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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 245 { 251A COMMON FIXED POINT THEOREM FOR COMPATIBLEMAPPINGS ON A NORMED VECTOR SPACEH. K. PATHAK AND BRIAN FISHERAbstract. A common �xed theorem is proved for two pairs of compatiblemappings on a normed vector space.1. Results on common fixed pointsThe following de�nition was given by Jungck [1].De�nition. Let S and I be mappings of a metric space (X; d) into itself. ThenS and I are said to be compatible iflimn!1 d(SIxn; ISxn) = 0whenever fxng is a sequence in X such that limn!1 Sxn = limn!1 Ixn = z forsome z in X.Jungck also proved the following proposition.Proposition. Let S and I be mappings of a metric space (X; d) into itself. If Sand I are compatible mappings and Sz = Iz for some z in X, then SIz = ISz.We now prove a theorem for two pairs of compatible mappings on a normedvector space.Theorem 1. Let S; I and T; J be two pairs of compatible mappings of a normedvector space X into itself, let C be a closed, convex subset of X such that(1� k)I(C) + kS(C) � I(C) ;(1) (1� k0)J(C) + k0T (C) � J(C) ;(2)1991 Mathematics Subject Classi�cation. 47H10, 54H25.Key words and phrases. normed vector space, compatiblemappings and common�xed points.Received July 4, 1995



246 H. K. PATHAK, BRIAN FISHERwhere 0 < k; k0 < 1 and suppose that(3) kSx � Tykp �� ��akIx� Jyk2p + (1 � a)maxfkSx � Ixk2p; kTy � Jyk2pgmaxfkSx� Jykp; kTy � Ixkpg � ;for all x; y 2 C for which maxfkSx � Jyk; kTy � Ixkg 6= 0, where 0 < a < 1,p > 0 and � is a function which is upper semi{continuous from the right of R+into itself such that �(t) < t for each t > 0. If for some x0 2 C, the sequence fxngin X de�ned inductively for n = 0; 1; 2; : : : byIx2n+1 = (1 � k)Ix2n + kSx2n ;(4) Jx2n+2 = (1 � k0)Jx2n+1 + k0Tx2n+1(5)converges to a point z 2 C, and if I and J are continuous at z, then S; T; I and Jhave the unique common �xed point Tz in C. Further, if I and J are continuousat Tz, then S and T are continuous at Tz.Proof. We will �rst of all prove that(6) Sz = Tz = Iz = Jz :It follows from (4) that kSx2n = Ix2n+1 � (1� k)Ix2nand since I is continuous at z,limn!1 Ixn = limn!1Sx2n = Iz :Similarly, limn!1Jxn = limn!1Tx2n+1 = Jz :Now suppose that Iz 6= Jz so that for large enough n, Sx2n 6= Jx2n+1. Thenusing (3) we havekSx2n � Tx2n+1kp ���akIx2n�Jx2n+1k2p + (1�a)maxfkSx2n�Ix2nk2p; kTx2n+1�Jx2n+1k2pgmaxfkSx2n � Jx2n+1kp; kTx2n+1� Ix2nkpg � :Letting n tend to in�nity, it follows thatkIz � Jzkp � �(akIz � Jzkp) < akIz � Jzkp;a contradiction since a < 1. Thus Iz = Jz.Now suppose that Tz 6= Iz so that for large enough n, Tz 6= Ix2n. Then using(3) again we havekSx2n � Tzkp �� ��akIx2n�Jzk2p + (1�a)maxfkSx2n � Ix2nk2p; kTz � Jzk2pgmaxfkSx2n � Jzkp; kTz � Ix2nkpg � :



A FIXED POINT THEOREM FOR COMPATIBLE MAPPINGS 247Letting n tend to in�nity, it follows thatkIz � Tzkp � ��akIz � Jzk2p + (1� a)kTz � Jzk2pmaxfkIz � Jzkp; kTz � Izkpg �= �� (1� a)kTz � Jzk2pkTz � Izkp � < (1� a)kTz � Jzk2pkTz � Izkp ;a contradiction. Thus Tz = Iz.We can prove similarly that Sz = Jz, completing the proof of equations (6).Now suppose that S2z 6= Tz. Then using (3) again, the Proposition and equa-tions (6), we havekS2z � Tzkp �� ��akISz � Jzk2p + (1 � a)maxfkS2z � ISzk2p; kTz � Jzk2pgmaxfkS2z � Jzkp; kTz � ISzkpg � == �(akS2z � Tzkp) < akS2z � Tzkp ;a contradiction since a < 1. Thus S2z = Tz.Using the Proposition and equations (6) we now haveS2z = S(Tz) = SIz = ISz = I(Tz) = Tzand so Tz is a �xed point of S and I. We can prove similarly thatT 2z = T (Sz) = TJz = JTz = J(Sz) = Szand so Sz = Tz = w is also a �xed point of T and J .Now let fyng be an arbitrary sequence in C with the limit w and suppose thatthe sequence fSyng does not converge to Sw. Then for large enough n and using(3) we havekSyn � Swkp = kSyn � Twkp �� ��akIyn � Twk2p + (1�a)maxfkSyn � Iynk2p; kTw� Jwk2pgmaxfkSyn � Jwkp; kTw� Iynkpg � :Since I and J are continuous at w, it follows that for arbitrary � > 0 and su�cientlylarge nkSyn � Swkp � ��(1� a)kSyn � Swkp + �� < (1� a)kSyn � Swkp + � ;a contradiction since a < 1. Thus the sequence fSyng must converge to Sw,proving the continuity of S at w. We can prove similarly that T is also continuousat w.The uniqueness of the common �xed point follows easily on using inequality(3). This completes the proof of the theorem.When S = T and I = J we have the following corollary:



