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ON THE STRUCTURE OF OSCILLATORY SOLUTIONS
OF A THIRD ORDER DIFFERENTIAL EQUATION

MIROSLAV BARTUSEK

ABSTRACT. The aim of the paper is to study the structure of oscillatory solutions
of a nonlinear third order differential equation y'"' 4+ py'' + gy’ + rf(v,v',y"’) = 0.

1. INTRODUCTION

The aim of the paper is to study the structure of oscillatory solutions of the
nonlinear differential equation

(1) v )y +at)y +r)f(y, v y) =0

where p, g € CO(Ry), 7 € Lioe(Ry), f € CO(RY), Ry = [0,00), R = (=00, 50),
(2) fley, z9,23)21 >0 for 21 #0 on R3

and

(3) 7 does not change the sign on Ry .

A function y € C%(I) is said to be a solution of (1) if y is absolutely continuous and
(1) holds almost everywhere on I. It is called proper if I = Ry and sup |y(t)| > 0

TLt<o0
holds for an arbitrary 7 € R4. A proper solution is said to be oscillatory if it has
arbitrarily large zeros.

Motivation for the study of properties of oscillatory solutions of (1) comes from
the papers [1] and [8]. In [1] the structure of solutions of (1) is studied for p = ¢ = 1.
Tt is shown that every nontrivial solution y may have at most one interval of (have
no) double or triple zeros in case r > 0 (r < 0) and the zeros of y and y', with the
possible exception of the multiplied ones, are separated.

Similar results are obtained for a special kind of (1)

(4) v" + )y + )y +r(t)g(y) =0
where p,¢,r € C°(Ry), ¢ € C°(R), g(x)r > 0 for  # 0 and (3) holds. The

following two theorems are due to Moravsky [8]:
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Theorem A. Let ¢ € C'(Ry),p>0,¢>0andr <0 on Ry, and let a constant
k > 0 exist such that |g(z)| < k|| on R, ¢' + pg — 2kr < 0 on R,. Further, let the
functions p and ¢’ 4+ pg — 2kr be not equal to zero at any subinterval of Ry at the
same time. Let ty € Ry and y : Ry — R be a solution of (4) for which

ny// _ y/z 4 qu <0.

t=tg

Then the zeros of y and y' are separated on (ty, 00).
Theorem B. Let » > 0, p > |q| on Ry and let k € (0,00) exist such that
lg(x)| > k|x| on R. Let y be a solution of (4) for which ty € Ry exists such that

y(to)y" (to) — %y’z(to) <0.

Further, let one of the following assumptions hold:

(i) ¢ <0, ¢+ 2kr > 0 on Ry and the functions ¢ + 2kr and p + q are not
equal to zero on any subinterval of R, at the same time;
(i) ¢ > 0, ¢ < 2k?r on Ry and the functions p — q and q — 2k*r are not, at
the same time, equal to zero on any subinterval of R .
Then the zeros of y and y' are separated on (ty, 00).
Our goal: To generalize and extend these results for Eq. (1), to study mutual
position of zeros of an oscillatory solution y and its derivatives y' and y”. The
paper does not deal with the existence of oscillatory solutions. As concern to this

problem, see e.g. [3, 6, 8,9,10].

2. STRUCTURE OF OSCILLATORY SOLUTIONS

The following equation plays an important role in investigations of (1):
(5) W +ph' +gh=0.
A solution h : Ry — R of (5) is called nonoscillatory if it is different from zero in
some neighbourhood of oo. Eq. (5) is said to be nonoscillatory if every nontrivial
solution is nonoscillatory. If Eq. (5) is nonoscillatory, then it is said to be discon-
jugate if each nontrivial solution has at most one zero on Ry. Note, that Eq. (5)
is disconjugate if and only if it has a positive solution on (0, o0), see [7].

