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GLOBAL EXISTENCE FOR FUNCTIONAL
SEMILINEAR INTEGRODIFFERENTIAL EQUATIONS

S. K. NTouyas

ABSTRACT. In this paper, we study the global existence of solutions for first and
second order initial value problems for functional semilinear integrodifferential equa-
tions in Banach space, by using the Leray-Schauder Alternative or the Nonlinear
Alternative for contractive maps.

1. INTRODUCTION

In this paper we study the global existence of solutions for initial value problems
(IVP for short) for semilinear functional integrodifferential equations. The paper
is divided into two parts. In Section 2 we consider the following IVP

(1.1) (1) = Ax(t) + /Ot f(s,zs5)ds, t€][0,0],

(1.2) ro = ¢,

where A is the infinitesimal generator of a linear semigroup in a Banach space X,
and f:[0,6] x C'— X is a function. Here C' = C([—r,0], X) is the Banach space
of all continuous functions ¢ : [—7,0] = X endowed with the sup-norm

l16]] = sup{l¢(0)] : —r < 0 < 0}.

Also for # € C([-r,b], X) we have #; € C for t € [0,b], #:(0) = z(t + 0) for
6 € [—r,0]. By using topological degree arguments we prove the global existence
of a solution of (1.1)-(1.2)

As a model for the equation (1.1) one can take
t
we(x, 1) = wey(2,1) —1—/ f(s,w(z,s—r))ds, 0<a<1,t>0
0
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w(0,t) =w(1,t) = 0,t > 0,w(x,t) = ¢(x,t), —r<t<0
for which the equation (1.1) becomes as its abstract formulation. Equation (1.1)
has many physical applications. This arises as a very special model for one dimen-
sional heat flow in material with memory [7], [14].
In Section 3 we study the global existence of solutions for second order initial
value problems for semilinear functional integrodifferential equations of the form

(1.3) " (t) = Az(t) —1—/0 f(s,xs,2'(s))ds, t€][0,0b],
(1.4) vo=¢, 2'(0)=n,

where A is a linear infinitesimal generator of a strongly continuous cosine family
{C(t) :t € R} in a Banach space X, and f:[0,7] x C' x X = X is a function.

Recent results on global existence, for ordinary, functional, neutral or partial
functional differential equations with the aid of the Topological Transversality
method, may be found in the works listed in our references, [5], [6], [8], [9], [10].
Our approach here is essentially an application of the Topological Transversality
method to obtain global existence results for functional semilinear integrodifferen-
tial equations. For other results on integrodifferential equations see [1], [12], [14]
and the references cited therein.

It is well known, see e.g [15] (for a simple case of ordinary differential equation
and A = 0) that only the continuity of f is not sufficient to assure local existence
of solutions, even when X is a Hilbert space. Therefore, one has to restrict either
the function f or the semi-group operator. Usually restrictions on f are imposed.
The function f was assumed to be locally Lipschitz or monotone or completely
continuous. Here we assume that 7'(t), C(t) (defined below) are compact and the
function f satisfies the following Caratheodory-type conditions, which not imply
that f is completely continuous:

(C1) Foreach t € [0, 8] the function f(¢,.) : C = X (resp. f(t,.,.): CxX = X)
is continuous, and for each # € C' (resp. #,y € C' x X) the function f(.,z) : [0,5] =
X (resp.f(.,z,y) : [0,0] = X) is strongly measurable.

(C3) For every positive integer k there exists g, € L'([0,0]) such that for a.a.
te[0,b]

sup [f(t, )] < gx(t) (resp.  sup |f(t,z,y)] < g (1))
el <k eIl vl <k

The considerations of this paper are based on the following fixed point results
(cf. [2], [4]).
Lemma 1.1 (Leray-Schauder Alternative). Let S be a convex subset of a

normed linear space E and assume (0 € S. Let F': S — S be a completely continuous
operator, and let

E(F)Y={zeS:x=AFx for some 0< A<}
Then either £(F) is unbounded or F' has a fixed point.
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Lemma 1.2 (Nonlinear Alternative for contractions). Let U be a bounded
open subset of a Banach space E. Assume 0 € U and G : U — F is a contraction.
Then either

(i) G has a unique fixed point in U, or

(ii) there exists A € (0,1) and u € U such that u = AGu.

