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1 Introduction

In the recent paper [3, Filo–Luckhaus] we have determined the first two terms in
the asymptotic expansion (with respect to a small parameter ε) of the solution
uε = uε(x, t) to the following problem:

∂uε

∂t
= ∆uε + f(x, t) in Ω × (0, T ),

∂uε

∂ν
= ϑ(x, t) − σ(x, t)uε on nε × (0, T ),

uε = 0 on dε × (0, T ),

uε = ϕ on Ω × {t = 0}.

(1)
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Here Ω ⊂ R
2 is a bounded domain whose boundary is given by a C3 simple closed

curve Γ ,

Γ = {(p(τ), q(τ)); 0 ≤ τ ≤ π}, (p′(τ))2 + (q′(τ))2 = 1,

a is 2π periodic function such that

a(σ) =

{
0 : σ ∈ [π − δ, π + δ]
1 : σ ∈ [0, π − δ) ∪ (π + δ, 2π]

for some δ ∈ (0, π),

nε =
{
x ∈ Γ ; x = (p(τ), q(τ)), a

(τ
ε

)
= 1, 0 ≤ τ ≤ π

}
,

dε =
{
x ∈ Γ ; x = (p(τ), q(τ)), a

(τ
ε

)
= 0, 0 ≤ τ ≤ π

}

and

ε−1 is an even integer .

We have shown, under certain smoothness assumptions on the data f , σ, ϑ and
ϕ, that

uε = u+ εu1 + εO(ε) , (2)

where

O(ε) −→ 0 strongly in Lp(Ω × (0, T )) if ε→ 0

for any p, 1 ≤ p < 4 and

uε − u

ε
⇀ ω0(ϑ− ∂νu) weakly in L2(Γ × (0, T )) . (3)

The functions u and u1 are solutions of the problems

∂u

∂t
= ∆u+ f(x, t) in Ω × (0, T ),

u = 0 on Γ × (0, T ),

u = ϕ on Ω × {t = 0},

(4)

and

∂u1

∂t
= ∆u1 in Ω × (0, T ),

u1 = ω0

(
ϑ− ∂u

∂ν

)
on Γ × (0, T ),

u1 = 0 on Ω × {t = 0},

(5)
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respectively. Here

ω0 =
1

π

∫ π

0

ω(x1, 0) dx1 ,

where ω = ω(x1, x2) is the unique nonnegative 2π periodic (in the x1 variable)
solution of the following boundary value problem

∆ω = 0 in R
2
+,

a(x1)

(
∂ω

∂x2
(x1, 0) + 1

)
+ (1 − a(x1))ω(x1, 0) = 0 for x1 ∈ R,

satisfying

‖ω‖L∞(R2
+

) +

∫ ∞

0

∫ π

0

|∇ω|2(x1, x2) dx1dx2 <∞ .

Moreover, we have demonstrated, that

∥∥∥∥
uε − u

ε
− wε(ϑ− ∂νu)

∥∥∥∥
L2(Γ×(0,T ))

≤ C
√
ε

for

wε(x) ≡ ω

(
τ(x)

ε
,
δ(x)

ε

)

where the functions τ, δ are defined for x ∈ Ω sufficiently close to Γ such that
δ(x) = dist(x, Γ ) and

p′(τ(x))(x1 − p(τ(x))) + q′(τ(x))(x2 − q(τ(x))) = 0 .

In addition,

uε − u

ε
− wεG ⇀ u1 − ω0G

weakly in V 1,0
2 (Ω × (0, T )), where

G(x, t) ≡ ϑ(x, t) − ξ(x)∂νu(p(τ(x)), q(τ(x)), t)

and ξ is a cutoff function that equals 1 in a neighbourhood of Γ and ξ(x) = 0 for
any x ∈ Ω, dist(x, Γ ) ≥ δ0 for some positive δ0.

For definitions of function spaces we refer to [5, Ladyzenskaja at al.].

It is the aim of this contribution to present a generalization of the previous
result to the case of more space dimensions developed in [4, Luckhaus–Filo].
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2 Motivation

Our original goal was to study flow problems in porous media with a part of the
boundary covered by a fluid. For one incompressible fluid in porous medium one
has to solve the equation

∂θ(p)

∂t
= ∇ · (k(θ(p))(∇p + e)), (6)

where p is the unknown pressure, θ the water content, k the conductivity of the
porous medium, and −e the direction of gravity (see [1, Bear], for mathematical
treatment of (6) [2, Alt - Luckhaus], for example).