Let T € Ry, J = (R,00) and h > 0 be a solution of (5) on J C R4. Together,
with (1) let us consider the differential equation with quasiderivatives

(6) yB 4 rRAf (Y10 1 o2y = 0
on J where
¢
(7) R(t) = exp(/ p(s)ds),
0
(8) =y =2 Y= mR2MNY = BB - YR, = ()

it
f1(901,l‘2,l‘3):f(ﬂﬁl,hﬂﬁz,R—jl-l-h/ﬂﬁz) on R?
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and

filwy, we,23)x1 >0 for 21 #0 holds.

A function y € C'?(J) is said to be a solution of (6) if ¥ is absolutely continuous
and (6) holds almost everywhere on J. It is called oscillatory if it has arbitrary

large zeros and sup |y(¢)| > 0 holds for an arbitrary = € J.
TLt<o0
If (5) is nonoscillatory, then (1) can be transformed into the equation (6).

Lemma 1. Let h > 0 be a solution of (5) on J C R4. Then a function y: J = R
is a solution of (1) on J if, and only if, y is a solution of the equation (6).

Proof. The statement can be obtained by the direct computation similarly as in

[3] for p = 0. O
Remark 1. Tt follows from (8) that

9) v =hytl, Y= M iyt
’ Rh

If (5) is nonoscillatory, some results, obtained for Eq. (6), can be transformed
into (1).

Lemma 2. Let o € {0,1}, (=1)*r > 0 on Ry and T' € R;. Let (5) be nonoscil-
latory and h be its solution such that

(10) h>0 and (=1)*(ph+3h')>0 on [T, o).
Further, let y be a solution of (1) and
(11) E(t) = (1) R[~2hy"y + 20"y’ + hy"]
where R is defined by (7). Then E is nondecreasing on [T, c0) and
E'(t) = (=1)*R2hryf(y,y,y") + (ph+30)y*1 2 0 on [T,00).

Proof follows by the direct computation using (1) and (5). O
First, let us sum up some results concerning Eq. (5).

Lemma 3. (i) If p = 0 on Ry and limsupt?q(t) € [~oo,1), then (5) is
t—r00

g
nonoscillatory.

(i) If ¢ > 0 on Ry and

(12) [ atmn [, [T o

where R is given by (7), then Eq. (5) is nonoscillatory and there exists its eventually
positive and nondecreasing solution.
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(iii) Let ¢ < 0 on Ry. Then Eq. (5) is disconjugate on Ry and there exist solutions
ho and hy such that

ho >0, hg <0, hy >0 and h} >0 on Ry.

Proof. Eq. (5) can be transformed into the equivalent equation

(R()Y) +q(t)R(t)y = 0.
(i) See [7], Chap. XI, Th. 7.1.
(i1) See [5].
(iii) See [7], Chap. XI, Conseq. 6.4. O

Lemma 4. Let Eq. (5) be nonoscillatory with a positive solution h on J and let
y be an oscillatory solution of Eq. (6).

(a) Let » > 0 on J. Then there exists at most one number 7 € J such that
either

(13) y(r) = y[l](r) =0, y[z](r) 0, m=r
or
(14) y[l](t) = y[z](t) =0,te[n,rINnJ, <1

and sup [y™ ()] # 0 in any right (left) neighbourhood
oft=r (oft=m IfT < 1)

holds.
If r exist, put J = (T, 1), J» = J3 = (1,0). In the opposite case put

J1=(1,7), Jo=(T,00), Jz=(T,0)
in case that
(15) yyh <0, yy™ >0 in a right neighbourhood of T
holds where 7 is the smallest zero of y!'1 on J and

J1=0, Jo=J3s=(T,00) otherwise.
Then |y| is decreasing on Ji, |ytY)| and |y?!| are nonincreasing on Ji,
(16) yy <0,y >0 on g
and y and yt* have only simple zeros on J, which are separated on Js.

(b) Let » < 0 on J. Then the zeros of y and y['1 are simple and separated on J
and for every zero o of ! y(o) y*1(¢) < 0 holds. Moreover, if y # 0 in a right
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neighbourhood of T' and thI%l yt2l(t) = 0, then |y"| # 0 is nonincreasing in a right
—iy
neighbourhood of T'.