We recal that a map H : A — X between metric spaces is contractive provided
d(Hz, Hy) < ad(z,y)
for all x,y € A, where 0 < a < 1.

2. (FLOBAL EXISTENCE FOR FIRST ORDER IVP

In what follows we let X be a general Banach space and A is the infinitesimal
generator of a strongly continuous semigroup of bounded linear operators T'(¢),t >
0 in X satisfying

T < Me*, 130

for some M > 1 and w € R.

By a strong solution of the IVP (1.1)—(1.2) on the interval [—r,b] we mean a
function z : [—r, 5] — X which is absolutely continuous whose first derivative z’(t)
exists and equals to Az(t) + fot f(s,z5)ds for a.a. t € [0,0] and which satisfies the
initial condition xy = ¢.

It is known that if T'(¢),¢ > 0 is a strongly continuous semigroup of bounded
linear operators in X with infinitesimal generator A, and x(t) is a solution of the

IVP (1.1)-(1.2) then

t s
(2.1) z(t) =T(t)$(0) —1—/ Tt — 5)/ f(ryxr)drds, t€]0,0].
0 0
Equation (2.1) is more general than equation (1.1), and a solution of (2.1) is called
a mild solution of (1.1)—(1.2).
Now we present the first global existence result for the IVP (1.1)—(1.2).

Theorem 2.1. Let f:[0,b] x C' = X be a function satisfying (C1) and (Cs).
Assume that:

(Hf) There exists an integrable function m : [0,b] — [0, 00) such that
[F(t, )] <m@)Qllgll), 0<t<boel,

where Q : [0, 00) — (0, 00) Is a continuous nondecreasing function.

Assume also that T'(t),t > 0 is compact.
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Then if

b e ds

where m(t) = max {w, Mfot m(s)ds}, the IVP (1.1)—(1.2) has at least one mild

solution on [—7, b].

Proof. Consider the space C([—r,b], X) with norm ||z||y = sup{|z(t)| : —r <
t < b}. To prove existence of a mild solution of the TVP (1.1)-(1.2) we apply
Lemma 1.1. First we obtain the a prior: bounds for the mild solutions of the IVP
(1.1)»x—(1.2), A € (0,1) where (1.1), stands for the equation

' (t) = Nz (t) + /\/t f(s,z5)ds, te€]0,b].

Let 2 be a mild solution of the IVP (1.1),—(1.2). Then we have, by (2.1)

et < Mol e [ [ mienards, 1€ 0,01

We consider the function p given by
pu(t) = sup{lz(s)|: —r<s<t}, 0<t<b.

Let t* € [—r, 1] be such that p(¢) = |z (#¥)|. If ¢* € [0, ], by the previous inequality
we have

ety < ol [ / o ) drds
< M||¢||—|—M/ / ))drds, 1€ [0,b].

If ¢ € [-7,0] then pu(t) =||¢|| and the previous inequality holds since M > 1.
Denoting by u(t) the right-hand side of the above inequality we have

u(0) = Mllgll, p(t) < e“fu(t), 0<t<b,

and
¢

u'(t) = Me™*! i m(s)2(p(s))ds

< Me ™ | m(s)Q(e“"u(s))ds, t€][0,b].
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We remark that

(e u(t)) = we u(t) + v/ (1)

—|—M/ m( u(s))ds
<we“tult) + MQ(e” / m(
< m(t)[e u(t) + Qe . tel0,b].

This implies

e“tu(t) ds b [ ds
7</ﬁ18d8</ —_—, 0<t<b.
/u(O) s+Q(s) ~ Sy (=) u(o) 5t Q(s) -

This inequality implies that there is a constant K such that u(t) < K, t € [0, ]
and hence p(t) < K, t € [0,0]. Since for every t € [0,b], ||| < u(t), we have

lzfly = sup{[z(0)] : = <t < b} < K,

where K depends only on b and on the functions m and €.