The part of the boundary, which is covered by the fluid and where the infil-
tration takes place is supposed to behave like a impervious layer with many small
holes. It is assumed that the holes are distributed uniformly and create a periodic
structure with period ε. The pressure is supposed to be 0 on the holes, where the
fluid infiltrates into the porous medium, and the condition (k(θ(p))(∇p+e))·ν = 0
is assumed to be satisfied on the impervious part of the boundary. As the period
and the diameter of the hole is of order ε and the domain occupied by the porous
medium is large, it is natural to let ε→ 0 and to ask on the behaviour of solutions
to (6).

However, since this nonlinear problem was not yet treatable, we have studied
the heat equation, i.e. equation (6) with

θ(p) ≡ p, k(θ(p)) ≡ 1 and e = 0 .

3 Model Problem in R
3

Let Λ be the square in R
2, i.e. Λ ≡ (0, 2ℓ) × (0, 2ℓ) for some positive ℓ and

θ : R
2 → R+, R+ ≡ (0,∞) be a smooth function, say, C3(R2), even and 2ℓ-periodic

in each of its variable. Points in R
3 are denoted by x = (x̄, x3) x̄ = (x1, x2) and

we define

Ω ≡ {x ∈ R
3 | x̄ ∈ Λ, θ(x̄) < x3 < d}

for some positive d greater than the maximum of the function θ and define

Γ ≡ {x ∈ ∂Ω | x3 = θ(x̄), x̄ ∈ Λ}.
Now let F = {x̄ ∈ Λ | |x̄− ℓ̄| ≤ δ}, ℓ̄ = (ℓ, ℓ) for some 0 < δ < ℓ and set

a(x̄) =

{
0 : x̄ ∈ F
1 : x̄ ∈ Λ \ F .

Denote by a(x̄) for x̄ ∈ R
2 the 2ℓ-periodic extension of the function a on the whole

R
2. Let ε−1 = 2k for k ∈ {0, 1, 2, · · · }, define

Dε ≡ {x ∈ Γ | a(ε−1x̄) = 0}, Dε
T ≡ Dε × (0, T ),

N ε ≡ {x ∈ Γ | a(ε−1x̄) = 1}, N ε
T ≡ N ε × (0, T ),

D ≡ {x̄ ∈ R
2 | a(x̄) = 0}, N ≡ {x̄ ∈ R

2 | a(x̄) = 1}.
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and for simplicity of notation we put ∂tu ≡ ∂u/∂t, ∂νu ≡ ∂u/∂ν etc.

Consider now the problem

∂tuε = ∆uε + fε(x, t) in ΩT ,

∂νuε = ϑε(x, t) − σε(x, t)uε on N ε
T ,

uε = 0 on Dε
T ,

∂νuε = 0 on (∂Ω \ Γ )T ,

uε = uε
0 on Ω × {t = 0}

(7)

under the following assumptions:

(A) fε, f, f
1 ∈ L2(ΩT ) and such that

fε − f

ε
⇀ f1 in L2(ΩT );

(B) σε, ∂tσε ∈ L∞(ΓT ) for any ε and there exists a positive constant C indepen-
dent of ε such that ‖σε‖L∞(ΓT ) ≤ C;

(C) ϑε, ϑ, ∂tϑε ∈ L2(ΓT ) and such that

ϑε ⇀ ϑ in L2(ΓT );

(D) uε
0, u0 ∈ W 1

2 (Ω), u0 = 0 on Γ , uε
0 = 0 on Dε, u1 ∈ L2(Ω) and such that

uε
0 − u0

ε
⇀ u1

0 in L2(Ω).

We prove that asymptotic expansion (2) holds in the sense that

O(ε) −→ 0

weakly in L2(ΩT ) and strongly in L2(Ω
∗
T ) for any subdomain Ω∗ ⊂ Ω with a

positive distance from Γ , and, comparing to (3),

uε − u

ε
(x, t) ⇀ ω0(x) (ϑ(x, t) − ∂νu(x, t)) (8)

(weakly in) in L2(ΓT ). Here, similarly as above (see (4) and (5) above) u is the
unique solution of the problem

∂tu = ∆u+ f(x, t) in ΩT ,

u = 0 on ΓT ,

∂νu = 0 on (∂Ω \ Γ )T ,

u = u0 on Ω × {t = 0},

(9)
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u1 is the unique very weak solution of the problem

