXTREMAL SOLUTIONS AND RELAXATION FOR SECOND
ORDER VECTOR DIFFERENTIAL INCLUSIONS

EvGeEnIOos P. AVGERINOS AND NIKOLAS S. PAPAGEORGIOU

ABSTRACT. In this paper we consider periodic and Dirichlet problems for
second order vector differential inclusions. First we show the existence of
extremal solutions of the periodic problem (i.e. solutions moving through
the extreme points of the multifunction). Then for the Dirichlet problem we
show that the extremal solutions are dense in the C'! (T, RN)—norm in the set
of solutions of the "convex” problem (relaxation theorem).

1. INTRODUCTION

Periodic problems for second order differential inclusions were studied recently
by Frigon [4]. She considered nonconvex scalar differential inclusions and assuming
the existence of an upper ¢ and of a lower solution v such that ¢ % proved
the existence of at least one periodic solution located in the order interval [, ¢].
Her method of proof based on truncation and penalization techniques. Here we
consider vector differential inclusions and we prove the existence of a periodic
solution when the multifunction F'(¢, z, y) is replaced by ext F (¢, z, y) (the extreme
points of F(t,z,y)). Recall that ext F'(¢, z, y) need not be closed (even if F(t,z,y)
is) and need not have any continuity properties (like lower semicontinuity), even if
the multifunction (z,y)  F(¢,#,y) is regular enough, (like Hausdorff continuous).
So even if we restrict ourselves to the scalar case our results in the present work
go beyond those of Frigon [4]. Moreover, in the present paper we also prove for
the Dirichlet problem a relaxation theorem. Namely we show that the solutions
passing from the extreme points of F (¢, z,y) are C(T, R™) dense, in the solution
set of the convexified problem. Such a result is important in control problem, in
connection with the ”bang-bang principle”.
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2. PRELIMINARIES

In what follows, by Pf(c)(RN) (resp. Pk(c)(RN)), we denote the collection
of all nonempty, closed (and convex) (resp. nonempty, compact (and convex))
subsets of RY. Let T = [0,b]. A multifunction F : T P;(RYN) is said to
be measurable, if for all x RNt dz, F(t)) = inf[ 2 v v F()]is
measurable. This definition of measurability of F( ) is equivalent to saying that
GrF = {(t,v) T RN :w F(t)} B(RY), with  being the Borel &
field of T,and B(RY) being the Borel o field of RV (graph measurability). For
details we refer to the survey paper of Wagner [11].

Given F: T P¢(RY), we define the set

Sk = {v LYT,RN) :v(t) F(t)ae. on T}.

This set may be empty. Using Aumann’s selection theorem (see Wagner [11],
theorem 5.10) we can verify that for a measurable multifunction F( ), SL = if
and only if t inf v v  F(1) LY(T). The set Sk is closed in LY(T, RY),
is convex if and only if F(¢) is convex for almost all ¢ 7T and is bounded if
and only if ¢ F({t) =sup v v F(¥) LY(T). Finally the set S} is
”decomposable”; i.e. if (A, f1, f2) SL o Sk, then xafi + xac f2  Sh.

If Y,Z are metric spaces a multifunction G : Y 2% is said to be
”lower semicontinuous ”(lsc for short), if for all z 7, the Ry - valued function
y dz (z,G(y)) is upper semicontinuous.

On P;(RY) we can define a generalized metric, known as the ”Hausdorff met-

ric”, by setting h(A, B) = min ;Iel,fax d(a, B),blgg d(b,A)].

It is well-known (see for example Kisielewicz [6] or Klein-Thompson [7]), that
(Pt(RN), h) is a complete metric space and Py.(R"Y) is a closed subspace of it. A
multifunction F : RN P¢(RY), is said to be ”Hausdorff continuous” (h - con-
tinuous for short), if it is continuous from RY into the metric space (Pf(R™), R).

Finally form N, 1 r , by we denote the norm of the Sobolev

space W™ (T, RY). 7

3. EXTREMAL PERIODIC SOLUTIONS

In this section we will be dealing with the following two second order periodic
differential inclusions:

') x(t) F(t,x(),2'(t)) ae. onT
{ )= | W

and

a.e. on T } 2)

By a solution of (1) (resp(2)), we mean a function z W2(T, RY) such that
() x(t) = v(t) ae. on T, z(0) = z(b),2'(0) = 2'(b), with v S}m(, 2,2 ())

(resp. v SéxtF(~,x(~),l"(')))'
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In what follows by S; (resp. Se) we will denote the set of solution set of (1)
(resp. of (2)). Here we prove the nonemptiness of Se. For this purpose, we need
the following hypotheses on the multifunction F (¢, z,y).

