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AUTOMORPHISMS OF SPATIAL CURVES

IVAN BRADAC

ABSTRACT. Automorphisms of curves y = y(z), z = z(z) in R® are inves-
tigated; i.e. invertible transformations, where the coordinates of the trans-
formed curve § = §(z), Z = z(Z) depend on the derivatives of the original one
up to some finite order m. While in the two-dimensional space the problem
is completely resolved (the only possible transformations are the well-known
contact transformations), the three-dimensional case proves to be much more
complicated. Therefore, results (in the form of some systems of partial differ-
ential equations for the functions, determining the automorphisms) only for
the special case Z = z and order m < 2 are obtained. Finally, the problem of
infinitesimal transformations is briefly mentioned.

1. THE PROBLEM OF AUTOMORPHISMS

1.1. General formulation of the problem

Our aim is to investigate the group of automorphisms h of the family of smooth
curves y' :yi(a:) of the underlying space R"*! with coordinates z, 4!, ...,y in a
very broad sense which is as follows: The curve appearing after the automorphism
is given by certain formulae §' = y'(z) where

B(a) = B,y (@), - v (2), B (@), o, B (), T (), S (1)
(1)

gi(x) = b,y (2), oy v (2), L (), ooy B (1), o, S (@), ey 2 (1))

and we suppose the existence of the inversion # = #(Z) of the first line of (1)
to ensure the change of independent variable. If the functions h’ are arbitrarily
chosen (in the sense of the note above), then then the formulae (1) make a good
sense and determine a transformed curve; however, we are interested in the case
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of the automorphisms when the inversion

_ _ _ —n= dfl _ dg™ /— dm—l _ amg"
o) z(z) = g%z, 5" (2), ... "), = (2), .., = (), ..., T (2), ..., o (7))
2
i P Tnay dgt oo dg" (- amgt - dmgn
v (z) =g (2,9 (@), ... 1"(2), %= (2), ..., = (2), .., T (2), .., 5= (2)

of (1) in the family of all curves exists for appropriate functions ¢g°. Undoubtedly,
this is a classical problem of fundamental importance. As yet, only partial results
are known. For instance, if m=0 and we suppose h' = h'(z,y',...,y"), then the
inversion exists in the case of the invertible point transformation. If n=1, it may
be proved that the only case of automorphism is possible when m=1, which 1is the
case of the familiar contact transformations (cf.[1]). If however n > 1, then there
exist automorphisms with m arbitrarily large, for instance

~ ~ ~ dmyl
te)=a, 9@ =y'(2), P@) =) + ()
(here n=2) with the obvious inversion
dmgl

()

and many other analogous examples can be constructed by compositions.

An overwiev of such automorphisms is a highly non-trivial task. Therefore we
shall restrict to the case of z-preserving automorphisms, i.e., the first line of (1) is
chosen as # = x (hence h® = x) and even only some particular subcases with n=2
will be investigated. We shall also briefly mention the problem of infinitesimal
automorphisms of curves later on. It is however desirable to delay the formulation
to more convenient place since quite other principles are appearing.

Since the order of derivatives in (1) is not apriori limited, infinite-dimensional
spaces involving the derivatives of all orders are employed. Our reasonings will be
of local nature based on the category of C'* smooth real valued functions. Before
proceeding to explicit calculations, we summarize some necessary concepts and

s =i ¥ @) =30, P @ =5 - 0

tools.

1.2. Fundamental concepts

Our reasonings will be carried out in the space R™ of all real infinite sequences
P = (p',p% ...). Denoting by ! 22 ... the coordinates in R> defined by
z!(P) = p', we shall deal with the structural family F of all real valued smooth
functions of the kind f = f(z!,...,;2™), m = m(f), depending on a finite num-
ber of arguments. In order to keep brevity, the definition domains will not be
explicitly mentioned. Then R™ may be equipped with the F-module & of all
differential forms ¢ = 5 fidg® (a finite sum, f*, ¢* € F) and the F-module T
of all vector fields 7 =3 zi% (an infinite sum, 2* € F). If f = f(z!, ..., 2™),
then df = Z:n:l %dl‘i denotes the common differential. The differentials of co-
ordinates dz'(i = 1,2,...) constitute a basis of ® and the vector fields 9/0x"
constitute a basis of 7 in the weak sense (since infinite developments are allowed).
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We shall deal with exterior differentials dp = > df* A dg' with the well-known
exterior multiplication, and Lie derivatives Lz in the direction of vector fields.
Remind the common duality relationships between differential forms and vector

fields

Zf=df(2)=> 7 of

Hxt’

Zlo=9(Z) =) [idg'(2)=>_ [Zg €F
and the familiar rules for the Lie derivative

Lzp=Z|dp+d(Z]p) = Zf'dg'+ ['Zg",

Lzf=7f, [,2Y:[Z,Y] (YET)
where

Z|dp = ZZfidgi — Zgtdf

and [Z,Y] = ZY — Y Z is the Lie bracket.

We shall be interested in various admissible mappingsh : U — V where U,V C
R are open subsets (which need not be explicitly specified); they are defined by
the property h*F C F where h*f = f o h is the pull-back of a function f € F.
The pull-back of a differential form ¢ = 3 fidg® is given by h*p = > h* f/dh*¢'
(in particular h*df = dh*f). The vector fields cause some troubles but if the
inversion h™! exists then Z is transformed into the vector field h.Z defined by

(b.7)f = (b~) Z(b*f)
Remind the familiar relationship
Z)(bw) = (h.Z)

where Z € T, w € ®. In terms of coordinates, denoting by h' = h*z! € F | we
have

P=(p',5%...) =hP = (h'(p), K*(p),...).
Quite explicitly, if h' = hi(z!,... ™), then p* = hi(p',...,p™"). The invert-
ibility of h means that there are some inverse substitutions p' = ¢'(p*, ..., p™i®)
where g° = (h™1)*z?. If the functions A’ are given in advance, it is not quite easy
to decide whether such functions ¢ exist; even to find some non-trivial examples
of invertible mappings of R™ 1s not a trivial task.

