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Abstract. We show a locally uniform bound for global nonnegative so-
lutions of the system ut = ∆u + uv − bu, vt = ∆v + au in (0, +∞) × Ω,
u = v = 0 on (0, +∞)×∂Ω, where a > 0, b ≥ 0 and Ω is a bounded domain
in Rn, n ≤ 2. In particular, the trajectories starting on the boundary of
the domain of attraction of the zero solution are global and bounded.
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1 Introduction

In many parabolic problems possessing blowing-up solutions, there also exist global
bounded solutions. The large-time behavior of solutions lying on the borderline
between global existence and blow-up may be quite complicated and its knowledge
may be useful e.g. in the study of stationary solutions of these problems (see [8]).

Let us consider first the scalar problem

ut = ∆u + u|u|p−1 + f(x, t, u,∇u), x ∈ Ω, t > 0,
u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = uo(x), x ∈ Ω,







(P)

where Ω is a smoothly bounded domain in R
n, p > 1 and f represents a per-

turbation term. If f ≡ 0, 0 6≡ Uo ≥ 0 is a smooth function, λ > 0 and uo = λUo
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then the solution uλ of (P) exists globally and uλ(t) → 0 as t → +∞ for λ
small while uλ blows up in finite time in the L∞(Ω)-norm if λ is large. If we
put λo = sup{λ ; uλ exists globally} and if we consider only radially decreasing
solutions in a ball then it is known (see [4], [5]) that the solution uλo

• is global and bounded for p subcritical, i.e. p < (n + 2)/(n− 2) if n > 2,

• is global and unbounded for p critical,
• blows up in finite time for p supercritical (and n ≤ 10).
Similarly, if n = 1 and f(x, t, u, ux) = ε(um)x, where ε > 0 and m > 1 then the
solution uλo

• is global and bounded (at least for some) p > 2m − 1,
• cannot be global and bounded if p ≤ 2m − 1 and ε is “large”.

Sufficient conditions for global existence and boundedness of the solution uλo
for

f 6≡ 0 and a more detailed discussion of the above facts can be found in [7].
In the present note we study the system

ut = ∆u + uv − bu, x ∈ Ω, t > 0,
vt = ∆v + au, x ∈ Ω, t > 0,
u = v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = uo(x) ≥ 0, x ∈ Ω,
v(x, 0) = vo(x) ≥ 0, x ∈ Ω,























(S)

where Ω is a smoothly bounded domain in R
n, n ≤ 2, a > 0 and b ≥ 0. It was

shown in [6] that the system (S) possesses a positive stationary solution. Moreover,
any positive stationary solution (ũ, ṽ) of (S) represents a threshold between blow-
up and decay to zero provided Ω is a ball. More precisely,

• if λ < µ ≤ 1, 0 ≤ uo ≤ λũ and 0 ≤ vo ≤ µṽ then the solution of (S) exists
globally and tends to zero as t → ∞,
• if λ, µ > 1, uo ≥ λũ and vo ≥ µṽ then the solution of (S) blows up in finite time.

We are interested in the behavior of all “threshold trajectories”, i.e. trajectories
starting on the boundary ∂DA of the domain of attraction of the zero solution

DA = {(uo, vo) ∈ H1
0 (Ω)+ × H1

0 (Ω)+ ;

the solution (u, v) of (S) exists globally and (u(t), v(t)) → 0 as t → ∞},

where H1
0 (Ω)+ is the positive cone of the usual Sobolev space H1

0 (Ω). We shall
prove the boundedness of any non-negative global trajectory of (S). Since the
corresponding bound is locally uniform with respect to the initial values (uo, vo),
this result implies global existence and boundedness of all trajectories starting on
∂DA.

Our proof is based on a non-trivial generalization of a priori estimates for
stationary solutions in [6] (based on the method of Brézis and Turner [1]) to a
priori estimates for all global solutions of (S). Such generalization sometimes may
yield satisfactory results (see e.g. the optimal result in [4] for the problem (P) with
f ≡ 0, uo ≥ 0 based on the method of a priori estimates of Gidas and Spruck);
in general, it usually requires additional assumptions. This is also the case of our
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proof: the a priori estimates in [6] were shown for a general domain Ω ⊂ R
n if

n ≤ 3. For technical reasons, we had to restrict ourselves to the case n ≤ 2.
Finally let us note that the boundedness of global solutions of problems of the

type (P) is well known in the case where f(x, t, u,∇u) is independent of t and
∇u (see e.g. [2], [3] and the references therein). Then the problem has variational
structure, i.e. it admits a Lyapunov functional. A perturbation result for f de-
pending on t and ∇u can be found in [7]. Anyhow, in our situation the system (S)
does not seem to be “close” to any problem with variational structure.