Hy: F:T RN RN Pu.(RY) is a multifunction such that
(i) for every z,y RN, t  F(t, z,y) is measurable;

(i) for every t T, (x,y) F(t,x,y)is h-continuous;

(i) F(t,»z,y) =sup v v F(t,z,y) it 2 )+yv0 z) y ae
on T, with sup v (¢,7): r k mi(t) ae onT,mp  LYT)
and sup ya(t,7): r k o k(t) ae.on T, nop  L2(T).

(iv) for almost allt T, allz,y RN andallv F(t,z,y), we have

(v, )N Bz y alt) =
with0 pB<2anda LY T),a O.

Theorem 1. If F : T RY RN Pi.(RN) is a multifunction satisfying
hypotheses Hy, then problem (2) has a solution x() W?2YT,RN) (ie. S, = ).

Proof. We start by obtaining some a priori bounds for the elements of the set
Se. So let #  Sc. Then by definition we have 2" () x(t) = v(t) a.e. on T,
z(0) = «(b), 2'(0) = &' (b), with v S%«“(~,x(~),x'(~))'

Hence &"(t) + () + v(t) = 0 ae. on T, x(0) = x(b), «/(0) = «'(b). Taking
the inner product with z(¢) and then integrating over T, we obtain

Jo Ca(t),2(®)pu dt+ f) x(t) Zdt+ f) (1), 2(t) g dt = 0. (3)

From the integration by parts formula (Green’s formula) and the periodic
boundary conditions, we obtain

Sy e (t), e(t)pu dt = &' ) (4)

Also from hypothesis H;(iv) and since W2!(T, R) is embedded continuously
in C(T, RN) (see for example Brezis [3]), we have

fob (v(t), 2(t)) g dt e, 2, a, .. (5)
Using (4) and (5) in (3), we have
xizzxg—l—x’; B e, 2+ a, x .
Since 2 = , ¥ , a:;—l— J:’;: xiz, we have § z , ' , %x’iz
and so (1 éi) xiz a ., x .

Because W2(T, RY) is continuously embedded in C(T, RY), there exists ¢ > 0
such that = _ ¢ z |,.

So

(1 %)x1,zca1 T 12

for all #  S. (since 3 < 2; see hypothesis Hy(iv)).
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Therefore S. is bounded in W12(T, RY), thus bounded in C(T, RY) too. Hence
we can find M; > 0 such that = _ M for all z S.. Using hypothesis H;
(iii), we see that for all # S, we have

1t

r Moy, + ems o, OM = M.

Thus we infer that S, is bounded in W21(T, RY).

Recalling that W2(T, R) is embedded continuously in C'(T, RV ), we can find
Mz > 0 such that =« CUT,RY) Mg for all x S.. Therefore without any loss
of generality we may assume that F(¢,z,y) =sup v v F(t,z,y) o(t)
a.e. on T, with ¢  LY(T). Indeed otherwise we replace F(t,z,y) by ﬁ(t, z,y) =
F (t,750,(2), 7, (y)) with 7ar, () being the Ms- radial retraction on RV . Note that

~ ~

F(t,z,y) satisfies hypotheses H;(i),(ii) and (iv) and also |F (¢, «, y)‘ oM, (t) +
Noars (1) Mz = (1) a.e. on T, with ¢ LY(T) for all z,y RN.

Now let V = {u LYT,RNY : ult) o(t) a.e. on T}. Given u V', let
p(u)()  W2LYT, RN) be the unique solution of the periodic problem 2" (t)
z(t) = u(t) a.e. on T, (0) = z(b), 2'(0) = «'(b). We know that z(t) =
fob G(t,s)u(s)ds, t T, where G(t,s) is the Green’s function for this problem
(see Seda [9]).

Note that

—its t—s+b .
e v 4+e v ) if 0 ¢ s b
G(t, 8) = ﬁ { ((e—tts+b t—s) . }

+ew ) if 0 s t b

Using the fact that z(t) = fob G(t,s)u(s)ds, t T, we can easily check that the
sets z=p(u):u V and 2'=p(u) :u V ,are both bounded and equicon-
tinuous in C(T, R"V) and of course closed. Therefore by the Arzela-Ascoli theorem
we can conclude that K = p(V) is a compact and of course convex subset of
CHT, RN).