1.3. Automorphisms of curves

In this section, we shall express the problem of automorphisms of family of
curves in R™t! in explicit and geometrical terms. For this aim, alternatively
denote by =yt (i = 1,...,n;s = 0,1,...) the coordinates in R™, introduce
the submodule Q C @ of all forms w = Y a‘w! (finite sum, ai € F) where
Wi = dyi — yé_l_ldx are the familiar contact forms, and the submodule Q+ C 7 of
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all vector fields satisfying w(Z) = 0 for all w € Q. One can see that Q1 consists
of all multiples of the vector field

o S, 0
X_ﬁ_x+zys+18_3/§’

which is the familiar formal (or total) derivative operator. The coordinates ,y’
and the contact forms are regarded for a mere technical tool; in reality only the
submodule 2 C & (equivalently, the submodule Ot C 7) is an intrisical object.
We shall deal with the family A of all curves = = z(¢), y. = 3 (¢) (the domain
of t will not be specified) satisfying the Pfaffian system w = 0 (w € ), that is,
satisfying the recurrences
dy' (t) sdz(t
(= 210 /20

We shall deal only with curves which can be parametrized by means of z; then

the recurrences simplify as yi_l_l(x) = Cilyx; (x) so that

i _ d*yy
i) = S0 ).
The family A is defined by means of Q; on the other hand, A determines the
submodule :

Lemma 1. If a Pfaffian equation ¢ = 0 is satisfied for all curves from A, where
w € O is fixed, then ¢ € (2.

We are interested in automorphisms of the family of all curves in R* 1, equipped
with coordinates x,yg, ..., ¥y, given by certain formulae (1), (2). This means, we
search for invertible mappings h: U — V (U, V C R®) transforming the family
A into itself.

The requirement of invertibility will be expressed by the condition that h* is
an invertible mapping of ®. In terms of coordinates, let h be given by certain
formulae

hWe=zecF, hy =y crF.
The invertibility of h* : ® — & is ensured if a certain basis of ® is again trans-

formed into a basis of ® ; it follows that the forms

h*de = dh*z = dz, h*dy’ =dh*y = dy!

should constitute a basis of ®.
The invariance of A will be explicitly expressed in following lemma; its proof is
quite easy.
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Lemma 2. Let an invertible mappingh : U — V (U,V C R*) be given. Then
the following conditions are equivalent:

(i) h transforms A into itself;
ii) h.X = AX where A € F, X\ #0;
i) h*Q C Q;
) gjé_l_l:ngé/Xi‘, i=1,2,...,n; s=0,1,...

1.4. The aim of present paper

We shall deal only with automorphisms h of the family of all curves in R?+!
which preserve the coordinate z, 1.e., # = h*x = x and Xz = X2 = 1. Then the
recurrences (iv) of lemma 2 simplify into

Yepr = Xt = X°up
so that the functions g, ..., ¥} € F can be chosen, the remaining %! (s > 1) are
uniquely determined, and our task is only to ensure that the differentials

dz = dzx, dy’ = dX* g = L%dy)

constitute a basis of ®.

Recall that the main aim of the present paper will be a modest one: to examine
some very particular examples especially for the case n = 2. We shall abbreviate
our notation by y! = us, y? = v, so that the fundamental recurrences for the
functions us = h*u,, v; = h*v, a little simplify as

Usyl = Xas, Vs41 = X,

where
0 > 0 > 0
X = 8_$+Zus+18—us +sz+1£

is the total derivative operator after the change of notation.
Our task is to find the initial functions ug, vg in such a manner that

dl‘, dao, d{)o, dal, d{)l, N

may be used for a basis of ®. We shall examine two methods of solution. The first
one directly investigates the sought functions wg, vg, which leads to quite explicit
results. In the second one, firstly we shall try to determine only the submodule
of @ generated by dz, dug, dvg; then from the form of this submodule we obtain
certain conditions for g, vg.
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2. THE DIRECT METHOD
2.1. The point transformation

Now let us proceed to explicit calculations. Assuming h*z = 2z, we choose
functions h*ug = ug, h*vg = ¥y in accordance with the notation above; then

h*us = ﬂs = Xsﬂo, h*vs = 175 = Xs{)o,
and we ask if
de = dz, dus, dvg
may serve for a basis of ®. For convenience of notation, we shall occasionaly
abbreviate
uw=f, vo=g and 9F/0us = Fs, OF/dvs, = F*
for various composed functions F' (i.e., excepting F' = w, F' = v where the lower
indices distinquish the coordinates).

Firstly let us deal with the zeroth order case f = f(x,ug,vo), g = g(&, ug, vo)
which is quite easy. Then

dug ~ foduo + fPdug (mod dz),
dvg ~ godug + ¢°dvg (mod dz),

dus = dX*ug = L dug ~ fodus + FPdu, (mod dz, dug, dvg, ..., dus_1,dvs_1),
dv, = dX*vy = L dvo ~ godus + ¢°dv, (mod dx, dug, dvg, ..., dus_1,dvs_1),

and dx, dugs, dvs; make up a basis of @ if and only if

fo f°
det (go go) #0

This is the classical case of the prolonged point transformation already mentioned
above.

2.2. The first order case
Now let us assume that

h*UQ =

S

0= f(xau()av()aulavl)a h*vo == {)0 == g($,U0,UO,U1,Ul).

Excluding the case fi = f' = g1 = ¢! =0, we may assume f; # 0. Analogously
as above, we have

dus ~ frdusy1 + fldvsyr  (mod dx, dug,dvo, . .., dus,dvs),
dvs ~ grdusy1 + gtdvsyr  (mod dex,dug, dvg, ..., dug, dvs) .

1
det (fl 51) ;é Oa

g1

If
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then dug, dvy could not be expressed by means of the primed differentials, hence

necessarily
1
det (f v 1) =0
q g

This condition means

(3) g9 = G(x,uo,vo, f)

and then

d{)o ~ GodUo + Godvo (HlOd dl‘, dao) s

d{)l = ,def)o ~ XGOdUO + XGOdUQ + GodU1 + Godv1 (HlOd dl‘, dao, dﬂl) ;

and we can write

ditg =~ fodug + fPdvo + fiduy + frdvy (mod dzx),

dvo ~ Godup + G%duy (mod dz, dug),

dity ~ frdus + frdvs (mod dz, dug, dvo, duy, dvy)

dvy ~ XGodug + XG°dvg + Goduy + GOduv, (mod dz, dug, duy) ,

dig ~ fidugyt + frdvsyy (mod da, dug, dv, . . ., dug, dvg)
dvs ~ Godus + G dv, (mod de,dug, dvo, . . ., dus_1,dvs_q, dig, . . ., dis),

Analogously as above, necessarily

foo Yy L
det (G10 GO)_O

must hold. If Gy = 0 then G® = 0 and vy = G(z, f), dvg = Gydr+ Gdug and the
forms dz, dus, dvs could not constitute a basis of ® ; so we may conclude Gy # 0
and the last condition can be rewritten in the form