∂tu
1 = ∆u1 + f1(x, t) in ΩT ,

u1 = ω0(x) (ϑ(x, t) − ∂νu(x, t)) on ΓT ,

∂νu
1 = 0 on (∂Ω \ Γ )T ,

u1 = 0 on Ω × {t = 0},

(10)

and the function ω0(x) is defined for x ∈ Γ as follows:

ω0(x) ≡
1

ℓ2

∫ ℓ

0

∫ ℓ

0

̟(x; ȳ, 0) dȳ ,

̟ = ̟(x; y) is the unique bounded nonnegative solution of the problem

3∑

k=1

∂

∂yk

( 3∑

j=1

γjk(x)
∂̟

∂yj
(x; y)

)
= 0 y ∈ R

3
+ ,

̟(x; ȳ, 0) = 0 ȳ ∈ D , (11)

− ∂̟

∂y3
(x; ȳ, 0) = 1 ȳ ∈ N ,

where

C(x) = (γjk)j,k=1,2,3 ,

C(x) ≡ 1√
1 + a2

1 + a2
2





1 + a2
2 −a1a2 0

−a2a1 1 + a2
1 0

0 0 1




,

and

aj ≡ ∂θ

∂xj
(x̄) .

The function ̟ is 2ℓ-periodic in each of its variables y1, y2 and it is demonstrated
that

̟(x; y) = ω(x;E−1(x)y) ,

where ω(x; z) is for each x ∈ Γ the harmonic function in z ∈ R
2
+ such that

a(Ê(x)z̄)

(
∂ω

∂z3
(x; z̄, 0) + λ

)
+

(
1 − a(Ê(x)z̄)

)
ω(x; z̄, 0) = 0 (12)
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and

E−1(x) ≡





λ−1 0 0

0 λ 0

0 0 λ









a2√
a2
1
+a2

2

− a1√
a2
1
+a2

2

0

a1√
a2
1
+a2

2

a2√
a2
1
+a2

2

0

0 0 1




,

Ê(x) ≡





a2√
a2
1
+a2

2

a1√
a2
1
+a2

2

− a1√
a2
1
+a2

2

a2√
a2
1
+a2

2








λ 0

0 λ−1



 ,

λ(x) =
(
1 + a2

1 + a2
2

)1/4
.

4 A priori estimates

The first and basic step to prove the validity of the expansion (2) consists of a
priori estimates, that can be summarized in the following

Theorem 1. Assume that (A)–(D) are satisfied. Then there exists a positive con-
stant C, independent of ε, such that

max
0≤t≤T

∫

Ω

|uε − u|2(x, t) dx +

∫ T

0

∫

Ω

|∇(uε − u)|2(x, t) dx dt ≤ Cε ,

∫ T

0

∫

Γ

|uε − u|2(x, t) dH2(x) dt +

∫ T

0

∫

Ω

|uε − u|2(x, t) dx dt ≤ Cε2 ,

max
0≤t≤T

∫

Ω

|uε − u|2(x, t)φ(x) dx

+

∫ T

0

∫

Ω

|∇(uε − u)|2(x, t)φ(x) dx dt ≤ Cε2

and

ess sup
0≤t≤T

∫

Ω

|∇(uε − u)|2(x, t)φ3(x) dx

+

∫ T

0

∫

Ω

|∂t(uε − u)|2(x, t)φ3(x) dx dt ≤ Cε2 ,
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where φ is the principal eigenfunction of the problem

∆φ+ µφ = 0 in Ω,

φ = 0 on Γ,

∂νφ = 0 on ∂Ω \ Γ,
with the corresponding principal eigenvalue µ = µ1 > 0.

In the proof of Theorem 1 the following proposition plays an important role.

Proposition 2. Let v ∈W 1,0
2 (ΩT ) be such that v = 0 on Dε

T . Then
∫ T

0

∫

Γ

|v(x, t)|2dH2(x)dt ≤ Cε

∫ T

0

‖v‖2

W
1/2

2
(Γ )

(t) dt

and

‖v‖L2(ΓT ) ≤ c‖v‖W 1,0
2

(ΩT )

√
ε ,

where the positive constants C, c do not depend on ε and v.

