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INTRODUCTION TO THE THEORY
OF SEMI-HOLONOMIC JETS

PAULETTE LIBERMANN
To Ivan Koldf on the occasion of his 60th birthday.

0. PREFACE

The usual jets were introduced by C. Ehresmann as a fundamental tool in
Differential Geometry. They permit to globalize the theory of differential systems
and to give a formulation of the “infinite groups” of E. Cartan; this leads to the
theory of Lie pseudogroups; initiated by C. Ehresmann, this theory was studied by
many mathematicians (the author, J. Pradines, S. Chern, D. Spencer, Guillemin-
Sternberg, H. Goldschmidt, Kumpera, Qué, Molino and Albert etc). D. Spencer
introduced cohomological methods.

When studying the prolongations of a differential system or higher order con-
nections (for instance the iteration of a linear connection on the tangent bundle) C.
Ehresmann was led to introduce what he called, using the terminology of Mechan-
ics, non holonomic and semi-holonomic jets; the ordinary jets are called holonomic
jets.

While the theory of holonomic jets is now classical, the theory of non holo-
nomic and semi-holonomic jets seems “mysterious” to many mathematicians. The
purpose of this paper is to explain how semi-holonomic jets occur naturally in
Differential Geometry and to serve as an elementary introduction to the works
devoted to semi-holonomic jets; we leave to the reader the task of studying these
papers.

Among the mathematicians who have investigated semi-holonomic jets are C.
Ehresmann pupils (J. Pradines and the author, P. Ver Eecke, P. C. Yuen). A very
important contribution has been made by I. Kolaf and his co-workers, especially
concerning natural transformations and higher order connections, as well as G.
Virsik and M. Modugno. For instance I. Kolaf has introduced the notion of equiv-
alence with respect to curves for semi-holonomic jets; in the case of holonomic jets,
equivalent jets coincide. This is linked with the research of natural transformations
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existing in a bundle of semi-holonomic jets. On the subject of natural transforma-
tions, we refer to the book “Natural Operations in Differential Geometry” by I.
Kolat, P. Michor, J. Slovak which contains a great list of references.

The non holonomic jets are obtained by iteration of 1-jets; among them semi-
holonomic jets are obtained while “forgetting” the condition of Schwarz symmetry
in higher order derivatives; they correspond to an iteration of linear maps in the
following sense; the projection qu — jq_lE (where jq means the semi-holonomic
prolongation of order ¢) is endowed with an affine bundle structure whose asso-
ciated vector bundle is a bundle of multilinear maps from 7#*T'M to the vertical
bundle VE = kerTwn. Here © denotes the projection £ — M. The “difference”
between holonomic and semi-holonomic prolongations leads to the notion of cur-
vature.

Utilizing these affine structures we show the existence of a contraction onto the
holonomic prolongation and an involution J in the space quq_lE, inverse image
of Jo_1 B in jq E. So we generalize a result of J. Pradines in the case ¢ = 2.

J. Pradines has attached with the notion of non holonomic jet and semi-holo-
nomic jet the theory of double vector bundles. We give a very short abstract of
this theory.

I. SOME FACTS ABOUT HOLONOMIC PROLONGATIONS

To simplify we shall assume that all manifolds and maps are C°°°, the manifolds
being finite-dimensional and paracompact. Many of the results are valid under less
restrictive assumptions.

For any fibered manifold (£, M, ) (i.e. for any triple (£, M, w) where E and M
are manifolds and 7 a surjective submersion), the holonomic prolongation J E is
the set of g-jets of local section of E. Given manifolds M and N, the set J¢(M, N)
of g-jets from M to N could be written J, E, considering the fibered manifold (£ =
M x N, M,prq). It is known that the projection J,E — J,_1 E defines an affine
bundle structure. In particular the bundle J1E — E admits as associated vector
bundle the set of linear morphisms from T'M to the vertical bundle V E = ker T'w.
The prolongations of vector bundles are vector bundles.

For any manifold M, let T7(M) (resp. T;¢(M)) be the set of g-jets from R” to
M (resp. from M to RP), with source (resp. target) 0. For ¢ = p = 1, we recover
the tangent and cotangent bundles TM and T* M. If GG is a Lie group, so is TZ?(G)
for any ¢ and p.