Proof. The statement is a consequence of some results in [2]. Let us note, that
in spite of Ths. 3(ii) and 6(ii) of [2] were proved on R, they are valid on J, too —
the proof is identical. Further, using (8), the assumptions of Ths. 1, 3 (ii), 4 and
6 (ii) from [2] are fulfilled.
(a) According to (6) — (8) the following relations hold: Let L C J.
(i) Let j € {1,2} and yll > 0 (< 0) on L. Then g~ is nondecreasing
(nonincreasing) on L.
(ii) fy >0 (y<0)on L, then 1] is nonincreasing (nondecreasing) on L.
From this, from Th. 3 (ii) and Remark 5 (i) of [2] the structure of (oscillatory
solution) y has three parts: T < 01 < 03 < o0,

Part 1.
(17) y#£0, yy<o, yyP >0 on (7,01,

(Type V of [2]); this part may be missing (o1 = 7).

Part II.
ylil =0, i=0,1,2, on [o1,09]

(Type VIIT of [2]); this part may be missing (o1 = o3), but if Parts T and II are
present, then the inequalities (17) are sharp (see Th. 1(ii) of [2]).

Part ITII. All zeros of y and i are simple and separated on (¢, o0): According to
Th. 3(ii) and Remark 5(i) there exists o3 € [o2, 00) such that y is nonoscillatory on
(02, 03) with simple and separated zeros of y and ¥ on (02, o3) and y is oscillatory
on (03, 00) with simple and separated zeros of y and ¢ on (o3, 00). The proof of
Lemma 3 of [2] (or tl_igla) shows that they are no problems with ¢ = o3; if o3 is a

zero of either y or ¢/, it is simple and zeros of y and ¢’ are separated on (o2, 00).
If Part II is present, we put 7 = o3, 7 = o1 and the conclusion holds. Let Part
IT be missing. Then all zeros of y and 3 are isolated. If Part I is missing then
the statement holds. Thus, suppose, that oy > T'. According to (17), (i), (ii) there
exists at most one 7 such that either (13) or (14) with y # 0 on (7, 7] holds. If 7
exists 1t 18 evident that 7 = o and the conclusion holds. If 7 does not exist, then
yytl < 0 on (T, o1). Moreover, if o1 and &1 > oy are first two zeros of y'l on J,
then y(o1)y?l(a1) > 0 and it is easy to prove that y # 0 on [a1,d1] (use (i), (ii)
and y Pl < 0 a.e. on Jy) and zeros of y and yl!l are separated on (a1, 00) only.
(b) The statement can be proved similarly. Note that the situation is much more
simple and y is of Type II (from [2]) in a right neighbourhood of oo. If y # 0 in
a right neighbourhood of 7" and tgr%l+ yl (t) = 0 then y is either of Type IT or of

Type IV from [2]. O
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Theorem 1. Let Eq. (5) be nonoscillatory with a positive solution on (T, 00),
T > 0 and let y be an oscillatory solution of (1).

(a) Let v > 0 on Ry. Then there exists at most one number T € [T, 00) such
that either

(18) y(r) =y (r1)=0, V' (n#0,n=r1
(19) y(t)=y'(t)=0, teln,7,T<n<r

and sup |y (t)| # 0 in any right (left) neighbourhood
oft=r (oft=m IfT < 1)
holds.

If 7 exist, then put I = [T, 1) and I} = Iz = (7, 00). In the opposite case denote
by T the smallest zero of y on [T,00) and put I = [T,7), I = (T,), I, =
(7,00) In case that y(7)y"(7) > 0 and I = 0, L = [T,00), I = (T,00)
otherwise.

Then |y| is decreasing and yy' < 0 on I, and y and y' have only simple zeros on
I, which are separated on I5.

(b) Let r < 0 on Ry. Then y and ' have only simple zeros on [T, o) which are

separated on (T, o0).