Proof (of Proposition 2). We set

V (y, t) ≡ v(x(y), t), x(y) = (y1, y2, θ(ȳ) + (d− θ(ȳ))y3/(d− θ0))

for ȳ = (y1, y2) ∈ Λ, y3 ∈ (0, d− θ0) and θ0 = maxx̄∈Λ θ(x̄). Note that

v(x, t) = V (y(x), t), y(x) = (x1, x2, (d− θ0)(x3 − θ(x̄))/(d− θ(x̄)))

and V (ȳ, 0, t) = 0 for any ȳ ∈ Λ such that a(ε−1ȳ) = 0. Then it is not difficult to
see that

∫ T

0

∫

Λ

|V (ȳ, 0, t)|2dȳ dt ≤ εℓ3

δ2π

∫ T

0

∫

Λ

∫

Λ

|V (ȳ, 0, t) − V (z̄, 0, t)|2
|ȳ − z̄|3 dȳ dz̄ dt .

As
∫ T

0

∫

Γ

|v(x, t)|2dH2(x) dt =

∫ T

0

∫

Λ

|V (ȳ, 0, t)|2
√

1 + |∇θ(ȳ)|2 dȳ dt

and ‖V ‖2

W
1/2

2
(Λ)

≤ c‖v‖2

W
1/2

2
(Γ )

≤ C‖v‖2
W 1

2
(Ω)

, the assertion of Proposition 2 fol-

lows.

Proof (of Theorem 1). Note first that uε − u is a solution of the problem

∂t(uε − u) = ∆(uε − u) + (fε − f)(x, t) in ΩT ,

∂ν(uε − u) = gε(x, t) on N ε
T ,

uε − u = 0 on Dε
T ,

∂ν(uε − u) = 0 on (∂Ω \ Γ )T ,

uε − u = uε
0 − u0 on Ω × {t = 0},

(13)
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where gε(x, t) = ϑε(x, t) − σε(x, t)uε − ∂νu. Testing the problem (13) by uε − u
and applying Proposition 2 we arrive at

|uε − u| ≡ max
0≤t≤T

‖(uε − u)(t)‖L2(Ω) + ‖∇(uε − u)‖L2(ΩT ) ≤

‖uε
0 − u0‖L2(Ω) + 2‖fε − f‖L2(ΩT ) + C‖gε‖L2(ΓT )

√
ε .

As, however, ‖uε − u‖L2(ΓT ) ≤ C|uε − u|√ε , due to our assumptions (A) and (D)
we get ‖uε − u‖L2(ΓT ) ≤ Cε.

Multiplying now the equation in the problem (13) by (uε−u)φ and integrating
over Ω one easily gets the third estimate of Theorem 1. Denote next

U(y, t) ≡ (uε − u)(x(y), t) for y ∈ Ω∗ ≡ Λ× (0, d− θ0) .

Then we obtain
∫

Ω∗

|U(y, t)|2dy ≤ Cη

∫

Λ

∫ d−θ0

η

|U(ȳ, y3, t)|2y3 dy3 dȳ + C

∫

Ω∗

|∂y3
U(y, t)|2y3 dy

for any t ∈ (0, T ) and fixed η ∈ (0, d − θ0). It is very well known that there exist
positive constants c, C such that c ≤ −∂νφ ≤ C on Γ . This together with the
above estimate yield the estimate ‖uε − u‖L2(ΩT ) ≤ Cε. The last estimate we
obtain by multiplying the equation in the problem (13) by φ3∂t(uε − u) and by
integrating.

The essentiall part of the proof of the convergence (8) is the uniqueness of the
problem

∆zω(x; z) = 0 in R
3
+ (14)

with the boundary condition (12) in the following class of solutions.

Definition 3. By a solution of Problem (14), (12) we mean a function
ω ∈W 1,2

loc (R3
+) satisfying

∫ R

0

∫

B2(ȳ,L)

|∇ω|2(x̄, x3) dx̄dx3 ≤ CL2,

∫ R

0

∫

B2(ȳ,L)

|ω|2(x̄, x3) dx̄dx3 ≤ CL2(R2 +R), (15)

∫

B2(ȳ,L)

|ω|2(x̄, 0) dx′ ≤ CL2

for any ȳ ∈ R
2 (the positive constant C does not depend on ȳ,L,R), and the

integral identity
∫

R
3
+

∇ω(x)∇ψ(x) dx = µ

∫

R2

ψ(x̄, 0) dx̄
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for any ψ ∈ W 1
2,loc(R

3
+), ψ = 0 on ΓD ≡ {x = (x̄, 0) | a(Ê(x̄)) = 0} with compact

support in R
3

+. Note that B2(ȳ, L) = {x̄ ∈ R
2 | |x̄− ȳ| < L}.

This problem was obtained as a limit as ε→ 0 after applying rescaling arguments
for (uε − u)/ε in any point x ∈ Γ .
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