In the second step we rewrite the IVP (1.1)—(1.2) as follows. For ¢ € C' define
¢ eCh, Cp= C([—T, b],X) by

- {fb(t), —r <t <0,

T(6(0), 0<i<b
If 2(t) = y(t) + g(t), t € [—r b] it is easy to see that y satisfies
Yo =20

t s
y(t) :/0 T(t—S)/O F(ryr + ér)drds, 0<t<b

if and only if z satisfies

z(t) =T)é(0) + /OtT(t —9) /05 f(ryer)drds, 0<t<b

and g = ¢.
Define CY = {y € Cy : yo = 0} and F:CY — C7, by

0, —r<t<0

<qu>={ t s )
[Tt —s) [y f(ryr + ér)drds, 0<t<b.
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It will now be shown that I is a completely continuous operator.

Let By = {y € C? : ||yl < k} for some k > 1. We first show that F' maps By
into an equicontinuous family. Let y € Bg and t1,t5 € [0,b] and ¢ > 0. Then if
0<e<ty <ty <b,

KFw@ﬁ—(ﬁMhﬂz‘AIT@r—$Aiﬂﬂ%+ﬁﬁﬁﬂs

to s .
—[Tta=9) [ e+ 5
0] 0]

1_ET —s5)—T(ts—s ' T, Yr ,:drds

sA [Tt - s) @zﬂAﬂw+W

+ / [T(tl—s)—T(tz—s)]/o F(r s +00)drds
2T — s ' T, Yr ,:drds

+/t1 (ts )/0f<,y+¢>>

: /otl_E [Tt = 5) = T(t2 = 5)] /08 gr (T)drds

1—€

to s
—1—/ |T(ta — 5)|/ gi (T)dTds,
t 0

where k' = k + ||$|| The right hand side is independent of y € By and tends to
zero as t2 —t; — 0 and e sufficiently small, since the compacteness of T'(¢) for
t > 0 implies the continuity in the uniform operator topology.

Thus F maps By into an equicontinuous family of functions.

Notice that we considered here only the case 0 < ¢ < tg, since the other cases
t1 <ty < 0ort; <0<ty are very simple.

It is easy to see that the family By is uniform bounded. Next, we show F B is
compact. Since we have shown F' By is an equicontinuous collection, it suffices by
Arzela-Ascoli theorem to show that ' maps By into a precompact set in X.

Let 0 <t <b be fixed and € a real number satisfying 0 < € < 1. For y € By, we
define

(Fy)(0) :/Ot_ET(t—s)/Os F(r oy + 3 )drds
= T(e) /Ot_ET(t—s—e) /0 F(r s + dr)drds,

Since T'(t) is a compact operator, the set Y. (¢) = {(Fey)(t) : y € By} is precompact
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in X, for every €, 0 < € < t. Moreover, for every y € By we have

(F0 0 - (Fp 0l < [ 1a=9) [ 10700+ Sl

g/ t—5|/ gi (T)dTds.

Therefore there are precompact sets arbitrary close to the set {(Fy)(t) : y € By }.
Hence the set {(Fy)(t) : y € By} is precompact in X.
It remains to show that F : CY — € is continuous. Let {u,}§* C C} with
u, — uin C. Then there is an integer ¢ such that |u, ()] < ¢ for all n and
€ [0,8], so u, € By and u € By. By (C1) f(t,un(t) + ¢¢) — f(t, u(t) + ¢:) for
each t € [0,0] and since |f (2, un(t) + ¢1) — f(£,u(t) + 60)| < 294(1),¢" = g + |||

we have by dominated convergence

||Fu, — Ful|| = sup
te[0,b]

/|Tt—s|/ (7 tn (7) + 67) — F(7,u(r) + 7)lds — 0

/ T(t—s)/s[f(r un(7) + 67) — f(r,u(r) + ;))drds

Thus F' is continuous. This completes the proof that F' is completely continuous.