Then let G : K Py, (Ll(T, RN)) be the multivalued Nemitsky operator

G(z) = {v LYT,RN) :v(t) F(t,z(t),2'(t)) ae. on T} = S}«“(.,x(.)
r K.

Invoking theorem 1.1. of Tolstonogov [10], we can find a continuous map r :
K LL(T,RY) such that r(z) extG(z)forallz K.

Here by LY (T, RY) we mean the space L!(T, RV) furnished with the weak norm

/; o(s)ds

From Benamara [1] we know that

()

-0 tl tz bl .

v w:supH

ext G{a) = ext S o) w1()) = Sexe B () 210)

for allz K.
Then let ¢ = p r. Recalling that F(t,z,y) (1) a.e. on T, we see that
q: K K. Weclaim that ¢( ) is continuous. Indeed let #, zin K asn
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(11l

Then r(xz,) r(z) as n . But note that r(z,)(?) F(t,FMa,FMS)
Pi(RN) a.e. on T, with By, = {z RN : 2 Mg}. So we can apply the theo-
rem of Gutman [5] and obtain that r(a:n) Y r(x) in Ll(T RN) as n Using
the fact that ¢(xz,) fo zp)(s)ds and ¢(x fo z)(s)ds
for all t T, we see that q(a:n)(t) q(z)(t) as n for all t T Since
q(zn)() ,»; K and the latter is compact in C1(T, RY), we have ¢(z,) ()
in CY(T, RJ\T) as n . This proves the continuity of ¢( ). We apply Schauder’s

fixed point theorem and obtain # K such that « = ¢(x). Evidently # S. = .
O

4. RELAXATION THEOREM

In this section we show that every solution of the Dirichlet problem z” ()
z(t) F(t,e(t),2'(t)) ae. on T, z(0) = x(b) = 0 can be obtained as the
CHT, RN)- limit of a sequence of solutions of the ”extremal” Dirichlet problem
() x(t) ext F(t,z(t),z'(t)) a.e. on T, x(0) = x(b) = 0. Such a result is
known as ”relaxation theorem”. To prove such a result, we strengthen our hy-
potheses on the multifunction F(¢, z,y). To simplify our calculations we assume

b=1;ie T=1]0,1].
Hy: F:T RN RN P.(RY)is a multifunction such that

(i) for every z,y RN, t  F(t, z,y) is measurable;

(i) h(F(t,z,y), Ft, 2 y)) kW[ « + y ¢ ]ae on T for all
z, 2.y, y RY; with k L>(T), k <1

(i) F(t,z,y) 7@ z )+y@, =) y ae onT, with
sup y1(t,7):0 r k mi(t) a.e. on T, my . LY(T) and
sup y2(t,7):0 r k o k(t) ae. on T, 2, L(T);

(iv) for almost allt T, allz,y RY andallv F(t z,v)
(v, )N Bz y alt) =
with0 B<2anda LY T),a O.
As we did before in section 2, by S,  W2YT, RY) we denote the solution set
of the ”convexified problem” #”(t) x(t) F(t,z(t),2'(¢)) a.e. on T, z(0) =
z(1) = 0 and by S  W2YT, RY) we denote the solution set of =/ (t) z(t)
ext F'(t,z(t), 2'(t)) a.e. x(0)==x(1) =0.

Theorem 2. If F : T RN RN Pi.(RN) is a multifunction satisfying
N
hypotheses Hs, then S HT.RY) = Se.

Proof. Let # S.. Then by definition we have that z”(t) () = v(t) a.e. on
T, with 2(0) = #(b) =0 and v Sllt«“(~,x(~),x' 3y Arguing as in the proof of theorem
1, we know that without any loss of generaﬁity, we may assume that for almost all
t Tandallz,y RY, F(t,z,y) () with o LY(T).
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As in the proof of theorem 1, a nonempty, compact and convex set K
CH(T, RN) can be constructed such that S, K (note that because of the Dirich-
let boundary conditions, equation (4) holds and so the estimation which led to the
derivation of K is still valid here).

Giveny K and € > 0, we define the multifunction U, : T' 2RY by

U, (t) =

={u RN w(t) w <e+d@l), F{tylt),yt)), u F(t,y),y 1)} .

Because of hypotheses H»(i) and (ii), ¢t d(v(t), F (¢, y(t),y (¢))) is measurable
and so the multifunction ¢ F (¢, y(t),y'(t)) is graph measurable (see Papageor-
giou [8]). Therefore GrU, B(RM).