Proof. Let h be a solution of (5), A > 0 on (T,00) and J = (T, o0). Then the
assumptions of Lemma 1 are fulfilled and Eq. (1) and Eq. (6) are equivalent on J.
Moreover, according to (8) and (9) the relations

( ( :
20) y(r) =y (1) =0, ¥'(r) 20 y(r) = y(r) =0, ¥(r) £ 0,
y(r) £ 0, Y(r) =y (1) =0 y(r) #0, y(r) = P(r) =0,
y(r)=0,i=01,2y(r)=0,i=0,1,2
hold on J.

(a) The statement of the theorem on J follows from Lemma 4(a) and from (20).
It is necessary to extend it to the interval [T, o0).

Let there exist 7 € (T, 00) such that either (18) or (19) holds. Then, according
to Lemma 4, (20) and (8) all zeros of y and ¢’ are simple on [; and separated on
IZa

. . [1]
y| 1s decreasing, yy'! <0,
(21) |yl g

|ym|, j=1,2 are nonincreasing on (7, 7).

From this and from (8) y(T) # 0, yy' < 0 on (7, 7). We prove indirectly that
y'(T) # 0. Thus, supposse that ¢/ (T) = 0. If A(T) > 0 this result follows from (8)
and (21). Let h(t) = 0. Then

lim yPl(t) = lim [R(¢) (v (t)h(t) — ¥ (DA (1))] = O

t—=T4 t—=T4
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and (21) yields y?1 = 0, y™ = const on (T, 71]. As y[l](rl) = 0 we have yl1 = 0
on (T, m] that contradicts to (21). Thus ¢/ (T') # 0, neither (18) nor (19) holds at
r=Tand yy > 0on [T, 1).

Let neither (18) nor (19) hold for 7 € (T, 00). Then all zeros of y and 3’ on
(T, 00) are simple.

First, suppose, that

(22) either (18) or (19) holds at r=1T.

Tt is necessary to prove that the zeros of y and y' are separated on (7, 00).

Let (18) be valid at 7 = T. Then yy' > 0 and, according to (8) yy > 0 is
valid in some right neighbourhood of 7. Thus, (15) does not hold and it follows
from Lemma 4(a) that the zeros of y and yl1 and thus also the zeros of y and v/

are separated on J.

Let (19) be valid at 7 = T'. Then it follows from (8) and (22) that tgr%l+ yH(t) =
tgr%r y?1(t) = 0 (use L'Hospital rule in the first limit if A(7) = 0). From this (15)
does not hold and according to Lemma 4 the zeros of y and yt*], and thus the zeros
of y and ¥/, are separated on J.

Finally, suppose, that there exists no 7 € [T, 00) for which either (18) or (19)
holds, i.e. all zeros of y and y' are simple on [T, o0).

If y(T) # 0 and ' (T) # 0 then the statement of the theorem follows from
Lemma 4 and (8). In all other possible cases, i.e. if either y(T) = 0, ¥/(T) # 0
or y(T) # 0, ¥'(T) = 0, it is easy to see, using (8), that (15) is not valid and
according to Lemma 4 the zeros of y and y' are separated on (T, o0).

(b) Using Lemma 4 (b) and (20) the zeros of y and y' are simple and separated
on J and we must only prove that ¢ = T is not multiplied zero of either y or ¥/'.

Thus, suppose

(23) y(T) = 0.
Consider two cases:
1° There exists a sequence of zeros of y on J tending to T

2° y # 0 in a right neighbourhood J; of T'.
Ad 1°. We prove that this case is impossible. As y(T) exists we have

(24) y(T) =0.

Let hy be asolution of Eq. (5) with the initial condition h1(T) = 1, R{(T) < —m?)Zl.
Let Jo = [T, «] be such interval that h1(¢) > 0 on J2 and

—ph1 =3k, >0 on Jy.
It is evident, that oo > T exists. Then the function

E1 = R(2h1yy — 2l yy — hy’z)
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(see Lemma 2, E = E1, h = hy, « = —1) is nondecreasing on Js.