Finally, the set &(F) = {y € C? : y = AFy, A € (0,1)} is bounded, since
for every solution y in £(F) the function # = y + qu is a mild solution of IVP
(1.1)4—(1.2), for which we have proved that ||#||; < K and hence

l9lls < K +l¢][-

Consequently, by Lemma 1.1, the operator F' has a fixed point in C{. This means
that the IVP (1.1)-(1.2) has a mild solution, completing the proof of the theorem.O

A more general IVP than the IVP (1.1)-(1.2) is the following

(2.4) o (t) = At)z(t) + /Ot f(s,xs5)ds, tel,

(2.5) ro = ¢,

where A(t) is a linear closed densely defined operator in a Banach space X, and
f:Ix X — X is a given function.

It is well known that the IVP (2.4)—(2.5) can be written as a nonlinear Volterra
integral equation

z(t) = Wi(t,0)x(0) + /Ot Wit,s) /05 f(ryxr)drds, t€]0,8],
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with g = ¢, where {W(t,s) : 0 < s < ¢ < b} is a strongly continuous family
of evolution operators on X. We shall make the following assumptions on the
evolution system W(t, s):

(W) W(t,s) € L(X), the space of bounded linear transformations on X, when-
ever 0 < s <t < band for each # € X the mapping (¢, s) — W (¢, s)x is continuous.

(W) W(t,s)W(s,r)=W(t,r),0<r<s<t<bh

(W3) W(t,t) = I, the identity operator on X.

(W) W(t,s) is a compact operator whenever ¢ — s > 0.

Sufficient conditions for (W) — (W4) to hold may be found in Friedman [3].
If the conditions in [3] are satisfied, and if for each t € [0, 5] there is a number
A in the resolvent set of A(¢) such that the resolvent R(A; A(¢)) is compact the
generated evolution system will satisfy (17,).

D=

Theorem 2.2. Let {W(t,s) : 0 < s <t < b} satisfy (W) — (Wa) and f:]0,b] x
C' — X be a function satistying (C1), (C3) and (Hf).

Then the IVP (2.4)—(2.5) has at least one mild solution on [—r,b] provided

(2.6) N/Ob /Otm(s)dsdt < /JVT¢|| %,

where N = sup{|W(t,s)|: 0 < s <t <b} and N = maz{1,N}.

Proof. We apply again Lemma 1.1. In order to apply this Lemma we must
establish the a priori bounds for the solutions of the IVP (2.4),—(2.5), A € (0,1),
where (2.4), stands for the equation

t
(1) = AA(t)z(t) + /\/ f(s,z5)ds, tel.
0
Let z be a solution of the IVP (2.4),—(2.5). Then we have

< Mall+ [ [ mimaleiras, o<i<s,

or

()<N||</>||+N// )drds, 0<t<b,

with u as defined in the propf of Theorem 2.1.
Denoting by u(t) the right-hand side of the above inequality we have

w(0) = Nllgll, p(t) <u(t), 0<t<b,

= N/o m(s)Q2(p(s))ds < NQ(u(t))/O m(s)ds, 0<t<bh.

and
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/U(t) ds bt © ds
—<N//m5dsdt</ —, 0<t<0.
u(0) Q(s) — 0o Jo (=) u(0) Q(s) -

This inequality implies that there is a constant K such that u(t) < K, t € [0, ]
and hence p(t) < K, t € [0,b]. Since for every t € [0,b], ||z¢]| < p(t), we have

Then

2l < K,

where K depends only on b and the functions m and €.
We will rewrite the IVP (2.4)—(2.5) as follows. For ¢ € C' define 5 € Cy,Cy =

C([—T, b]a X) by

N d)(t), —r <t<0,

o(t) =

W(L,0)6(0), 0<t<b
If 2(t) = y(t) + g(t), t € [—r b] it is easy to see that y satisfies
Yo =10

t s
y(t)z/o W(t,s)/0 F(ryr + é-),drds, 0<t<b.