Gt
@ Go fi°
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Using (4), we obtain
dug ~ fodug + fOdvg + fiduy + fldvy (mod dz),
dvg ~ Godug + G dvg (mod dx, dug),
duy ~ fidus + frdvs (mod dx,dug, dvg, duy, dvy),
frdvy ~ (1 XGo — Gofo)dug + (1 XG° — GofY)dvy (mod dz, dug, duy),

dus ~ frdusp1 + frdvsyr (mod dx, dug,dvy, . .., dus, dvs),
fidvs ~ (f1XGo — Gofo)dus—1 + (f1XG* — Gof%)dvs_y

(mod dz,dug,dvy, . .., dus_1,dvs_1,dug, ..., dus),
If

Gy G°
(5) det <f1XG0 _Gofo JIXGO - Gofo) #0,

then the forms dug, dvg can be calculated in terms of dx, dug, dvg, duy, dv; and
after applying L%, every

dus; = dX’uy = Ly duy, dv, = dXvg = L dvg

can be calculated in terms of dx, dug, dvy, . . ., dtis41, dVs41. Since (4) is valid,

fo f
det 0
° <f1XG0 —Gofs HXGY—Gof?) T
is ensured and the differentials dx, dug, dvg, duq, dvy, ... are linearly independent.
So we may conclude:
Theorem 1. Let f = f(x,ug, vo,u1,v1), ¢ = g(x,up,vo,u1,v1), Jf1 #0. These
functions determine an z-preserving automorphism of curves in R? by
h*z =2z, hu,=X°f, h*w,=X°g (s=0,1,...)
if and only if g = G(z, ug, vo, f) where

oG ( Go GO )
G 0 — = — det 0.
0#0 T =G0 e xG - Gofe AXG—Gop)

Except for a more explicit example, we shall not continue this elementary method
at this place.
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2.3. Example
Let us examine the linear choice
o = [z, ug,vo,u1,v1) = A+ ax + bug + cvg + dug + evy
v = g(x, ug, vo, ur, v1) = P+ px + qug + rvg + suy + tvy
Aya,be,d, Ppg,r,s,teR, d#0
Then due to (3) and (4) we have

EozG(x,uo,vo,f):H—i—hx—i—kuo—i—%kvo—i—lao, hklER, k#£0.

Kootk
det (—kb —kc) 70

ed—eb#0.

In this case 1t is quite easy to compute explicitly the inverse transformation; by
direct calculation we obtain

The condition (5)

gives

vo = f(&, g, B, 1, ¥1) =
. d
~ k(ed — eb)
up = G(Z, 1, %o, f) =
= ebH + ecdH + (ebh — edh)@ + (ebl — edl)ig + (cd — eb)zo — %vo ,

(dh — kA4 bH + (—ka +bh)Z 4+ (k + bl)ug — by + dluy — dvy)

us = X*ug, vy = X0
Notice that after the transformation the variables u,, v, changed their roles and

= _d#0, 28 =cd—cb#0,

Flel 8G
det ~ U ~ i ~ dto ~ _
% 8_G# Xg_acz - % a0
cd — eb ebl — cdl
= e (cd — eb)b —(cd—eb)(k—i—bl)) -
— d(eb — ed)

1s ensured.
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3. THE METHOD OF SUBMODULES

3.1. Introduction into the method

In this chapter, we shall not investigate directly the differentials dus, dv;, dz, but
only the submodules {dx, dug, dvy, ..., dus, dvs} and {da, dug, dvy, . . ., dus, dvs }.
Especially denoting by © = {dx, dug, dvg} C ® , the following lemma gives us the
method of calculations:

Lemma 3. If a mapping h performs an x-preserving automorphism of curves in
R3, then the submodule © = h*© has these properties:

(i) de € ©;
(ii) © is completely integrable;
(i) UPL%0 = .
Conversely, if © C ® is any submodule meeting the conditions (i), (ii), (iii), then
there exists an x-preserving automorphism h of curves in R? such that h*© = Q.

Proof. If h is an z-preserving automorphism of curves in R3, then
(:) = h*@ = {dl‘, dao, df)o}

is completely integrable and

,C;(@ = {dl‘, dao, d{)o, ceey das, df)s}
hence USOE}C:) =o. B
On the other hand, let © C ® be a submodule satisfying (i), (ii), (iii). The
conditions (i), (ii) mean that © = {dx, df, dg} for appropriate f,g. Denoting by
aOZfa Vo= ¢, Us :Xsuoa Us :sto’
consider the mapping h defined by
h*zr =2, h*u, =u,, h*v, = v,.

According to the definition h preserves z, transformes the family A into itself and
since
{dzx,dug, dvy, ...} =UPLO =,
the differentials dz, du,, dvs (s = 0,1,...) generate ®.
At last, we have to prove that the differentials dx, dus, dvs are linearly indepen-
dent. Let us assume that there is an identity

s—1 R
du® = ZArda’“ + Z B,dv, + Cdx .
r=0 r=0
Then
s—1+K R+ K

Baw = deth = > AFdam + Y BE + 0K

r=0 r=0
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hence B
1(LEO) < const + K

for K large enough (where {(ﬁg@) is the dimension of ££©). On the other hand,
since (iii) is valid, ©® C £5© for appropriate p so that

ke coirfe
for all & > 0. We obtain
342K =1(L50) <1(£570) < const + K

for K large enough, which is a contradiction concluding the proof.

The method of submodules will consist of two steps. In the first one, we shall
search for submodules

O = {dz,a, 3} C ® such that U L0 =&,
and, according to the Frobenius theorem,
da~ 0 (mod ©), dB ~ 0 (mod ©).

We obtain certain as a rule overdetermined systems of partial differential equations
for the coefficients of the forms o« and 3. After this step, the existence of the
automorphisms already is ensured.

In the second step, we search for explicit equations of the automorphisms. The
identity

{de, o, 3} = {d=,df,dg}
provide us necessary and sufficient conditions (again in the form of systems of
partial differential equations) for the functions f, ¢ which can be (in principle)
obtained by solving ordinary differential equations.

The following reasoning will facilitate us to describe systematicaly the class of
all automorphisms under consideration. If © = {a, 3,dz} C L7370, then the forms
o, 8 cannot be linearly independent (mod Eg_lG)) or else Lx o, Lx would be
linearly independent (mod L}0), L3%a, L% would be linearly independent
(mod L%*'O),... and UPL%O = @ could not hold. Thus we can introduce
following notation:

An z-preserving automorphism of curves in R? is of the type [p, q],if o € £5.0, a ¢
e, pe Lo, B¢ LY Oandp<q.

