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SOME REMARKS ON
QUATERNION-HERMITIAN MANIFOLDS

ANDREW SWANN

ABSTRACT. Nearly-quaternionic Kahler manifolds of dimension at least 8 are shown
to be quaternionic Kdhler. Restrictions on the covariant derivative of the funda-
mental four-form of a semi-quaternionic Kahler are also found.

1. INTRODUCTION

A 4n-dimensional manifold M is said to be quaternion-Hermitian if it has a re-
duction of its structure group to Sp(n) Sp(1) and n > 1. Geometrically this means
that M is equipped with a Riemannian metric g and a rank-three subbundle G of
the endomorphism bundle End 7'M such that locally G has a basis I, J, K with
IP=J?=K?=-1,IJ=K=—JI and g(AX,AY) = g(X,Y), for A=1,J K.
One thus has local 2-forms defined by w;(X,Y) = g(X, IY), etc., and this extends
to a linear embedding of G into A2T* M. One may define a global 4-form €, known
as the fundamental 4-form, by the local formula

O=wrANwr+wjAwy +wg \wk.

If Q2 is parallel with respect to the Levi-Civita connection V of g, then the holonomy
group of M reduces to Sp(n) Sp(1) and M is said to be quaternionic Kdhler.
In [Sw1,3] the following result was proved:

Theorem 1.1.

(1) A quaternion-Hermitian manifold of dimension 4n > 12 is quaternionic
Kihler if and only if dQ) = 0.

(2) A quaternion-Hermitian 8-manifold is quaternionic Kéhler if and only if
dQ)Y=0and dG C GAT*M.

1991 Mathematics Subject Classification: Primary 53C25; Secondary 53C15.

Key words and phrases: G-structure, quaternion-Hermitian manifold, nearly-quaternionic
Kaéhler, semi-quaternionic Kédhler, fundamental four-form.

Received August 27, 1996.



350 ANDREW SWANN

The purpose of this note is to study two other conditions introduced in [I,M].
The first is the semi-quaternionic K&hler condition d*€) = 0 and the second is the
nearly-quaternionic Kahler condition VxQ(X,Y,Z, W) = 0, for all X, Y, Z, W €
TM. In dimension 8, [M] proved that nearly-quaternionic Kahler implies quater-
nionic Kdhler. We extend this to show:

Theorem 1.2. A nearly-quaternionic Kihler manifold of dimension 4n > 4 is
necessarily quaternionic Kéahler.

Our result for semi-quaternionic Kahler manifolds is a little more technical and
will be found in the next section. The proof of Theorem 1.2 will be found in the
last section.

Note that because our techniques are only based on complex representation

theory, all of our results also apply to the case of an indefinite metric and structure
group Sp(p, q) Sp(1).
Acknowledgements. 1 would like to thank F. M. Cabrera and M. D. Monar for
useful discussions, bringing this problem to my attention and for hospitality in La
Laguna. Thanks also go to the Max-Planck-Institut fiir Mathematik, Bonn, for
hospitality during the writing of this paper.

2. REPRESENTATION THEORY

We briefly recall the notation of [Sa,Sw1-3] and refer the reader to [BtD] for
general information on representation theory. Let E be the fundamental represen-
tation of Sp(n) on C?" = H" via left multiplication by quaternionic matrices and
let H be the representation of Sp(1) on C? = H give by ¢ - £ = £g, for ¢ € Sp(1)
and £ € H. An Sp(n) Sp(1)-structure on a manifold gives a decomposition

TM®C=E®&cH,

and this may be used to obtain decompositions of, for example, other parts of the
exterior algebra [Sa,Sw2].

Let {e1,...,en,€1,...,€n} be a complex orthonormal basis for E & C?" with
é; = je;. We have an Sp(n)-invariant complex symplectic form wg on E given by

wg = e; N\ é; = e;€; — €€,

where we have used the summation convention and omitted tensor product signs.
Similarly, H has a basis {h, h} and symplectic form wp.