Define Cf = {y € Cy : yo = 0} and F: CY — CP, by

0, —r<t<0

(Put) = { o
fo W(t’ 5) fo (T, Yr + ¢T)d7—d5, 0<t< b.

We can prove, as in Theorem 2.1 that F' is a completely continuous operator.

The proof of the theorem is now complete. a

Remark. Although the TVP (1.1)-(1.2) is a special case of the IVP (2.4)-(2.5)
when A(t) = A, constant, the condition (2.2) is different from the condition (2.6).
Generally Theorem 2.1 cannot be derived from Theorem 2.2.

By applying the Nonlinear Alternative for contractive maps we have the follow-

ing result for the IVP (2.4)—(2.5).

Theorem 2.3. Let {W(t,s) : 0 < s <t < b} satisfy (W) — (Wa) and f:]0,b] x
C' — X be a function satistying (C1), (C3) and (H f). Moreover we assume that:

(£f) For h > 0 there exists {, > 0 such that
[t u) = [t 0)] < lnffu — o]

fort € [0,b] and u,v € C, satistying ||u||,||v]| < k.
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N/Ob/otm(s)dsdt < /ﬁ;n %,

where N = sup{|W(t,s)] : 0 < s <t < b},ﬁ = max{l, N} the IVP (2.4)-(2.5)

has a unique mild solution on [—r,b].

Then if

Proof. By Theorem 2.2 there exists a constant K such that ||z||; < K, for all
solutions of the family of problems

{ #(t) = MA@)z(t) + X [} f(s,25)ds, 0<t<b
o = A¢a

for A € [0,1].
Let L be a constant (> %) In the space C'([—r,b], X) consider the two norms:

lz][s = sup{le()] : t € [-r,b]}
][z = sup{e™ e ()] -t € [-r,0]}.
Since ||z]|z < ||z|l1 < eNE||z||L, these norms are equivalent. Put
U={zecC([-rb,X):||z]p < K, t€[-rb]}
and consider the operator G : U — C([—r,b], X) defined by

o(t), —r<t<0

(Go) 1) = { t s
W(t,0)¢(0) + fo Wi(t—-s) fo f(ryys)drds, 0<t<h.

We shall prove that the operator G from (U, ||.||r) into C([—r,b], X),||.]|z), is a
contraction, with I = ¢x, £x the constant defined in (£f). Indeed we have:

t s
||Gx — Gy||L < sup {e_LNtLN/ / e ENTENT 10 — yT||des}
0o Jo

t s
< LN||lz—yllz {e_LNt/ / eLNTdes}
o Jo

_ 1 s
< LNz -yl {6 LNtm/o (e 1) ds}

1 — LNt 1 — LNt
Sl'x_yHL{LN(l_e )_LNte

<l =yl (1= e™"7)

—LNb

<alle—yllL, a=1—¢ < 1.

Hence by Lemma 1.2, this completes the proof, since (ii) of the alternative cannot

hold by the choice of U. |
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3. (GLOBAL EXISTENCE FOR SECOND ORDER IVP

In this section we study the global existence of solutions for IVP (1.3)—(1.4).

In many cases it is advantageous to treat second order abstract differential
equations directly rather than to convert them to first order systems. A useful
machinery for the study of abstract second order equations is the theory of strongly
continuous cosine families.

Given a Banach space X, we say that the family {C'(¢) : ¢ € R} in the space
L(X) of bounded linear operators on X is a strongly continuous cosine family if

(i) C(0)=;
(i1) C'(t)= is strongly continuous in ¢ on R for each fixed z € X;
(i) C(t+s) + Ct — s) = 2C(t)C(s) for all t,s € R.

The strongly continuous sine family {S(t) : t € R}, is defined by

t
S(t)a::/ C(s)eds, x€ X,teR.
0

The infinitesimal generator A of a cosine family {C'(¢) : ¢ € R} is defined by

Ar = %C(t)xh:o, reDA)={rc X :C()r e C*R,X)}.