Let 7 € (T, o] be a zero of y'. Then, according to Lemma 4 (b), (8) and (9)
y(T)y'(7) < 0 and thus E1(7) < 0. The contradiction to E1(T) = 0 (see (23),
(24)) and E being nondecreasing proves that this case is impossible.

Ad 2°. Let y(T) = ¢/(T) = 0, y"(T) # 0. Then (8) yields yy¥! >0, =1,2in
some right neighbourhood of T and as yy®] > 0 a.e. on J we can conclude that
yyl'l >0, 7=1,20n J that contradicts to y being oscillatory.

Thus, let o' (T) = y'(T") = 0. Then, According to (8) (use L’Hospital rule if
h(T) = 0) we have

: 1 : 2
th%l+ 7 ](t) =0, th%l+ 7 ](t) =0.
But Lemma 4 (b) yields yt*] # 0, |y!*]| is nonincreasing. A contradiction. O

According to Th. 1 an oscillatory solution y may have one interval on which
y is trivial in case r > 0. All other zeros are isolated. But ¢’ (y”) may have one
interval of zeros on which y # 0 (y # 0, ¥ # 0). The following lemma describes
conditions, under which such intervals exist.

Lemma 5. Let I = [, ], i1 < T and let y be a solution of (1) defined on I.
Then

(a) ¥ =0 on I if, and only if y = C and r(t) f(C,0,0) =0 on I.

(b) " = 0 on I if, and only if constants C' and Cy exist such that y = Ct+ C}
and

(25) Cqt)+r@®)f(Ct+C1,C,0)=0 on [I.

Especially, y# 0,y =y”" =0on I if, andonly ify=C #0 and r(t) =0 on I.
Proof follows directly from (1) and (2). d

Remark 2. If the Cauchy problem of (1) is unique and if sup|r(¢)| > 0, then
tel

1 =0, 73 = o0 in case (a).

Theorem 2. Let Eq. (5) be nonoscillatory with a solution h > 0 on (T, 00),

T € R4 and let y be an oscillatory solution of (1). Let I be defined as in Th. 1(a)

(let Iy = (T,00)) if r > 0 (r <0) on Ry. Let 7y and 12 be two consecutive zeros

ofy on Is, 7 < 79, 16,

y(m) =y(m) =0, ylt)#0 on (r,m).

Let /(1) # 0. Denote by 3 € (11, T2) the only zero of y on [y, Ta].

(i) Let r > 0 and b’ > 0 on [T, o0). Then y" has a zero on [y, 73] and all zeros
of y' from [r, 3] are lying on (1, m3). Moreover, if ¢ > 0, then y'' has the only
interval of zeros on (71, T3).

(ii) Let » < 0 and b/ < 0 on [T, 00). Then y'' has a zero on [, 12| and all zeros
of y" are lying on (73, 2). Moreover, if ¢ > 0, then y" has the only interval of zeros
on (73, T3).

Proof. The number 73 exists according to Th. 1.
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(i) Let for the simplicity y > 0 on (71, ). According to Lemma 1 Eq. (1) is
equivalent to Eq. (6) and thus it follows from [2, Th. 3] that there exists the only
interval [r4, 74], 74 < 7a of zeros of y?! on [r1, 2] and

<<y <m3<7,

o6 y[l] >0 on [r,T3), y[z] >0 on [r,m),
( ) <0 on (T3a TZ] 3 <0 on (7:4a T2] 5

y[3] <0 on (m,m).

Note, that according to (8) y' and yl' have the same zeros and the same signs.
Using (26) and (9) we have y”(m) > 0, y”(m2) < 0. Thus, ¥’ has a zero on
[11, T2]. Moreover, (26) and (9) yield

sign '’ (t) = sign y[z] (t) on [, 4] U|[rs, T2)

and we can conclude that y” has all zeros on [r4, 73) C (71, T3).
Further, suppose ¢ > 0. Then according to (9), (8) and (26)

1" y[3] 1 y[3] 1
(Ry") = e + RyM(n" 4 ph'y = . gRhyM <0 ae. on [, 7).
Thus Ry’ is nonincreasing and 3’ has the only interval of zeros.
(i) The proof is similar. We must use Th. 6 from [2] instead of Th. 3. O

Remark 3. According to Th. 3 the structure of zeros of a solution y and its
derivatives y' and y” of (1) is the same as in case p = ¢ = 0, see [1].