2 Results and proofs

Throughout the rest of this paper we shall assume that the initial couple (uo, vo) ∈
H1

0 (Ω)+ × H1
0 (Ω)+ is such that the corresponding solution (u, v) of (S) exists

globally (in the classical sense). Moreover, we shall assume uo 6≡ 0 and we denote
by λ1 and ϕ1 the first eigenvalue and the corresponding (positive) eigenfunction
of the problem −∆ϕ = λϕ in Ω, ϕ = 0 on ∂Ω. We denote by ‖ · ‖p and ‖ · ‖H1 the
norm in Lp(Ω) and H1(Ω), respectively, and we put ‖ · ‖ := ‖ · ‖2. We shall also
briefly write u(t) instead of u(·, t) and

∫

Ω u dx instead of
∫

Ω u(x, t) dx. Our main
result is the following theorem.

Theorem 1. There exists a constant C1 = C1(‖∇uo‖, ‖∇vo‖) such that

‖∇u(t)‖ + ‖∇v(t)‖ ≤ C1 for any t ≥ 0.

The proof of Theorem 1 will follow from the following series of lemmata (see
Lemma 8 and Lemma 9).

Lemma 2. There exists a constant C2 = C2(‖uo‖, ‖vo‖) such that
∫

Ω

v(x, t)ϕ1(x) dx ≤ C2 for any t ≥ 0.

Proof. Multiplying the equations in (S) by ϕ1 and integrating by parts yields
(

∫

Ω

uϕ1 dx
)

t
= −(λ1 + b)

∫

Ω

uϕ1 dx +

∫

Ω

uvϕ1 dx, (1)

(

∫

Ω

vϕ1 dx
)

t
= −λ1

∫

Ω

vϕ1 dx + a

∫

Ω

uϕ1 dx. (2)

Differentiating (2), using (1), (2), au = vt − ∆v and integration by parts we get
(

∫

Ω

vϕ1 dx
)

tt
= −λ1

(

∫

Ω

vϕ1 dx
)

t
+ a

∫

Ω

(∆u + uv − bu)ϕ1 dx

= −λ1

(

∫

Ω

vϕ1 dx
)

t
− a(λ1 + b)

∫

Ω

uϕ1 dx + a

∫

Ω

uvϕ1 dx

≥ −(2λ1 + b)
(

∫

Ω

vϕ1 dx
)

t
− λ1(λ1 + b)

∫

Ω

vϕ1 dx

+
1

2

(

∫

Ω

v2ϕ1 dx
)

t
+

λ1

2

∫

Ω

v2ϕ1 dx,
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where in the last step we have used
∫

Ω

(−∆v)vϕ1 dx =

∫

Ω

∇v · ∇(vϕ1) dx

=

∫

Ω

|∇v|2ϕ1 dx +
1

2

∫

Ω

∇v2 · ∇ϕ1 dx ≥
λ1

2

∫

Ω

v2ϕ1 dx.

Hence, denoting

w := w(t) :=

∫

Ω

v(x, t)ϕ1(x) dx,

y := y(t) := w′(t) + (λ1 + b)w(t) −
1

2

∫

Ω

v2(x, t)ϕ1(x) dx,

we obtain yt ≥ −λ1y so that y(t) ≥ e−λ1ty(0) ≥ −c0 for some c0 > 0. Since

1

2

∫

Ω

v2(x, t)ϕ1(x) dx ≥ c1

∫

Ω

v2(x, t)ϕ2
1(x) dx ≥ c2w

2(t) for some c1, c2 > 0,

we have

−c0 ≤ y ≤ w′ + (λ1 + b)w − c2w
2 ≤ w′ − c3w

2 + c4 for some c3, c4 > 0,

hence w′ ≥ c3w
2 − (c0 + c4). Since w(t) exists globally, the last inequality implies

w(t) ≤
√

(c0 + c4)/c3 (where c0 = c0(vo) and c3, c4 do not depend on v).

Lemma 3. There exists a constant C3 = C3(‖uo‖, ‖vo‖) such that
∫

Ω

u(x, t)ϕ1(x) dx ≤ C3 for any t ≥ 0. (3)

Proof. Multiplying the first equation in (S) by ϕ1, integrating over Ω and over
(t, t + θ), using u = 1

a (vt − ∆v) and Lemma 2 we get

∫

Ω

uϕ1 dx
∣

∣

∣

t+θ

t
≥ −(λ1 + b)