Apply Aumann’s selection theorem (see Wagner [11], theorem 5.10), to obtain
u:T RY measurable such that u(t) U.(t) for allt T. Thus if we define
G.: K 2L (TREY) by

Ge(y) =
= {u S%«“(.,y(.),y'(.)) sou(t) w(t) <e+d(v(t), F(ty),y (%)) ae on T}

we have shown that G.(y) = forally K. Moreover proposition 4 of Bressan-
Colombo [2], tells us that G.( ) is Isc. Therefore y = G.(y) is Isc and clearly has
decomposable values (i.e. if (A, u, us) Ge(y) G:(y), then xau1 + xac

uz  Ge(y)). Thus we can apply theorem 3 of Bressan Colombo [2] and obtain
ge : K LY(T,RY) a continuous map such that g.(y) G.(y) forally K.
In addition theorem 1.1 of Tolstonogov [10], gives us a continuous map 7, : K
LL(T, RN) S}lCh that r.(y) extG(y) = SéxtF(~,y(~),y’(~)) and r.(y) g-(y) , <¢
forally K.

Now let £, 0 andset g, =g, , 7 =7, 70 1

Also let

V={u LYT,RY): u(t) o(t) a.e. on T}

and let p : V. CYT, RV) be the map which to each u  V assigns the unique
solution of the Dirichlet problem ¢’ () y(t) = u(t) a.e. on T, y(0) = y(1) = 0.

We claim that p(V) is compact in C*(T, RY).

To this end let v,  p(V), n 1. Then y, = p(uy) with w, V., n 1. We
have

YLD (1) = un(t) ae. on T, y(0) = y(1) = 0.

n
Take the inner product with y, (¢) and then integrate over T. We obtain

2 9 , 2
Yn 12= Un 5+ Un o Un 1 Yn oo

Since W1 2(T, RY) is continuously embedded in C(T, RY), we can find ¢ > 0
such that 1y, 32 C Un 1 Yn 19, hence 1y, 12 c ¢, for all n 1. So
Yn 5 is bounded in W21(T, RN).

Since y;: = tp +Yn, we infer that y// n>1 LY(T, RY) is uniformly integrable.
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Since V is weakly compact (Dunford-Pettis theorem) by passing to a subse-
quence if necessary, we may assume that w, = u in LYT,RM), u V. Then it
is easy to see that y, = p(up) p(u) = y in W»HT,RY) and so g, ~ y in
CYT,RN).But y, ,5, K and the latter is compact in C*(T}, RY).

Soy, yin C’l(T,_RN) as n , which proves the compactness of p(V) in
CHT, RN).

Hence ¢, =p r,: K K, n 1 and by Schauder’s fixed point theorem, we
can find ¢, = ¢(z,) n 1. Since =, .., K by passing to a subsequence if
necessary, we may assume that z,  zin CY(T, RY) as n

Then for almost ¢ T we have

(@) 20,20 O (00 el ) 20
= (ra(en)(0) 0(0) 20 (t) 2(0)) e =
(0 ren){0.2at) 2+ (0a(@)(O) ralen)(O20) 20
= a, o, oz’
Jo &n +h(F( (t),2,(1))) wnlt) w(t) di
1
t Jo (an(ea) (1) ralen) (), 2n(t) () v dt
[len 4RO 2alt) () + a4(t) 2(0) ) @alt) a(t) di+
1
+ Jo (gn(2n) () ral@n)(t), 2n(t)  @(1)) gy dt

Note that for allt T

o (t)  z(t) /0 a(s) a'(s) ds @, o' .

o~
3]
—_
o~
=
H\
—_
o~
=
=
—_
o~
3]
3

So we have
/ ;2 2
T, T o+ Tn T4

2 2
En Tn X o+ ko T zo+ ko ox, o+

+ / (Gn(En) () Tn(n) (0), 2a(t) () o

By construction g, (z,) rn(2n) 0 as n and so as in the proof
of theorem 1 via Gutman’s theorem we can have that (g,(2,) 7n(2n)) “0in
LYT,RN) as n .

So we have fol (gn(2n)(t)  rn(xa)(t), 2n(t) x(t))pyvdt Oasn

Therefore 1n the limit as n we obtain z =x |, ko oz xq,
,

Since by hypothesis Ha(#4) k& .. < 1, we deduce that z = 2. Therefore z, «
1 N
in CYT,R™). But z, S.. Hence S. Sec (T.E7)

that S. is closed in C(T), RN) we conclude that S, = S_ec (

. Since we gan easily check
T,RY) O
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