From now on, we shall abbreviate our terminology and speak of an “automor-

phism” instead of an “z-preserving automorphism of curves in R3”.
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3.2. The point transformation

Let us examine the most simple case ® C © just corresponding to the ze-
roth order case in 2.1. Then necessarily © = © = {dz,duo, dvg} and we ob-
tained the identity. However, the choice of the first integrals is not unique and
{dz, dug, dvg} = {dx,df,dg} if and only if f = f(x,ug,v0),9 = g(x, ug,vg) are

such functions that

oo P
det [fo fo f0) = det )) #0
g 90 ¢° go g

Therefore automorphisms h with the property h*© = © are the invertible pro-
longed point transformations. One can observe that the reasonings were shorter
than in section 2.1.

If a submodule © C & satisfying (i), (ii) and (iii) is given and d=, dig, dv, are
its first integrals then

O = {dx, dug, dvo} = {dz, df, dg}
if and only if the functions f, g can be expressed in the form

of  of
f=f(z,u0,v0), g =g(z,u0,v0), det (%&D agvgﬂ) #0

Qto Ao

It means that the automorphism h given by © is given up to a transposition with
an invertible prolonged point transformation.

3.3. Automorphisms of the type [0,1]
Let
a€O, feLxO, f¢0;

then we can take
a = Adug + Bdvg + C'dx |
8= Aduy + Bdvy + Cdug + Ddvg + Edx
where A, B,C, A, B,C,D,E € F. We can suppose A # 0, A # 0 and omit the
terms with dx, hence we may choose
a = dug + advg ,
8 = duy + advy + bdvg

for appropriate a, @, b, € F. Since the forms £Lxa and # cannot be linearly inde-
pendent (mod @) (according to the note in 3.1) and

Lxa = duy + advy + Xadvg ,
we can take

(6)

a = dug + advg ,
8 = duy + advy + bdvg
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for appropriate a,b € F and Ug° L% © = @ is ensured if
(7) Xa—b#0.
The condition of complete integrability gives
da = da A dvg = (agde + Z asdug + Z a*dvg) A\ dvg =

s=0 s=0

= (agde + ag(a — advy) + a1 (8 — advy — bdvy)
+ Zasdus + Zasdvs) A dvg ~
s=2 s=0

~ (—aja+ al)dvl A dvg + Z asdus A dvg + Z a’dvg Ndvg =0,

s=2 s=2
where ~ means (mod ©). Then necessarily
1
(8) —a1a+a =0, a=a(r,ug,vo,ur,v1).
Furthermore,

dp =daAdvy 4+ dbAdvg =
= (agde + ag(o — advy) + a1 (8 — advy — bdvy) +

+ Zasdus + Zasdvs) A dvy +

s=2 s=0

+ (bpdz + bo(a — advg) + b1 (5 — advy — bdvy) +
+ ) beduy + Y bdvg) Advg ~
s=2 s=0
~ (—aga — a;b+ a + bra — bl)dvo Advy +

+ Zasdus Advy + Zasdvs Advy +

s=2 s=2
+ ) beduy Advo+ > b dvg Advg =0
s=2 s=2
hence
(9) —apa —arb+a®+ba—0bt=0, b= b(x, up, vo, U1, v1).

Notice that the equation (8) for the unknown function a is solvable by
®(auy + vi,a, 2, ug,v0) =0

where @ is arbitrary (smooth) function and then b can be determined from (9).
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If we take any couple of functions a, b, satisfying (7), (8), (9), then some rela-
tionships
a = dug + advg = Pdf + Qdg =
= P(fodug + fOdvo + frduy + fldvy +...) +
+ Q(godug + ¢°dvo + grduy + g'dvi + ...),
(10)
0 = duy + advy + bdvg = Rdf + Sdg =
= R(fodug + fOdvo + frduy + fldvy +...) +
+ S(godug + ¢ dvg + grduq + gtduvr + .. J)

are valid for appropriate P, @, R, S, f,g € F. Then

1=Pfo+ Qqo, 0= Rfo+ S0,
1) a=Pf+Qqg", b= Rf°+ Sg°,
0=Pfi+Qg1, 1=Rf1+ 591,
0=Pf +Qg', a= Rf"+ Sg*

and necessarily

det (ﬁ Z%) =0 (orelse P=Q=0)

and
ff=afh.

We may assume that f = f(z, ug, vo, u1,v1), g = g(x, ug, vo, u1,v1): If, e.g., fa #
0, then from (10) we have

0= Pfo+ Qgo,
0=Rfy+ Sg2

P @y _
det (R S) =0
and the first line of (11) implies R = S = 0. Moreover, from (11) it follows that

either fi # 0 or g1 # 0; we may suppose fi # 0 and then the condition above can
be expressed in the form

hence

(12) g:G($au0av0af)'
Substituting this into (10), we have

o = dug + advg = (P + G;Q)df + QGoduy + QG dvy ,

13
(13) 3 = duy + advy + bdvy = (R+ G;S)df + SGoduo + SG°dvy ,



AUTOMORPHISMS OF SPATIAL CURVES 227

and combining
(R+ G S)(dug + advg) — (P 4+ G¢Q)(dur + advy + bdvg) =

= ((R+ G¢S)QGo — (P + G¢Q)SGo)dup+
+((R+ GfS)QGO —(P+ GfQ)SGO)dvo

we obtaln
P—I—GfQZO,
R-i—GfS:(R-I-GfS)QGO,
a(R+G;S) = (R+ GS)QGo
hence
fl GO
14 —=a=—.
(14) bil “T &

Furthermore, (13) gives
1=(R+G;Sf1,
0=(R+GsS)fo+ SGo,
b= (R+G;S)f° +5G°,

which implies (using (14))

_Ph=hf

hh
The condition Xa — b # 0 can be expressed in the form

(15) b

X(G—O) _ fo—foa _ XGOGO_GO_XGO _fo—foa #0
Gy f1 GGy fi ’
which is equivalent to

Gy G°
16 det 0
(16) ¢ <f1XG0—G0f0 leGO—gofo) 7

If we take any functions a, b, satisfying (7), (8), (9) and search for functions f, ¢,
determining an automorphism such that {d«,df,dg} = {dz, «, 3}, where «, 3 are
given by (6), then the functions f, ¢ must be of the form (12) and satisfy (14), (15)
and (16). The validity of (7), (8), (9) ensure us the existence of such functions.

On the other hand, let us take any functions f, g, satisfying (12), f'/f1 = G°/Go
and (16) and define a and b by (14), (15). Then

{dz,df, dg} = {dug + advg, duy + advy + bdvp},

the relationships (7), (8), (9) are valid and f, g determine an automorphism of the
type [0,1].