248 H. K. PATHAK, BRIAN FISHERCorollary 1. Let T and I be two compatible mappings of a normed vector spaceX into itself, let C be a closed, convex subset of X such that(1� k)I(C) + kT (C) � I(C)where 0 < k;< 1 and suppose thatkTx� Tykp � ��akIx� Iyk2p + (1� a)maxfkTx� Ixk2p; kTy � Iyk2pgmaxfkTx� Iykp; kTy � Ixkpg � ;for all x; y 2 C for which maxfkTx� Iyk; kTy� Ixkg 6= 0, where 0 < a < 1, p > 0and � is a function which is upper semi-continuous from the right of R+ into itselfsuch that �(t) < t for each t > 0. If for some x0 2 C, the sequence fxng in Xde�ned inductively for n = 0; 1; 2; : : : byIxn+1 = (1� k)Ixn + kTxnconverges to a point z 2 C, and if I is continuous at z, then T and I have theunique common �xed point Tz in C. Further, if I is continuous at Tz, then T iscontinuous at Tz.When I = J = IX , the identity mapping on X, we have the following corollary:Corollary 2. Let S and T be two mappings of a normed vector space X intoitself, let C be a closed, convex subset of X such that(1� k)C + kS(C) � C ;(7) (1� k0)C + k0T (C) � C ;(8)where 0 < k; k0 < 1 and suppose that(9) kSx � Tykp � ��akx� yk2p + (1� a)maxfkSx� xk2p; kTy � yk2pgmaxfkSx� ykp; kTy � xkpg � ;for all x; y 2 C for which maxfkSx� yk; kTy � xkg 6= 0, where 0 < a < 1, p > 0and � is a function which is upper semi-continuous from the right of R+ into itselfsuch that �(t) < t for each t > 0. If for some x0 2 C, the sequence fxng in Xde�ned inductively for n = 0; 1; 2; : : : byx2n+1 = (1 � k)x2n + kSx2n ;(10) x2n+2 = (1 � k0)x2n+1 + k0Tx2n+1(11)converges to a point z 2 C, then S and T have the unique common �xed point Tzin C. Further, S and T are continuous at Tz.When I = J = IX the identity mapping on X and �(t) = �t, for all t > 0 and0 < � < 1, we have the following corollary:



A FIXED POINT THEOREM FOR COMPATIBLE MAPPINGS 249Corollary 3. Let S and T be two mappings of a normed vector space X intoitself, let C be a closed, convex subset of X satisfying the inclusions (7) and (8)and suppose that(12) kSx� Tykp � �akx� yk2p + (1� a)maxfkSx� xk2p; kTy � yk2pgmaxfkSx� ykp; kTy � xkpg ;for all x; y 2 C for which maxfkSx � yk; kTy � xkg 6= 0, where 0 < a; � < 1and p > 0. If for some x0 2 C, the sequence fxng in X de�ned by (10) and (11)converges to a point z 2 C, then S and T have the unique common �xed point Tzin C. Further, S and T are continuous at Tz.The following example shows the validity of Theorem 1.Example 1. Let X = [0;1) with the Euclidean norm and let C = [0; 1]. De�nethe mappings I; J; S and T of X into itself byIx = � 1 if x 2 [0; 12) ;x if x 2 [12 ;1) ; Sx = � 1 if x 2 [0; 1] ;1 + x2 if x 2 (1;1) ;Jx = � 1 if 1 2 [0; 12 ) ;x2 if x 2 [12 ;1) ; Tx = � 1 if x 2 [0; 1] ;1 + x3 if x 2 (1;1) :Then I and J are not continuous at 12 and S and T are not continuous at 1.Consider a sequence fxng converging to 0. Thenlimn!1 Ixn = limn!1Sxn and limn!1kISxn � SIxnk = 0 ;since limn!1 ISxn = limn!1SIxn = 1 :Thus I and S are compatible mappings. Similarly, J and T are compatible map-pings. Moreover, J is not linear in C andkJx� Jyk = kx2 � y2k = (x+ y)kx� yk > kx� ykfor all x; y 2 (12 ; 1]. Therefore, J is not non{expansive in C. For �xed k; k0 2 (0; 1),we have (1� k)I(C) + kS(C) = [12 + 12 k; 1] � I(C) = [12 ; 1] ;(1� k0)J(C) + k0T (C) = [14 + 34k0; 1] � J(C) = [14 ; 1]and kSx� Tykp = 0for all x; y 2 C and p > 0. Also, for any x0 2 C, we can show that the sequencefxng in C such thatIx2n+1 = (1� k)Ix2n + kSx2n ;Jx2n+2 = (1� k0)Jx2n+1 + k0Tx2n+1 ;for n = 0; 1; 2; : : : converges to the point 1. Clearly, T1 is a common �xed pointof I; J; S and T .