Assume now that A is a linear infinitesimal generator of a strongly continuous
cosine family {C(t) : ¢ € R} of bounded linear operators from X into itself.
Moreover we assume that the adjoint operator A* is densely defined i.e D(A*) =

X*. See [1].

It is known that if C'(¢),t € R is a strongly continuous cosine family with
infinitesimal generator A, and #(t) is a solution of the IVP (1.3)-(1.4), then

(3.1) z(t) =C{t)¢(0)+ S(t)n -I-/O St —s) /05 f(r,z., &' (7))drds, t€]0,b],

with g = ¢. Equation (3.1) is easier to work with than (1.3)-(1.4) because of the
nice properties of the bounded operators C'(¢),t € R and S(t),t € R, as opposed
to the unbounded operator A in equation (1.3).

The global existence result for the IVP (1.3)—(1.4) is the following:

Theorem 3.1. Let f:[0,b] x C' x X — X be a function satisfies (C1), (C3) and
C(t) (resp. S(t)), t € [0,b] be a strongly continuous cosine (resp. sine) family on
X with the infinitesimal generator A as defined above. Assume that:

(Hf —1) There exists an integrable function m : [0,b] — [0, o) such that

[F(t, ¢, 0)] <m(O)Q (maz(||g]],[0])), 0<t<boelvelk,
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where Q : [0, 00) — (0, 00) Is a continuous nondecreasing function.
Assume also that C(t),t > 0 is compact.
Then if

(3.2) M(b+1)/ob/0tm(r)drdt</:o %

where M = sup{|C(t)| : t € [0,b]}, M' = sup{|C'(t)] : t € [0,b]} and ¢ =
(M + M")|¢]|+ M (14 b)|n|, the IVP (1.3)-(1.4) has at least one mild solution on
[—7“, b]

Proof. In the space B = C([—r,b], X) N CY([0,b], X) consider the norm
12l = maz{][=][, [[«|l}
where
zllr = sup{lz(t)] : —r <t < b}, x|l = sup{|2’(1)] : 0 < ¢ < b}
To prove existence of a mild solution of the IVP (1.3)—(1.4) we apply Lemma 1.1.

First we obtain the a priori bounds for the mild solutions of the IVP (1.3)5—(1.4),
A € (0,1) where (1.3), stands for the equation

" (t) = NAz(t) + /\/0 f(s,zs,2'(5))ds, t€][0,b].

Let 2 be a mild solution of the TVP (1.3),—(1.4). Then we have

)] < arlll+ Mol + 210 [ [ (eI maze .l ()

<M||¢||+M5|U|+Mb// Q-] + (7)) drds, ¢ €[0,8],

or

t s
p(t) < Ml + Mblal+ Mb [ [ m(n)@(u(r) + () rds, e [0,0),
0o Jo
with u as defined in the proof of the Theorem 2.1.
Denoting by u(t) the right-hand side of the above inequality we have
u(0) = M|l + Mblnl, pu(t) <u(t), 0<t<D,

and

<Mb/m 5) + |2'(s)))ds, 0<t<b.
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Therefore, if
u(t) = sup{|z’(s)] : s € [0,t]}, t €0, 0]

we obtaln .

u'(t) < MbQ(u(t) + v(t))/ m(s)ds, 0<t<b.

. St
But

t s
() = C'"(t)e(0) + S (t)n —1—/ C(t— 5)/ f(r,z., &' (7))drds, 0<t<b
0 0
and thus
t s
o) <Ml + Mlal+ M [ [ m(R0u(r) + e(r)ards, e 0,0)
0o Jo
Denoting by r(t) the right-hand side in the above inequality we have

r(0) = M'||¢||+ M|n|, v(t) <r(t), 0<t<D,

and

r(t) = M/o m(s)Q2(p(s) + v(s))ds < MQ(u(t) + r(t))/o m(s)ds,t € [0, b].

Hence, we obtain
(u(t) + (1)) < M(14b)Q(u(t) + r(t))/o m(s)ds, te€]0,8b].