228 IVAN BRADAC

Not surprisingly, this concludes Theorem 1 from section 2.2. For this case, the
method of submodules could seem a little artifical. However, we obtained some
additional information about the structure of the automorphisms, given by ex-
pressions f1/f1 = G°/Go = a,(f°f1 — fof')/fif1 = b determining the submodule
{dz,a, 8}, which satisfy (8) and (9). Moreover, while the reasonings would be-
come very complicated for the higher order cases if using the direct method, the

former calculations will a little prolong but remain rather straightforward.

3.4. Automorphisms of the type [1,2]
Let
0 ={a,pBde}C L3O, a€LxO, a¢dO, BcL%0, 8¢ LxO.
Then, analogously as above, we can take o and 5 in the form
(17) a = duy + advy + bdug + edvg,
8 = dus + advs + edvy + hdug + kdvg
where a,b,c,e,h, k€ F. The forms
Lxa—F=bdu;+ (Xa+c—e)dvy + (Xb— h)dug + (zc — k)dvg ,
o = duy + dvy + bdug + cdvg
must be linearly dependent (mod @) and so
(18) e=Xa+c—ab.
Then the forms
Lx(Lxa—fF—ba)=Lx(Xb—h—0bb)duy+ (Xec—k—bc)duvg) =
= (Xb—h—=>bb)du; + (Xc—k —be)dvy +
+X(Xb—h—bb)dug + X(Xc—k —bc)dvg,
o = duj + advy + bdug + cdvg
must be linearly dependent (mod @), which gives
(19) a(Xb—h—0bb)=Xec—k—bc.

Since

[,Xa—ﬁ— ba = (Xb—h— bb)(dU0+advo),

we have
(20) Xb—h—-0b#£0.
To ensure the equality UE}C:) = @, the forms
1
dUQ + Cldvo (: m((Xb —h— bb)dUQ + (XC —k— bc)dvo)) s

Lx(dug + advg) — o = —bdug + (Xa — ¢)dug



AUTOMORPHISMS OF SPATIAL CURVES 229

must be linearly independent, i.e. ,
(21) Xa+ab—c#0.
Applying the condition of complete integrability,

da = da A dvy + db A dug + de A dvg ~

~ (apdup + a1 (—bdug — cdvy) + az(—advy — hdug — kdvg) + Z asdug +

5=3
+ Z a’dvs) Advy + (bi(—advy — edvg) + ba(—adve — edvy — kdvg) +
5s=0
+ ) bedug + Y b0dv,) Adug +
s=3 s=0

+ (codug + e1(—advy — bdug) + ca(—adva — edvy — hdug) +

+ chdus + chdvs) Advg =0,
s=3 s=1

dB = da A dvs + de A dvy + dh A dug + dk A dvg ~
~ (apdup + a1(—advy — bdug — cdvg) + az(—edvy — hdug — kdvg) +

+ Zasdus + Zasdvs) A dvs +

s=3 s=0

+ (eodug + e1(—bdug — cdvg) + ea(—adva — hdug — kdvg) +

+ Zesdus + Zesdvs) A dvy +

s=3 s=0
+ (h1(—advy — cdvg) 4+ ho(—advy — edvy — kdvg) +
+ ) hedus + > h*dvg) Adug +
s=3 s=0
+ (k’odUo + kl(—advl — deQ) + k’z(—advz — edv1 — hdUQ) +
+ ) kedug+ >k dvy) Advg = 0;

s=3 s=1

then from (18) it follows that @ = a(x, ug, vo, 41, v1) and we obtain conditions for
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the coefficients a = a(x, ug, vy, u1,v1) and b, ¢, e, h, k of variables x, ug, vy, u1, v1, s, va

bya — b2 =0

epa—c? =0

bic+ bok —b% +eg—c1b—esh =0

ag — a1b+ bra+boe — b1 =0

a’ —ajcteratcee—cl =0

(22) hic+ hok —h% + kg —kib—koh =0
eg —e1b—esh 4+ hia+ hoe — A =0
ag — a1b+ hoa —h* =0
e —ejc—egk+katkoe—kl =0
a® —ajc+ kya—k2=0

al —aja+esa—e?=0,

(18) and (19). Moreover, the inequalities (20) and (21) must hold.
If a,b,¢,d, e, h, k are such functions, then
a = duy + advy + bdug + cdvg = Pdf + Qdyg

23
(23) 8 = dus + advs + edvy + hdug + kdvg = Rdf + Sdg

where f,g are functions of variables #, ug, vg, u1, v1, ua, v2 (analogously as in the
previous section) . Comparing the coefficients at dus, dvy we obtain

0="Pfr+Qga2, 1= Rfs+ Sga,
0=Pf?+Qg*, a=Rf*+ Sg*
hence
det (f§ gg) =0 (orelse P=Q =0)
oy
and

fF=afs.
We may assume fz # 0 so that
(24) g = G(x, ug, v, ur, v1, f)
Substituting this into (23) we have

o = duj + advy + bdug + cdvg =

= (P + QGy)df + QGodug + QG dvy + QG1dvy + QG dvy
8 = dus + advs + edvy + hdug + kdvg =

= (R+ SGy)df + SGodug + SG dvg + SGiduy + SGHdvy
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and after combining

(R + SGy)(dur + advy + bdug + edvg) —
— (P + QGy)(dus + advs + edvi + hdug + kdvg) =

+ ((R+ SG#)QG® — (P 4+ QG)SG°)dvy +
+ ((R+ 5G;)QG1 — (P + QG§)SG1 )dur +
+ ((R+ SG)QG — (P + QG)SG)dvy
necessarily
P+ QGf =0,
R+ 595Gy = (R+ SGf)QGl )
a(R+ SGf) =(R+ SGf)QGl ,
b(R+ SGy) = (R+ SG§)QGo,
c(R+ SGf) =(R+ SGf)QGO
must hold, which gives
Gl f2 GO GO
25 T s b = = = =
(25) G TR TG TG

where GG1 # 0 is ensured. Substituting this again into (23), then the first line of
(23) is fulfilled identicaly and

B = dus + advs + edvy + hdug + kdvy =
= (R+ SG¢)(fodug + fOdvg + fiduy + frdv' + fadus + f2dvs) +
+ SGodug + SG dvg + SG1duy + SG'dvy
implies
1= (R+SG)fs hence R+ SG;=1/fs,
0=fi/fo4 SG1 hence S=—f/(G1fs),
and we obtained
e=f'fo—G'/1/Gifo=(Gif' =G 1)/Gifa,
(26) h=fo/fo—Gofi/Gifa = (Gifo — Gof1)/G1f2,
k=f0)fo— G fi/G1fo = (G1f* = G°f1) /G f.
Comparing (18), (19), (25) and (26), we obtain

(27) (Gif! =G )G = (GIXG = GTXGL 4+ GGy — G Go) fa s
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G f2(G1XGo — GoXG1) — GYG1(Grfo — Gof1) — f2GFGoGo =
(28)
= Glfz(GlXGo — GOXGl) — GlGl(Glfo — Gofl) — foG1GoGO .