∫ t+θ

t

∫

Ω

uϕ1 dx dt

= −
λ1 + b

a

∫

Ω

vϕ1 dx
∣

∣

∣

t+θ

t
−

λ1(λ1 + b)

a

∫ t+θ

t

∫

Ω

vϕ1 dx dt ≥ −c̃,

where c̃ = c̃(C2) does not depend on t and θ ∈ (0, 1]. Integrating the last inequality
over θ ∈ (0, 1) and using u = 1

a (vt − ∆v) again we obtain

∫

Ω

u(x, t)ϕ1(x) dx − c̃ ≤

∫ t+1

t

∫

Ω

uϕ1 dx dt

=
1

a

∫

Ω

vϕ1 dx
∣

∣

∣

t+1

t
+

λ1

a

∫ t+1

t

∫

Ω

vϕ1 dx dt ≤ C2
λ1 + 1

a
,

which concludes the proof.
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In what follows we shall exploit the following well known result (used also in
[1] and [6]).

Lemma 4. Let Ω ⊂ R
n be a smoothly bounded domain. For any u ∈ H1

0 (Ω), we
have

‖
u

δr
‖p ≤ C4‖∇u‖, (4)

where δ = δ(x) = dist (x, ∂Ω), r ∈ [0, 1] and p ≤ 2n
n−2(1−r) (= 2

r if n = 2).

Since δ(x) ≤ Cϕϕ1(x) for some Cϕ > 0, it is now easy to show the next three
lemmata.

Lemma 5. There exists a constant C5 = C5(‖uo‖, ‖vo‖) such that

1

2

d

dt
‖u‖2 + ‖∇u‖2 + b‖u‖2 =

∫

Ω

u2v dx ≤ C5‖∇u‖4/3‖∇v‖. (5)

Proof. The equality in (5) can be obtained by multiplying the first equation in (S)
by u and integrating over Ω. Now the Hölder inequality, Lemmata 3, 4 and any
choice of α, α′ > 1 with 1

α + 1
α′

= 1 imply
∫

Ω

u2v dx ≤
(

∫

Ω

uδ dx
)2/3(

∫

Ω

u4v3δ−2 dx
)1/3

≤ (CϕC3)
2/3

(

∫

Ω

( u

δ1/(2α)

)4α

dx
)1/(3α)(

∫

Ω

( v

δ2/(3α′)

)3α′

dx
)1/(3α′)

≤ (CϕC3)
2/3C

7/3
4 ‖∇u‖4/3‖∇v‖.

Lemma 6. There exists a constant C6 = C6(‖uo‖, ‖vo‖) such that

1

2

d

dt
‖v‖2 + ‖∇v‖2 = a

∫

Ω

uv dx ≤ C6‖∇u‖1/2‖∇v‖. (6)

Proof. The equality in (6) follows from the second equation in (S). Now, similarly
as in the proof of Lemma 5 we obtain

∫

Ω

uv dx ≤
(

∫

Ω

uδ dx
)1/2(

∫

Ω

uv2δ−1 dx
)1/2

≤ (CϕC3)
1/2

(

∫

Ω

(u

δ

)2

dx
)1/4(

∫

Ω

v4 dx
)1/4

≤ C6‖∇u‖1/2‖∇v‖,

since H1(Ω) is imbedded in Lp(Ω) for any p ≥ 1.

Lemma 7. There exists a constant C7 = C7(‖uo‖, ‖vo‖) and for any ε > 0 there
exists a constant Cε > 0 such that

‖u‖ ≤ C7‖∇u‖2/3, ‖v‖ ≤ C7‖∇v‖2/3,

‖uv‖ ≤ Cε(‖∇u‖2/3+ε + 1)‖∇v‖.
(7)
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Proof. Denoting w := u or w := v and C23 := max(C2, C3) we get

∫

Ω

w2 dx ≤
(

∫

Ω

wδ dx
)2/3(

∫

Ω

( w

δ1/2

)4

dx
)1/3

≤ (CϕC23)
2/3C

4/3
4 ‖∇w‖4/3.

Putting Kε = 2(2+ε)
ε and using ‖w‖p ≤ cp‖∇w‖ for any p ≥ 1 we obtain

∫

Ω

u2v2 dx ≤
(

∫

Ω

u2+ε dx
)2/(2+ε)(

∫

Ω

vKε dx
)2/Kε

≤ c2
Kε

‖∇v‖2
(

∫

Ω

u2 dx
)(2−ε)/(2+ε)(

∫

Ω

u4 dx
)ε/(2+ε)

≤ c2
Kε

c
4ε/(2+ε)
4 C

2(2−ε)/(2+ε)
7 ‖∇v‖2‖∇u‖4/3+ε′

,

where ε′ < 2ε.