Note that Sp(1) is isomorphic to SU(2), so the irreducible representations are
precisely the symmetric powers S¥H = CF!. An irreducible representation of
Sp(n) is determined by its dominant weight (Ay,...,\,), where \; are integers
with Ay > Ao > --- > A, > 0. This representation will be denoted V(A1)
where 7 is the largest integer such that A\, > 0. Certain of these modules are
well-known and we will use familiar notation for these modules. Thus, V*) is
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the symmetric power S¥E and V(-1 (r ones) is AFE, the largest irreducible
summand of A" E, which decomposes as

ANE=AE+wp AN 2E+ Wi ANA*E +---
2N E+A; PE+ Ay 'E+ -
Also K will denote the module V(21| which arises in the decomposition
E®AE=AE+K+E.
As a further convention, we will regard any module with dominant weight of length
greater than n as the zero-module {0} and often will omit tensor product signs

between representations.
We will need the following facts.

Proposition 2.1. [Sa,Swl] If M has dimension at least 8, then

ALT*M = (ASE+ E)S*H + (K + E)H.
When M has dimension 8, then AST*M = A3T*M, whereas if M has dimension
at least 12, we have

ALT*M = (ASE+ AZE + E)S°H + (V') 4 K + AJE + E)S°H
+ (Ve L K+ AE+ E)H.

Proposition 2.2. [Swl] The covariant derivative of the fundamental 4-form has
the property that
VQ e FH ® (A2ES?H) = (K + AJE + E)(S*H + H).

The first part of Theorem 1.1 is now proved by noting that all the above sum-
mands occur in the decomposition of A°T*M, and then by showing that the alter-
nation map T* ® A*T* — A®T* is non-zero on each summand. This is sufficient,
since Schur’s Lemma states that a non-zero equivariant map between irreducible
modules is an isomorphism. In dimension 8, one has VQ € (K + E)(S®H + H),
but the summand KS®H does not occur in the decomposition of AST*M. In this
case one merely concludes that dQ) = 0 implies VQ € KS>H.

Theorem 2.3. On a quaternion-Hermitian manifold of dimension 4n > 8, the
semi-quaternionic Kéhler condition d*€) = 0 implies

VQ e KS*H + AJEH.

Proof. By definition d*Q = — x d x ). Since Q™ is a non-zero constant multiple
of the volume, one has that x{) is a constant times Q"~!. Thus d xQ is a non-zero
constant multiple of Q"2 A d2. Now Bonan [B] showed that the map

A5T* an) A4n73T* ;) AST*
is surjective. However this map is also Sp(n) Sp(1)-equivariant, so the vanishing
of dx  is equivalent to the vanishing of all components of df2 lying in summands
of A>T*M. However, by Theorem 1.1 and the above discussion, these are precisely
the summands of VQ which lie in A®T*M. The result follows by comparing the
decompositions in Propositions 2.1 and 2.2. O
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3. NEARLY-QUATERNIONIC KAALER MANIFOLDS
The aim of this section is to prove Theorem 1.2. The tensor VxQ(X,Y, Z, W)
is just the image of V{2 under the symmetrisation map

s: T* @ A*T* —s S?°T* @ A3T*.

The decomposition of S*T* @ A3T* as a sum of Sp(n) Sp(1)-modules is not really
required for the proof, only the observation that it contains several copies of each of
the summands occurring in the module in which V2 lies, however for completeness
we state:

Proposition 3.1. The module S?T* @ A3T* decomposes as follows:
Case 1: if dim M > 16, then
ST @ AT = (VO 4 v 4 3F 4 9K + AJE + E)S°H
_ (V(41) 1+ Y (32) 4oy (311) 4 oy7(221) 4 oy7(2111)
+AJE+3S’E+ 7K +5A)E + 6E)S*H
— (V(41) + 2v(32) +3v(311) + 2v(221) + 2v(2111)
+4S°E 4+ 9K + 4AJE + 6F) H;