The condition (20) can be rewritten in the form

(29) f2(G1XGo — GoXGy — GoG°) + G1(Gf1 — G1f°) £ 0,
and similarly (21) gives

(30) G1XG' - G'XG1+ G 'Go— G°GL # 0.

So we may conclude: If functions a(x, ug, vo, u1,v1) and b, ¢, e, h, k of variables
T, ug, Vg, U1, U1, a2, vo satisfy the conditions (18)—(22), then there exist functions
f,g of the form (24) such that {dz,«, 8} = {d»,df,dg} where the forms a, 3
are given by (17), and the relationships (25)—(30) are valid. The functions f,g¢
represent an automorphism of the type [1,2].

On the other hand, if f, g are functions of the form (24) such that the relation-
ships G1/G1 = f?/f2, (27)-(30) are valid and we define a,b, ¢, e, h, k by (25) and
(26), then {dx, o, 5} = {dx, df, dg} where a, 3 are defined by (17), the relationships
(18)—(22) hold and f, g determine an automorphism of the type [1,2].

3.5. Example

As in section 2.3, let us examine the linear case

a = duy + advy + bdug + edvg,
8 = dus + advs + edvy + hdug + kdvg

where
a,byc,e,h,k€R, e=c—ab, k=alh+bb)—be, ab—c#0, h+bb#0
due to (18), (19), (20) and (21), so that
o =d(uy + avy + bug + cvg)
B = d(us + ave + evy + hug + kuvg) .
The linear automorphisms of the type [1,2] are of the form
tip = h*up = W H up = Wi, @, = X up,
o = h*vg = hyH*vy = hiVp, v, = X,
where H is given by

Up = uy + avy + bug + cvg,

Vo = ug + ava + (¢ — ab)vy 4 hug + (a(h + bb) — be)vg
Us = XU, Ve = X* Vo,

ab—c#0, h+bb#£0,
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and h,, is the prolonged point transformation

g = A+ Bx+ CUy+ DV,
170:E+F$+GU0+H‘70,
us = X*ug, vy = X*0g,

A, B,C,D,E,F,G,HER,

C D
@tQ;H):CH—GD¢U

Then the inversion is given by
Uy = (h*)_lﬂo = (H*)_l(h;)_lao = (H*)_on, Us = XSUQ,

Vg = (h*)_lf)o = (H*)_l(h;)_lﬁo = (H*)_1VO, Vs = sto,

and after some calculations we obtain the inverse relationships for hy and H*: The
transformation hzjl 1s expressed by

1
CH—-GD
1
CH—-GD
U =XUp, Vs = X°Vp,

Uoz (—AH—|—ED—|—(—HB+DF)1‘+H@0—D{)0),

Vo = (—CE+GA+ (—CF + GB)x — Giug + Cy)

and H™! is given by

1
(h 4+ bb)(c — ab)

Uy =

((¢b—alh + bb))Uo +cVo + (—e+ ab)Ul +aVy — aUz) ,

1
(h 4+ bb)(c — ab)(

Vg =

hUy — bV + 26U, + Vi — Us),

us = Xfug, vy = X¥vg.

3.6. Automorphisms of the type [0,2]

Let
€O, BELYO, B¢ LxO.

Then we may assume that

a = dug + advg,

6 = dU2 + Advz + BdU1 + C’dvl + deo .

The forms
Eg(oz = dus + advs + 2X advy + X2 advg
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and 2 must be linearly dependent (mod £x©) hence

(1) a = dug + advg,
8 = dus + advs + bduy + cdvy + edvg .
Analogously the forms
Eg(oz — = —bdu; + (2Xa — ¢)dvy + (Xza —e)dvy ,
Lxa = duy + advy + Xaduvg
must be linearly dependent (mod ©) but linearly independent so that
(32) 2Xa+ab—c=0,
(33) X?a+bXa—e#0.

Analogously as in the previous sections, from the complete integrability conditions
we obtain the system of partial differential equations

bya — b> =0
coa—c? =0
(34) eqa —e? = a’ — aga
e1 4 bae — eab = bY — boa
el + cae —eac = - coa
where a = a(z, ug, vo) (which follows from (32) and a; — asb = 0, a' — aze = 0)
and b, ¢, e are functions of variables x, ug, vo, u1, v1, 2, vs.
If we take any functions, satisfying (32)—(34), then
a = dug + advg = Pdf + Qdyg,
8 = dus + advs + bduy + cdvy + edvg = Rdf + Sdg

where f, g are functions of variables x, ug, vo, u1, v1, us, v2, which implies

1="Pf+ Qgqo, 0= Rfo+ S0,
a=Pf+Qg4", e=Rf"+ 5S¢,
0=Pfi +Qq, b=Rfi+ S¢1,
0="Pf' +Qq*, c=Rf'+5g",
0=Pfs+Qg-, 1=Rfa+ Sg2,
0="Pf>+Qg*, a=Rf*+54%.

Thus

h(fl fi fa fj):l
g1 g g2 g
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hence (assuming fa # 0)

f= f(%uo,vo,ul,vl,uz,vz),

(35)

g:G(l‘,Uo,vo,f)
and

_o
(36) TR b_fz’ ‘TR

As in sections 3.3 and 3.4, after some calculations we derive

R
(37) G TR
(38) B f_O B fOGO B fOGO —fOGO

€= - 3
fo Gofa Gofs
and notice that the second equation of (37) is solvable by

f = q)(UZ + ava, T, Ug, Vo, U1, vl) .

The condition (32) can be expressed in the form

AP SR 1
(39) m- TR
and the condition (33) means
2 S0 N L G
(40) X(f2)+f2X(f2) f2+Gof2¢0

If we take any functions a(x, ug, vo) and b, ¢, e of variables x, ug, v, u1, v1, Uz, va,
satisfying (32)—(34), then there exist functions f, ¢ of the form (35) such that
{dz,a, B} = {dz,df,dg} where «, 8 are defined by (31), and the conditions (36),
(37)—(40) hold. The functions f, g determine an automorphism of the type [0,2].