Remark 4. If (5) is disconjugate, then it has a positive solution on (0, o0) and
the conclusions of Ths. 1 and 2 are valid on R.

Corollary 1. Let y be an oscillatory solution of (1).
(i) Let either p = 0 and limsupt?q(t) € [—oo, %) or ¢ > 0 on Ry and (12) be
t—00
valid. Then the zeros of y and y' are separated in some neighbourhood of co.
(i1) Let ¢ < 0 and r < 0 on Ry. Then the zeros of y and y' are separated on
(0, 00).
(iii) Let p > 0, ¢ <0 and r > 0 on Ry. Let ¢ty € Ry be such that

(27) —2y" (to) y(to) + ¥"*(to) > 0, y(to) ¥/ (to) 2 0

holds. Then the zeros of y and y' are simple and separated on [tg, 00) N (0, 00).

(iv) Let ¢ > 0 and r > 0 on Ry and let (12) be valid. Then there exists T' > 0
such that for arbitrary consecutive zeros 7 and 7, T' < 7 < T of y the functions
y' and y' have the only zero 75 and the only interval [74, 74] of zeros on [Ty, 2],
respectively, and m < 7y < 74 < 13 < T holds.

Proof. (i) See Th. 1 and Lemma 3 (i), (ii).
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(i) See Th. 1(b), Lemma 3 (iii) and Remark 4.

(iii) Tt follows from Lemma 3 (iii) that there exists a solution & of (5) such that
the assumptions of Lemma 2 are fulfilled and A’ > 0 on Ry. Let E be given by
(11). Then E(ty) > 0. Let Is and T be defined as in Th. 1(a). Let 7 be a double
zero of either y or y'. Then E(r) = 0. As F is nondecreasing, then 7 < %y and
tg € I». Further, let all zeros of y and ¢ are simple on Ry. If y(7)y"(7) > 0 then
E(7) < 0and thus 7 < tg, o € Ia; in the opposite case Iz = (0, 00). The conclusion
follows from Th. 1 (a) and Remark 4.

(iv) See Th. 2 (i) and Lemma 3 (ii). O

Remark 5. (i) Let the assumption of Cor. 1 (iii) be valid. Then there exists
tg € R4 such that (27) holds; g can be choosen as an arbitrary simple zero of y.

(ii) Cor. 1 extends the results of Ths. A and B. Moreover, Cor. 1 (iii), in fact,
generalizes Th. B: Let there exist ¢ty € Ry such that y(to)y" (to) — %y’z(to) <01s
valid and let ¢; > ¢y be the first simple zero of yy'. Then (27) is valid.

Ths. 1 and 2 solve our problem in case that Eq. (5) is nonoscillatory. In the
opposite case the transformation, described in Lemma 1, can not be used. Thus,
further, let us turn our attention to the case that Eq. (5) may be oscillatory.

Lemma 6. Let ¢ € C'(R4), a € {0, 1},

(28) (=D)p <0, (=1)%r <0, (=1)%(¢"+pg) >0 on Ry
and y : Ry — R be a solution of (1). Then the function

(29)  F) = (0RO 200 s0) - 2O + o0 P0) . tE Ry

is nondecreasing on R4 and

F'(t) = (=1)*R(t) [-p(t) v + (¢'(t) + q(t) p(t)) " —
(30) —2r(t) y(t) f(y(t), ¥ (1), v (t

holds where R is defined by (7).

WV
o

Proof follows by the direct computation from (28) and (2).

Theorem 3. Let ¢ € C'(Ry), a € {0,1}, (28) be valid and let the functions p, r
and ¢’ + pq are not equal to zero on any subinterval of Ry at the same time. Let
y be an oscillatory solution of (1).