Lemma 8. There exists a constant C8 = C8(‖∇vo‖, ‖∇uo‖) such that

‖∇v(t)‖ ≤ C8 max
0≤τ≤t

‖∇u(τ)‖1/2 for any t ≥ 0. (8)

Proof. If d
dt‖v(t)‖2 ≥ −‖∇v(t)‖2 then (6) implies

‖∇v(t)‖ ≤ 2C6‖∇u(t)‖1/2 (9)

and we are done. Hence, let d
dt‖v(t)‖2 < −‖∇v(t)‖2. Then

‖∇v(t)‖2 < −
d

dt
‖v‖2 ≤ 2‖v‖ · ‖vt‖ ≤ 2C7‖∇v‖2/3 · ‖vt‖,

so that

‖∇v‖4/3 ≤ 2C7‖vt‖. (10)

Multiplying the second equation in (S) by vt and integrating over Ω we get

‖vt‖
2 +

1

2

d

dt
‖∇v‖2 = a

∫

Ω

uvt dx ≤
1

2
‖vt‖

2 +
a2

2
‖u‖2,

which together with (7) yields

‖vt‖
2 +

d

dt
‖∇v‖2 ≤ a2‖u‖2 ≤ (aC7)

2‖∇u‖4/3. (11)

Now (10) and (11) imply

1

(2C7)2
‖∇v‖8/3 +

d

dt
‖∇v‖2 ≤ (aC7)

2‖∇u‖4/3. (12)
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If ‖∇v‖ ≤ (2aC2
7 )3/4‖∇u‖1/2 then we are done. Otherwise the inequality (12)

implies d
dt‖∇v‖2 < 0 and putting

t1 := inf{τ > 0 ;
d

dt
‖∇v‖2 < 0 on (τ, t]}

we have ‖∇v(t)‖ < ‖∇v(t1)‖.
If t1 = 0 then ‖∇v(t)‖ < ‖∇v(0)‖ ≤ C0‖∇u(0)‖1/2 for some C0 > 0. Hence,

we may assume t1 > 0.
If d

dt‖v(t1)‖
2 ≥ −‖∇v(t1)‖

2 then the inequality (9) (with t replaced by t1)
implies

‖∇v(t)‖ < ‖∇v(t1)‖ ≤ 2C6‖∇u(t1)‖
1/2.

If d
dt‖v(t1)‖

2 < −‖∇v(t1)‖
2 then the inequality (12) (with t replaced by t1)

implies
‖∇v(t)‖ < ‖∇v(t1)‖ ≤ (2aC2

7 )3/4‖∇u(t1)‖
1/2,

since the definition of t1 implies d
dt‖∇v(t1)‖

2 = 0 if t1 > 0.

Lemma 9. There exists a constant C9 = C9(‖∇uo‖, ‖∇vo‖) such that

‖∇u(t)‖ ≤ C9 for any t ≥ 0.

Proof. We may suppose ‖∇u(0)‖ < supt≥0 ‖∇u(t)‖ (otherwise we are done). Let
to > 0 be such that

‖∇u(to)‖ = max
0≤t≤to

‖∇u(t)‖. (13)

If d
dt‖u(to)‖

2 ≥ −‖∇u(to)‖
2 then (5), Lemma 8 and (13) imply

‖∇u(to)‖
2 ≤ 2C5‖∇u(to)‖

4/3‖∇v(to)‖ ≤ 2C5C8‖∇u(to)‖
11/6,

hence
‖∇u(to)‖ ≤ (2C5C8)

6.

Consequently, we may assume

d

dt
‖u(to)‖

2 < −‖∇u(to)‖
2.

This implies

‖∇u(to)‖
2 < −

d

dt
‖u‖2 ≤ 2‖u‖ · ‖ut‖ ≤ 2C7‖∇u‖2/3‖ut‖,

so that

‖∇u(to)‖
4/3 ≤ 2C7‖ut(to)‖. (14)
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Multiplying the first equation in (S) by ut and integrating over Ω we obtain

‖ut(to)‖
2 ≤ ‖ut‖

2 +
1

2

d

dt
‖∇u‖2 = −b

∫

Ω

uut dx +

∫

Ω

uvut dx

≤
1

2
‖ut‖

2 + ‖uv‖2 + b2‖u‖2,

where the inequality d
dt‖∇u(to)‖

2 ≥ 0 follows from (13). Now the last inequality
together with (14) and Lemmata 7, 8 imply

1

(2C7)2
‖∇u(to)‖

8/3 ≤ ‖ut(to)‖
2 ≤ 2‖uv(to)‖

2 + 2b2‖u(to)‖
2

≤ C̃ε(‖∇u(to)‖
4/3+2ε + 1)(‖∇v(to)‖

2 + 1)

≤ C̃′
ε(‖∇u(to)‖

7/3+2ε + 1),

so that the choice ε < 1/6 yields the desired estimate for ‖∇u(to)‖.
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