On the other hand, if the functions f, g satisfy the conditions (35),

G°/Go = f?/f2, (39) and (40) and we define a,b,c,e by (36) and (38), then
{dz,a, 8} = {dz,df,dg} where a3 are defined by (31), the relationships (32)-
(34) are valid and f, g determine an automorphism of the type [0,2].

Using the achievements of sections 3.4 and 3.6, we can state the following the-

orem:

Theorem 2. Let f = f(x,uo, vo, u1,v1,us,v2), g = g(x,uo,vo,us, 1, ua, v2),
fo # 0. These functions determine an xz-preserving automorphism of curves in R?,
if and only if one (and only one) of the following conditions holds:

Gl f2

(i) g=G(x,up,vo,ur,v1, f), G1#0, o =R (27)—(30).
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0 2
(ll) g:G(xaUOaUOaf)a G07éo, g_():;_z’ (39),(40)

4. THE INFINITESIMAL SYMMETRIES

4.1. The infinitesimal symmetries in R*

For the convenience of exposition, let us briefly mention the finite-dimensional
space R™ with points & = (2!,...,2"), differential forms ¢ = > .-, f;dg' and
vector fields 7 = ", ZZ%, where f; = fi(2),¢' = ¢'(x), 2" = 2" (x) are smooth
functions. Given a submodule Q2 of differential forms, a vector field 7 is called an
nfinitestmal symmetry of Q, if

(41) LQC Q.

Recall that such a vector field generates a one-parameter group of transformations
in the sense

0

(42) Zf(x) = = F(a(e Nz, (e,0) = id, (e A+ 1) = h(h(r, ), ),

where A and p are real parameters near enough to zero, and, for fixed A the
transformation h(x, A) preserve the module € in the sense

h*(z,\)Q C Q.

Now let us proceed to the infinite-dimensional space R* with the coordinates
z' 2% ... the structural family F and the F-modules ®, 7 of differential forms
and vector fields according to the notation of section 1.2. In R, given a submod-
ule Q C &, a vector field Z € T 1s called a generalized infinitesimal symmetry of
2, if (41) holds and an infinitesimal symmetry of Q, if (41) holds and 7 generates
a one-parameter group of transformations in the sense (42). The generalized in-
finitesimal symmetries can be in principle calculated by finite algorithms; however,
as yet no method exists to determine the infinitesimal symmetries or even to prove
or disprove their existence for a given module €2 in the infinite-dimensional space.
Our approach will be based on the following lemma. We state only the proof of
the necessity; the sufficiency is more delicate and lengthy and cannot be discussed

here (see, e.g., [6]).

Lemma 4. A vector field Z generates a one-parameter group of transformations if
and only if for any function f € F all the functions of the sequence f, Zf, Z%f,. ..
can be expressed in a finite number of coordinates.

Proof. If f € F and h(z, A) generates a one- parameter group of transformations,
then f(h(z, A)) depends on a finite number of coordinates, hence %f(h(x, A))a=o
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depends on a finite number of coordinates; therefore it is sufficient to prove that

n 9"

(43) 2" fe) = 535
for all n € N.

If n = 1, then Z(f(x)) = ;—Af(h(x,/\))h:o by definition. Let us assume that
the formula (43) is valid for some n € N, n > 1; then

f(b(z, A)r=o0

1l

(@) = 227 (@) = 2(2

f(b(z, A)r=o) =

A"
o o
= %(3/\” f(h(h($’ ﬂ)’ /\))|>\=0)|N=0 =
o o oot

= @(8/\” Fh(e, A+ p))a=o)lu=o = Hrg f(h(z, A))la=o

and (43) is valid for all n € N, which concludes the proof.

If % 22,... are coordinates in R, it is sufficient to verify the requirement
only for the coordinate functions «* (¢ = 1,2,...): If the finiteness condition of
lemma 4 holds for the coordinate functions z* (i = 1,2,...), then for any other

function f € F, f = f(z!,...,2%) clearly is
Zf =3 fuZat, Z°F =3 (O feiwilal Za' + fr 20,
and the functions f, Zf, Z%f,... depend on a finite number of coordinates.

4.2. The infinitesimal symmetries in our case

We shall be interested in infinitesimal symmetries of the very special submodule
Q C ® defined in the section 1.4. Returning to the coordinates x, u,, vy and to the
notation from section 1.4, let us remind the contact forms

dus — usyrde, dvg —veprde (s =0,1,...),

generating the submodule Q C @, and the formal derivative operator

+ Zus+1 + sz+1

Before proceeding to another concept of our theory, we shall establish a useful
assertion; its proof is quite easy.

Lemma 5. Let f,g € F. Then df — gde € Q if and only if g = X f.

In accordance with our task, we shall be interested in vector fields

_Z_+Z _+Z 31)5
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preserving the coordinate z, i.e., satisfying
0=Zzx==z.
Then the condition (41) is fulfilled if and only if
L;(dus —usprde) €, L,(dvs — vg41dx) € Q.
Since
L.dus = dZuy, = du®, L,dvs = dZv, = dv* |
we obtain the requirements
du* —u'tlde € Q, dv' — v’ Tz € Q,
which give, according to lemma 5,
Wt = Xuf, o't = X'

Thus it is quite easy to find the z-preserving generalized infinitesimal symmetries
in 7: The initial values
wW=aeF, "=beF

may be arbitrarily chosen and then
- 0 - 0
7 = Xa— Xb—
Z0: ‘ 6“5 + Z0: avs

are the sought generalized infinitesimal symmetries in 7.
Such vector fields satisfy the following important condiditon, which can be eas-
ily derived by direct calculation.

Lemma 6. If Z is an x-preserving generalized infinitesimal symmetry and X
is the formal derivative operator, then [X,Z] = 0.