Case 2: if dim M = 12, then

S*T* @ A’T* = (VO + S°E+ 2K + AJE+ E)S°H
— (V(41) + V(32) + 2v(311) + 2v(221)
+3S*E+ 7K + 4A3E + GE)SSH
— (V(41) + 2v(32) +3v(311) + 2v(221)
+45°E + 9K +4A3E + 6E) H;

Case 3: if dim M = 8, then

S*T* @ A*T* = (S*E+ K + E)S°H
= (VU 4 VO 1 383 F 4 5K + 5E)S°H
= (VU 4 V@) L 4SPE 4 TK + 6E) H.
To complete the proof of Theorem 1.2 we exhibit an element 3 of T* @ AZESH
with the following property: for each irreducible summand W of T* @ AZES*H,
the image s(3) has a non-zero component in some summand of S2T* @ A3T*

isomorphic to W.
Define

a1s = erth Aesh Aejh Aéh—eih Aesh Aeh Aéh e ANT*.
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Since the symplectic form wg is invariant, the map obtained by evaluating wg on
the last two components of an element of A*T* is equivariant. Applying this map
to a2 gives
2neih A esh @ hh — eh A exh @ (hh + hh) + erh A esh ® (hh + hh)
—2neih A eah @ hh — eyh A exh @ (hh + hh) + exh A exh @ (hh + hh)
= 2ne; A eg(hhhh — hhhh)
€ AJE® A*(S?H) = AZES*H,
and shows that a;» € A2ES?H.
We define 3 = éh ® aj». The image s(3) € S?T* ® A3T* is then given by
S(IB) = (élh \Y €1h) (9 (€2h A 61}~L A éziL) - (élh Vv 61}~L) (9 (62}~L A €z'h A ézh)
- (élh \Y €2h) & (61h A €iiL A ézil) + (élh \Y 627L) (9 (€1iL A €z'h A ézh)
+ (élh V e;
— (élh V é;

(3.1)

(exh A esh A é;h) — (E1hV e;h

(e1h A esh A e;h) + (é1hV é;h

h) ® @ (erh A exh A é;h)
h) ®

~— ~—

® (elil N egil A e;h).
Apply wg to the last two places to get

(é1h V e1h)[2neshh® — esh(hh + hh)] — (é1h V e h)[2neshh? — exh(hh + hh)]
— (é1h V exh)[2ne; hh? — ey h(hh + hh)] + (é1h V esh)[2ne; hh? — e h(hh + hh))]
+ (61h V esh)eih(hh + hh) — (é,h V e h)esh(hh + hh)
— (&1h V esh)erh(hh + hh) + (é1h V ey h)esh(hh + hh).
Now contract with wy on the third and fifth terms, collect terms and write out
the symmetric products in full:
2n{hh7L(é16162 + 615162 — 516261 — 62é161)
+ hiLh(é1e162 - 516261)
+ th(eléleg — 625161)}.

Applying wg to the first two places gives
(32) 2nh(516162 - 516261 - 615162 + 62é161).

When we map this element to A> EH we obtain 2nh(é; Ae; A ex —e1 A é; A ea),
which has non-zero contraction with wg on the first two components, so gives a
non-zero element in KH. However, it is not a multiple of wg, so it is also non-
zero in AJEH. Furthermore, (3.2) is not in A3E, so it has a non-zero projection
to K H. Similarly, by symmetrising the H’s we obtain non-zero elements in K S°H
and ES®H. The element (3.2) happens to be zero in AJES?H, but we may apply
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other contractions to s(3) to obtain this component: in (3.1), contracting with wgr
on the first two indices and symmetrising the last three H’s we obtain

(RPVR) (=1 ANet @es Ae; Né+ & Nes @er Aej A&
+é1/\€i®61/\62/\éi—é1/\éi®61/\62/\6,’)

Contracting with wg in the second and third places and mapping to A>ES3H
gives ~
—(By Nea ANep +ex Nei AE) (A2 V h),

which is non-zero in both A3ES®*H and ES®H. This completes the proof.
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