This implies

/u(t)+r(t) ds ( b) b t ( )d p s )
<M1+ / / m(s)dsdt < / —, 0<t<b.
u(0)4r(0) $2(8) o Jo e Qs

This inequality implies that there is a constant K such that

u(t) +r(t) < K, tel0,b].
Then
()] < u(t) < u(t), te0,0]
') < v(t) <r(t), t€[0,0]

and hence
||=* < K,

where K depends only on b and on the functions m and €.
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In order to apply Lemma 1.1 we must prove that the operator ' : B — B
defined by

(1), —r<t<0
(Fy)(t) :{
C(t)¢(0) + S(¢ 77-|-f0 (t—-s) fo (ryy-, ¢ (1))drds, 0<t<bh.

is a completely continuous operator. We proceed as in Theorem 2.1.

Let By = {y € B : ||y|[* < k} for some k > 1. We first show that F' maps B
into an equicontinuous family. Let y € Bg and t1,t5 € [0,b] and ¢ > 0. Then if
0<e<ty <ty <b,

|(Fy)(t) — (Fy)(t2)| = |C(t1)8(0) — C(t2)9(0) + S(t)n
—Stzn—l—/ Stl—s/nyT, ))drds

/ Stz—s/nyT, ))drds

<|C(t1) = Ct2)[|o(0)] + [S(t1) — S(t2)|n]
+/01 |5(t1_5)_5(t2_5)|/ gr(F)drds

t1
-I-/ |S(t1 —s) — 2—5|/ gr(T)drds
t1—¢€
ta
-I-/ |S(t2—5)|/ gi(T)drds
th 0

[(Fy)’ (t1) = (Fy)'(t2)] = [C"(t1)8(0) — C"(t2)6(0) + S (t1)n
—S/tzn—l—/ Ctl—s/nyT, ))drds

/ Ctz—s/nyT, ))drds

<O (tr) = C' () [16(0) + |57(tr) = S"(L2) ]|

+ /Otl O = 8) = Clts— 9)| /0 gr(F)drds

and

+ /;1 C(ts — 5) — C(ts — 5)| /0 gr(F)drds

1—€

to s
-I-/ |C'(t2 — 5)|/ gi(T)drds.
t 0

The right hand sides are independent of y € By and tends to zero as ts —¢; — 0
and ¢ sufficiently small, since C'(¢), S(t), C'(¢), S'(t) are uniformly continuous for
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t > 0 and the compacteness of C'(¢), S(t) for t > 0 implies the continuity in the
uniform operator topology. The compactness of S(t) follows from that of C'(¢) and
the Proposition 2.1 of [11] and Lemma 2.5 of [13].

Thus F maps By into an equicontinuous family of functions.

The equicontinuity for the cases {; < {2 < 0 and ¢; < 0 < {5 follows from the
uniform continuity of ¢ on [—r, 0] and from the relation

[(Fy) (1) = (Fy)(t2)] < |o(tr) — (Fy)(L2)] < |(Fy)(t2) = (Fy)(0)] + [¢(0) — ¢(11)]

respectively.

It is easy to see that the family By is uniform bounded.

Next, we show that for each fixed ¢ the set {(Fy)(¢) : y € By} is precompact in
X. Let 0 <t < b be fixed and € a real number satisfying 0 < ¢ < . For y € By we
define

(Fey)(t) = C(t)(0) + S(¢ 77—1—/ St—s/nyT, 7))drds.

Since S(t) is a compact operator, the set Y. (¢) = {(Fey)(t) : y € By} is precompact
in X, for every €, 0 < € < t. Moreover, for every y € By we have

Fn) - Fl < [ 1891 [ nriaras

(O - Eaf @< [ 1cu=9)] [ anirards

Hence the set {(Fy)(t) : y € By} is precompact in X.