We have seen that generalized infinitesimal symmetries can be easily found.
Passing to infinitesimal symmetries, the problem becomes much more difficult.
Recall that according to lemma 4 and to the note below, such a generalized in-
finitesimal symmetry generates a one-parameter group of transformations if and
only if for any fixed s € N the functions

2 2
Us, ZUS, Z Us, Us, sza Z Vs

can be expressed by means of a finite number of coordinates (we need not consider
the coordinate # since Zz = 0). Tt turns out that that the condition of lemma 4
has to be verified even only for the coordinates ug, vy : If the functions

2 2
ZUQ, ZUO,..., Zvo, Zvo,...

are depending on a finite number of coordinates and s € N is fixed, then (using
lemma 5) the functions

Zuy, = ZX*uo = X*Zug, Z%uy = Z°Xug = X Z%uq, . . .,
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Zvy = ZX vy = X* Zvy, Z%v, = Z2°X%vg = X*Z %0, . ..

are depending on a finite number of coordinates, too. Consequently, since Zug =
a, Zvy = b, we search for all couples a,b € F such that all functions

a, Za, Z%a, ..., b, Zb, Z°b,

can be expressed by a finite number of coordinates. We are not able to solve this
problem in full generality. For this reason, we shall discuss only the particular
cases when

a = a(x,ug,vo), b=b(x,up,vo)

are of the zeroth order, or,
a= a(l’, Uo, Vo, U1, vl)a b= b(l‘, Uo, Vo, U1, vl)

are of the first order. The zeroth order case is quite trivial: If a = a(z, ug, vo),
then
Za = aag + ba® = a(x,uo,vo), Z’a = Za = a(x,uo,vo),. ..

are depending only on zeroth order variables and the same reasoning can be car-
ried out with 6. The vector field 7 generates a one-parameter group of point
transformations.

4.3. The first order case

Let
a = a(xau()av()aulavl)a b = b(xau()av()aulavl)a aj # 0

The conditions for @ and b are are equivalent to the condition that

2(3). 2 (3).

are vectors depending only on a finite number of coordinates. In all the following
calculations, we shall consider only the top terms, i.e., the terms depending on the
variables of the highest order. We have

Z(a)_( 4+ Xa-a; + Xb- a) ( + (uzay + vaal)ay

_|_
b 4+ Xa by + Xb-b! -+ (ugay + veat)by +
N ara; +biat atag +btat\ fug) _ us\
B a1b1 + blbl albl + blbl (25} B (25} B
N 2
_ . ay a U9
=+ (i ) (vz)’
1\ 2 1\ 2 2
2 fa) a; a uz\ a; a Xa\
2(5) =+ (0 5) 2 ()= (0 8) () -
1\ 2 1 1\ 3
— a; a uzd] + vsza 4 a; @ Uz
B bl bl Ugbl + Ugbl B bl bl V3 ’

(u2by + vob? )
(Uzbl + Uzbl)b
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and in general

hence necessarily

for s large. However, then even

(44) a 2—0
bl bl — Y

so that

which can be expressed by
(45) b= B(z,ug, vy, a).
Furthermore, the condition (44) is expressed by

aja; + a'by = ajat +a'dt = 0,

bia; 4+ btby = biat + b6t =0,
which is equivalent to

a;+6' =0
(since a # 0 or else a; = 0), and we may express this condition in the form
a1+ Bgal =0.

Let us assume that the condition (44) holds; then the functions a, @ = Za, b, b=
Zb are of order < 1 and we can continue our calculations with

L (0) g (@) o (Ko m bt
7 <b>_Z<b)_ +<Xa~b1+Xb.b1 =
= ... (u2ar + 1’201)5}1 + (u2br + vzbl)gl _
= (u2a1+02@1)bl—|—(u2b1—|—v2b1)b1 =

oy (mat e da kb (u o (a al (o atY (u
o a1b1 + blbl albl + blbl (25} o bl bl bl bl (25} ’
= =1 1 1
3({Q _ . Ell El ay a ay a Us
2= @B R)G o))

so that the functions Z3a, Z3b are of order < 2. Furthermore, denoting by @ =
Z3a, b= 7Z3b , we have

afa\ _ ay _ (usai + v3al)€l2 (usby + UBbl)C:lz _
Z =7 =+ 1 Np2 | —
b b (U3a1 + v3a )bz (Ugbl + Ugb )b
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~ ~2 1
oy (G @) (o an) (s
= (BB
~ ~2 1

(Y =y (B @) (moa 4 (us) 2
2= (B 8) () -
oy (® @ (o) (@ al) (s
- bz b2 bl bl bl bl V4

and the functions Z%a, Z5b are of order < 3.

In general, the functions Z%*a, Z%*b, Z**+1a, Z?*+1p are of order
<k+4+1(k=1,2,...). If Z generates a one-parameter group of transformations,
then necessarily there exist k¥ € N such that the functions Z?*a, Z**b are of order
< k.

At last, to obtain an explicit result, let us discuss the case when Z2a is of order
< 1. Then

7% = 7*B(x,uo,v0,a) = Z(Boa+ B + B, Za) =

= ZBoa+ BoZa+ ZB°B+ B°ZB + ZB,Za + B,7%a

is of order < 1, too. According to the calculations above; we have

which implies

so that
(46) b= B(x,ug,vo,a),
excluding the case a; = a' =0, i.e. ,

(aap + ba0)1 = (aap + bao)1 =0.

1
ay a
det (Cll al) #0.

Then the functions ui,v; can be expressed in terms of x,ug,vg,a,a from the

Now let us assume that

relationships

a = a(z, ug, vg, U1, v1) ,

a = a(x,ug, vo, U1, v1),
hence the functions Zuy, Zvy can be expressed in terms of z, ug, vy, a, a, Za. Since
Za = Z%a is of order < 1, we obtained that the functions Zuy, Zv; are depending
only on variables x,uq, vg, uy, v, which is a contradiction since Zu; = Xa =
= usa; + voa’ is depending on u,. Consequently

1
det (“1 “1) =0,
ay a
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which means

(47) a= A(z,ug, vo,a)

and now the condition of lemma 4 (equivalently, the condition of the note below)

is fulfilled : Since (47),(46) and (45) are valid and Zug = a, Zvy = b, Za = a,the

functions

a, Za=a, Za, Z*a,..., b, Za=b, Zb, 7%, ...

bl

are depending only on the variables z, ug, vy, a, 1.e., only on the variables
T, Ug, Vo, U1, V1 -
Let us summarize the achievements of this section:

Theorem 3. Let a = a(x, uo, vo, w1, v1), b= b(x,uo,vo,ur,v1), ar # 0.

(i) If a vector field
> 0 > 0
Z = Xfa— Xb—
Z0: ‘ 6“5 + Z0: avs

performs an infinitesimal symmetry of €2, then necessarily

which is equivalent to
b= B(x,ug,vo,a) and a; +a'dB/0a=0.
(ii) If a vector field
= 0 = 0
7 = Xa— Xb—
2 T 2

is given such that Z%a is of order < 1, Z2b is of order < 2, then even
Z%b is of order < 1 and if

(aao—i—bao)l;éO or (aao—i—bao)l;éO,

then Z is an infinitesimal symmetry of 2.
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