(i) Let o = 0. Then all zeros of y are simple on R,. Moreover, if ¢ > 0 on R4,
then all zeros of y' are simple, too, on Ry, and the zeros of y and y' are separated
on R,.

(ii) Let &« = 1. Then at most one maximal interval [1,72], 0 < 7 < 72 < ©©
exists such that

(31) y(t) =y'(t) =0,  te[n,m].

If this interval exists and 7 > 0, then y has no zero on [0, 7).
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(i) Let @« = 1 and ¢ > 0 on R4, T be a simple zero of y. Then all zeros of y'
on (1,00) are simple, i.e. the relation

(32) Y(7)=0, 7>7=9'(7)#0

holds. Moreover, the zeros of y and y' are separated on (T, 00).

Proof. First, solve the problem when
F=0 on [Tl,Tz], T1 < T2

holds where F is defined by (29). In this case, F/ = 0 and with respect to the fact
that all three terms in (30) are nonnegative, we can conclude that they are equal
to zero on [T, T3]. From this and from the assumptions of the theorem

(33) y=K = const., 3y =y"=0 on [T1,7T5]

must be valid.
(i) Let, on the contrary, 7 be a zero of y for which y(r) = ¢/(7) = 0 is valid. As
y is oscillatory, there exists its zero T greater than 7, 7 > 7, y(7) = 0, such that

(34) max |y(t)| > 0.

TLELT

Hence, Lemma 6 yields
(35) F(r)=0,
F(7) <0 and F is nondecreasing; thus ' = 0 on [r, 7] and (33) holds on [T, T3] =
[r,7]. As y(r) = 0, then K = 0 and y = 0 on [r, 7]. The contradiction to (34)
proves that all zeros of y are simple.

Let ¢ > 0 on Ry. The conclusion, that all zeros of y are simple, can be proved
similarly to the same result for y. Only F(r) > 0 must be used instead of (35).

Further, let ¢; < t5 be two consecutive zeros of y. Then y' has a zero according

to the Role’s theorem. Let ¢35 < ¢4 be two consecutive zeros of . Suppose, on the
contrary, that

(36) y(t) #0 on [tz t4].

Let t5 be an arbitrary zero of y greater then ¢4. As ¢5 is simple zero, then it follows
from Lemma 6 that F'(5) < 0 and F' is nondecreasing; thus

F(tg) <0, F(t4) <0
and using ¢ > 0 we can conclude

Yy (ts) y(ts) <0, y"(ta) y(ta) < 0.
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Thus y”(t3) y”(t4) > 0 and ¢3 and ¢4 can not be the consecutive zeros of y'.

(ii) Let ¢; < ta be such that

(37) y () =y (t2) =0, i=0,1, ,max |y()]>0.
Hence, Lemma 6 yields F'(t;) = F(t2) = 0 and F = 0 on [t1,2]. From this (33)
is valid and, using y(¢1) = 0, y = 0 on [t1,%2] is valid. The contradiction with
(37) proves that there exists at most one maximal interval with the property (31).
Suppose that such interval, say [r1, 2], exists and 0 < 7. Let, conversely, 75 be
a zero of y on [0, 7). According to the proved part 73 is simple, y/(73) # 0 and
F(rs3) > 0. This, with F'(r1) = 0, contradicts to F' being nondecreasing. Thus 73
does not exist and y # 0 on [0, 7).

(iii) On the contrary, suppose, that (32) is not valid. Thus there exist 7, 7 > 7
such that y'(7) = ¥/(7) = 0. Then (29) yields F(r) > 0, F(7) < 0 that contradicts
to F being nondecreasing on [, 7]. The fact, that the zeros of y and y’ are separated
can be proved similarly as the same result in (i) (we use t5 = 7). d

Remark 6. If the Cauchy problem for (1) is unique, then 7 = 7 in (31).

Remark 7. Th. 3 extends the results of Ths. A and B. Note, that the assumptions
of Ths. 1, 2 and 3 are posed on p, ¢, r only and not on the nonlinearity f.
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