250 H. K. PATHAK, BRIAN FISHERThe condition that I and T be compatible mappings is necessary in Corollary1 is shown by the following example.Example 2. Let X = [0;1) with the Euclidean norm and let C = [0; 1]. De�nethe mappings I and T of X into itself byIx = � 1 + 12 x if x 2 [0; 1] ;1 if x 2 (1;1) ; Tx = 1 :Then we see that kTx� Tykp = 0 for all x; y 2 C with p > 0. For some k 2 (0; 1),we also have (1� k)I(C) + kT (C) = [1; 32 � 12 k] � I(C) = [1; 32 ] :Further, if fxng is a sequence in X converging to 0, thenlimn!1Txn = limn!1 Ixn = 1but limn!1 kITxn � TIxnk = 12 6= 0and so I and T are not compatible mappings. On the other hand, I and T haveno common �xed point in C.2. An application to a product spaceWe now apply Corollary 3 to establish the following result.Theorem 2. Let C be a closed, convex subset of a normed vector space X, let Pand Q be two mappings of X �X into X such that(1� k)C + kP (C �C) � C ;(13) (1� k0)C + k0Q(C �C) � C ;(14)where 0 < k; k0 < 1 and suppose that(15) kP (x; y)�Q(u; v)kp �� �hky � vkp+ akx� uk2p + (1� a)maxfkP (x; y)� xk2p; kQ(u; v)� uk2pgmaxfkP (x; y)� ukp; kQ(u; v)� xkpg ifor all x; y; u; v 2 C for which maxfkP (x; y) � uk; kQ(u; v) � xkg 6= 0, where0 < a < 1, 0 < � < (1 + a)�1 and p > 0. If for each �xed y 2 C and somex0(y) 2 C, the sequence fxn(y)g in X de�ned inductively for n = 0; 1; 2; : : : byx2n+1(y) = (1� k)x2n(y) + kP (x2n(y); y) ;(16) x2n+2(y) = (1� k0)x2n+1(y) + k0Q(x2n+1(y); y)(17)converges to a point z 2 C, then there exists a unique point w 2 C such thatP (w;w) = w = Q(w;w) :



A FIXED POINT THEOREM FOR COMPATIBLE MAPPINGS 251Proof. It follows from inequality (15) thatkP (x; y)� Q(u; y)kp �� �akx� uk2p + (1� a)maxfkP (x; y)� xk2p; kQ(u; y)� uk2pgmaxfkP (x; y)� ukp; kQ(u; y)� xkpg ;for all x; y; u 2 C. Therefore, by Corollary 3, for each y 2 C, there exists a uniquez(y) 2 C such that(18) P (z(y); y) = z(y) = Q(z(y); y) :Now for any y; y0 2 C, we obtain from (15)kP (z(y); y) �Q(z(y0); y0)kp � �hky � y0kp +akz(y) � z(y0)k2p + (1� a)maxfkP (z(y); y) � z(y)k2p; kQ(z(y0); y0)� z(y0)k2pgmaxfkP (z(y); y) � z(y0)kp; kQ(z(y0); y0)� z(y)kpg i= �(ky � y0kp + akz(y) � z(y0)kp)and so kz(y) � z(y0)k � [�=(1� �a)]1=pky � y0k :Since �=(1� �a) < 1, it follows from the celebrated Banach contraction principlethat the mapping z(:) of C into itself has a unique �xed pointw 2 C, i.e. z(w) = w,which by (18) implies thatw = z(w) = P (w;w) = Q(w;w) :It is not hard to prove that P and Q can only have one such point w 2 C. Thiscompletes the proof of the theorem.References1. Jungck, G., Compatible mappings and common �xed points, Internat. J. Math. Math. Sci.,9(1986), 771{779.H. K. PathakDepartment of Mathematics, KalyanMahavidyalayaBhilai Nagar, 490 006 (MP), INDIAB. FisherDepartment of Mathematics and Computer ScienceUniversity of LeicesterLeicester, LE1 7RH ENGLAND
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