Next, we show that ' : B — B is continuous. Let {u,}§° C C} with u,, — u in
Cy. Then there is an integer ¢ such that |uy (¢)], |u,(¢)] < ¢ for all n and t € [0, 8],
50 un,ul, € By and u,v’ € By. By (Ch) f(t,un(t),u;l(t)) = f(t,u(t),u'(t)) for

each t € [0,b] and since |f(t, un (), ul, () — f(t,u(t), v/ (t))] < 2g4 (t) we have by

dominated convergence

||Fuy, — Ful| = sup
te[0,b]

S/O IS(lt—S)I/0 (7, un (7), un (7)) = f (7, u(7), @/ (7)) ]ds — 0

/ St —s) / [F(1, un(T), u, (1)) — f(r,u(r), v (7))]drds

and

[(Fun)” = (Fu)]

/Ct—s/ [F(r, un(T),u, (7)) — f(r,u(r), ' (7))]drds

= sup
t€[0,b]

S/O IC(lt—S)I/0 (7, un (7), un (7)) = f (7, u(7), /(7)) |ds — 0
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This completes the proof that F' is completely continuous.

Finally, the set £(F) ={y € B:y= AFy,A € (0,1)} is bounded, as we proved
in the first part. Consequently, by Lemma 1.1, the operator F has a fixed point in
B. This means that the IVP (1.3)—(1.4) has a mild solution, completing the proof
of the theorem. d

Also by applying the Nonlinear Alternative for conrtactive maps we have the

following result for the IVP (1.3)—(1.4).

Theorem 3.2. Let f:]0,b] x C'x X — X be a function satisfying (C1), (C2) and
(Hf —1). Assume that:

(Z}) For h >0 there exists [, >0 such that
[F(t w, 0) = [t w, 2)] < Dn([Je =l + [lo = 2]]h)

for t €10,b] and w,w € C, v,z € X satisfving ||u|, ||v]|1, [|w|, ||z]l1 < k.
Assume also that C(t),t > 0 is compact.

Then if
b t [e%e) dS
Mb+1//mrdrdt</ —
( )0 0 (7) e Qs

where M = sup{|C(t)| : 0 < s <t < b}, M = sup{|C'(¢)] : 0 < s <t < b}tand
c= (M 4+ M)||¢||+ M(1+ b)|n|, the IVP (1.3)—(1.4) has a unique mild solution

on [—r,b].

Proof. By Theorem 3.1 there exists a constant K such that ||z|[* < K, for all
solutions of the family of problems

{ 2’ (1) = Mz (t) + /\fot f(s,zs,2'(s))ds, 0<t<h,
zo = Ag, 2'(0) = An,
for A € [0,1].

Let L be a constant and @ = M (1 + b). In the space B = C([-r,b],X) N
C1([0, ], X) consider the two norms:

2| = maz{||«||, [l[| }

2]l = maz{|l||z, ||2]lL:},

where
l|z|l; = sup{|z(t)] : —r <t < b}, lz]li = sup{|z'(t)] : 0 < < b},

]l = sup{e P e (@)] 1 € [=r, 0]}, el = sup{e” @ (t)] - € 0, ]}
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Since ||z||z < ||z|[* < e@L?||2||z, these norms are equivalent. Put

U= {x€C[-r,0], X)NnC([0,0], X) : ||zl [/l < K}

and consider the operator G : U — C([—r,b], X) N C*([0,b], X) defined by

(Gy)(t) = {

(1), —r<t<0

Ct)e(0) + S(t)n + fot St —s) fos f(ry- Y (m)drds, 0<¢<b.

We have, if L =g, that:

[Go = Gull < sup {912 [ (Isie =) +C =)
< [ e =l 1270 = )haras e € 0.0}

t s

< sup{e_LQtLQ/ / e_LQTeLQT(HxT -yl
0o Jo

+a'(7) =/ (T)])drds}

t s
< LQ|lx —yllz {e_LQt/ / eLQTdeS}
0 0

1 e~ L@ p-LQb
<L — — —
> QHl‘ yHL <L2Q2 LzQZ LQ )

1
< 750 =l —

<= e e =yl

This means that (G is a contraction. Hence by Lemma 1.2 this completes the
proof. a
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