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ON A GENERALIZED WIENER-HOPF INTEGRAL EQUATION

MaLcoLMm T. McGREGOR

ABSTRACT. Let a be such that 0 < o < % In this note we use the Mittag-Leffler
partial fractions expansion for Fi () =T' <1 —a - %) I'(«)/T <oz - %) I'(l-a)to

obtain a solution of a Wiener-Hopf integral equation.

1. INTRODUCTION

Wiener-Hopf equations, and the Wiener-Hopf technique for solving such equa-
tions, arose out of a study of the radiation equilibrium of the stars. Since its in-
troduction in 1931, the Wiener-Hopf technique has been refined and applied to a
variety of problems involving integral equations and partial differential equations.
Application of the Fourier transform (or the Laplace transform) to such equations
yields, in many cases, a Wiener-Hopf equation of the form

AO)P4(6) + BO)Q-(6) = C(0)

where § = ¢ + ir belongs to a parallel-strip region S : = < Im @ < 74 (or
o_ < Re ## < o). Furthermore, Py (f) is regular in the upper half-plane r > 7_,
and @Q_(f) is regular in the lower half-plane 7 < 7, whilst A(0), B(6), C(0) are
given functions of # which are regular and non-zero in S. For an in-depth discussion
of the Wiener-Hopf technique and its applications the reader is referred to [1] and
[3].

Let ﬁa(ﬁ) denote the Laplace transform of P,(y), where « is such that 0 < a <
%. We shall use complex analytic methods to solve the Wiener-Hopf equation

- - o
sin(am + 0) Py (—0) + sin(am — 6) Py (6) = 2 cos aﬂ%

by showing that ]SQ(H) is expressible in terms of the Gamma function. As a result,
we obtain the solution P,(y), as a series of exponentials, of a pair of associated
integral equations. The case a = % was dealt with in an earlier paper.
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2. POSING THE PROBLEM

In [2] we solved the integral equation

sinh 6
0

(1) / (cosh 0 cos fly — sinh 0 sinfy)P(y) dy =
0

by assuming that P(y) admits the series expansion

P(y) = ZEne—ﬁny
n=0

so that 1ts Laplace transform is

PO) = LPWIO) = Y 5

In this case 3, = (n + %) mn=0,1,2,..., and the coeflicients {E,,} are subject
to the normalization

ZEn/ﬁn =1.
n=0

By replacing @ by 6 in (1) we obtain the associated integral equation

@ [l (Ge0) i (F-0) ) P = IS

and (2) may be written as a Wiener-Hopf equation, namely:

sin 6

sin (gw) P(~0) + sin (g_a) P(o) = vV2—-,

or

(3) sin (7 +90) éﬁfﬁe +sin (7 —0) ,éﬁnEiH _ ﬁSigg.

In [2] we obtained

PO) =3 7 = (P(=0) = 1)/s.
where
S rg-9Hr)
MO=ra ey
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be-)

It was also shown in [2] that the coefficients {F,} in the series expansion for P(y)
are given by

B, = (r(%))zr <n+ Z) /n!w2\/§ (n—l— %) = Ko /B,

so that

and that

ZEn/ﬁn = 1a
n=0

as required.

In this paper we shall solve a more general Wiener-Hopf equation than (3), and
consequently solve a more general integral equation than (2); the two equations
will now contain a parameter a with 0 < a < % We shall show that

Ko n

4 )
(4) sin(ar + Z_:aom aan—9)+
Kon in @
sin(am — 6) . —2COSO¢7T&,
— dan(dan + dan(dan + 0) 9
where a0, = (n+1—a)m; n=20,1,2,..., and the coefficients {K, ,,} are given

by
Kon =m(=1)"MT(a)/n!T(1 - a)T(2a —n — 1).

The case o = % yields (3). In the a-case the analogue of (1) is the integral equation

o0 inh 0
(5) / (tan am cosh @ cos @y — sinh @sin Oy) Py (y) dy = smg ,
0

and when we replace @ by i (5) becomes

sin 6

6

(6) / (sin(aﬂ' + 0)e?Y 4 sin(ar — H)e_ey) P,(y)dy = 2cosanm
0

Clearly, (6) reduces to (2) when we set o = %.
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Let a be such that 0 < a < % We shall assume that P,(y) admits the series
expansion

oo
Poc(y) = Z Eoc,ne_aa’ny )
n=0

so that 1ts Laplace transform is

and (6) takes the form of a Wiener-Hopf equation

- - o
sin(am + 0) Py (—0) 4 sin(am — 6) Py () = 2 cos aﬂ% .

This latter equation is, of course, (4) with

Eoc,n = [X/oc,n/aoc,n .

3. FINDING THE COEFFICIENTS Eoéyn AND SOLVING THE PROBLEM

With 0 < a < % and aan = (n+1—a)r, n=0,1,2,..., we shall show that
(4) holds with

Kon =m(=1)"MT(a)/nl(1 - )20 — n — 1)
by considering the meromorphic function

['(l-—a—£)r(a)
Fa-4)I(1—-a)

(7) Fa(0) =

The function Fy is such that F,(0) = 1, and F, has simple poles at § = (n+1—a)m,
n =0,1,2,..., due to F(l—a— %), and simple zeros at § = (n + a)m, n =
0,1,2,..., due to 1/T (a — %) With a, , as above, the Mittag-Leffler expansion
for Fu(0) gives
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with a corresponding expression for Fy(—#). Next, we form the sum

sin(am + 0)

n=0

oQ

Kan ( 0 Kan
—_— sinlam — e ——
aoc,n(aoc,n - 9) n=0 aa,”(aomn + 6)

=sin(am 4+ 0)(1 — Fo(6))/0 + sin(ar — 0)(Fy(—0) — 1)/0

sin 6

= QCOSQWT,

provided
(8) sin(am — 0)Fo(—0) = sin(am + 0)F, ().

Using (7), we see that (8) is equivalent to

(a2 (1m0t ) star 1=
F(a—l—%) F(l—a—%)sin(aﬂ'—l—ﬁ),

and each side of this equation reduces to m when we use the well-known formula
I'(z)T(l —z) =n/sinnz

with z = a — % and z = oz—i—% respectively. Our proof of (4) will be complete when
we determine the numbers K .
From the Mittag-Leffler expansion for F,(#) we have

Kopn= lim (6 —ann)Fal(b)

0—=aa,n
I'(a) . 0
= | 6 — a,n rl-a--— ’
I'l—a)T2a—n-—1) 9—5{3,71( dan) ( “ 7T)

andwithz:l—a—%in

Fz)=T(z+n+1)/z(z+1)...(z+n)
we deduce that
Kon =m(=1)"MT(a)/nl(1 - )20 — n — 1)

as required. Clearly, if we set o = % in (4) we obtain (3) with

En:](%m/al
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where ain =0 = (n—i—%) mn=201,2,..., and

Ky, =n(=1)"*T G) /n!F G) r <_n _ %)

Finally, we show that

oQ
Eoc,n
=cotarm,

aOC n
n=0 )
where
Eoc,n = [(oc,n/aoc,n .
Clearly,
— Kan . Fu(0) -1
in’:—hm ( = —F(0),
(agn)? 60
n=0 )
and by (7)

Lo 1T (1—a) T'(a)
- (0)_E<r(1_a) a F(a))

and since T'(a)T'(1 — &) = n/sin ror implies

IM(«) B (1l —a)
I'(a) I'(l—a)

= —rmcot T,

we have immediately —F/,(0) = cot am, as required.
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