The ¢-frame bundle H?(M) is the subset of T4(M) (where n = dimension of
M) generated by the g-jets of local diffeomorphisms. It is a L¢-principal bundle,
where L 1s the group of g-jets of local diffeomorphisms from R™ to R™ with source
and target 0. The g-coframe bundle H*¢(M) is also a LZ-principal bundle.

For any fibered manifold (F, M, ), we define the submanifold €2 of TZFE,
inverse image of H4(M) by the projection Timr : T¢E — TIM. In particular if
E =M and 7 = ids, we obtain €M = HY(M). We have proved [L3]

Proposition I.1. The manifold €1 E is diffeomorphic to the fibered product
JoE xpr HI(M). Moreover if (P, M, 7) is a principal G-bundle, then (€2 P, M, T9r)
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is a principal Gg-bundle with G, = T1(G) x L1.

Other authors, as for instance G. Virsik [V1] introduced such prolongations for
principal bundles.
These prolongations are linked with the prolongations of Lie groupoids intro-
a

duced by C. Ehresmann [E1] in the following way; let ® = ®; be a Lie groupoid
b

with ®( as the set of units; an invertible a-section s is a section of ® with respect
of a, such that b o s is a diffecomorphism. The set of all local invertible a-sections
constitute a pseudogroup I'; the g-prolongation of @ is the groupoid ®¢ = J4(T'),
set of ¢-jets of all elements of T'.

We have proved [L3] that if ® is the Lie groupoid associated with the principal
bundle (P, M, ) i.e. the quotient of P x P by the diagonal action of GG, then the
Lie groupoid associated with €I P is the prolongation ®? of ®. Here the set of
units of & and ®? is the manifold M.

Utilizing the notion of “partial jet” which is subjacent in the paper [E1] by C.
Ehresmann, we have proved

Proposition 1.2 (Schwarz lemma for manifolds). There exists a natural diffeo-
morphism

(L.1) Y3 TTIM — TITM

which exchanges the projections of TTIM and TJTM on T'M and T]M; the dif-

feomorphism 1 is the natural involution on TT M . Moreover for a fibered manifold
(E, M, ), we get

(1.2) YI(TCIE) =CiTE,
in particular
(I.3) YR (THY(M)) = € (TM).

For the proof, we considered the partial jets from R x RP to M or F; in terms
of local coordinates; we used the Schwarz lemma for partial derivatives.

Let (P, M, m) be a principal G-bundle; the set TP/G of tangent vector to P
mod the right translations by G is a vector bundle with base M. Then the tangent
bundle TP may be identified with the fibered product (T'P/G) xur P.

Using formula (I.2) and proposition 1.1, we deduce the vector bundle isomor-
phism

(1.4) T(CLP)/Gy <= J,(TP/G);
in particular we recover the isomorphism

(L5) T(HY(M))/LL <= J,TM ,
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which was proved previously in [L9] considering the one-parameter local groups of
transformations generated by the vector fields tangent to M and their liftings to
HY(M).

Let @ be the groupoid associated with a principal bundle (P, M, 7). An “infin-
itesimal displacement” in the sense of C. Ehresmann [E4] is a vector tangent to
® which is a-vertical and whose origin lies in M (considered as the set of units).
The set A(®) of all infinitesimal displacements is a vector bundle; it was proved
in [L3] that A(®) is isomorphic to TP/G. So formula (I1.4) may be written

(1.6) T A(®) = A(D9) .

Let (E, M, ) be a fibered manifold. A regular differential system of order ¢
relative to £ is a fibered submanifold R, = M of J, ' — M. A local solution of
R4 is a local section s : U C M — FE such that for any = € U, jis belongs to
Rg. The differential system is said to be completely integrable if for any X?¢ € R,,
there exists a local solution s of R, such that jis = X9 (where # = o(X?)). Then
for any k > 0, the (q+k)-jet j9t¥*s (which can be identified with j¥;j¢f) belongs to
JrRg N Jgyr £ and the map Ji Ry N Jgqn 2 — Ry is surjective. For any differential
system R, the set Ry, = Jp Ry N Jyqi E is called the holonomic prolongation of
order k of Ry; this prolongation is not necessarly a submanifold of Jp R, and of
Jotr .

Among the differential systems, those of finite type are characterized by the
following property: there exists k such that R,4; is a submanifold of Jy4r £ and
Rgyr 1s a diffeomorphic to Rg4x—1. The systems which are not of finite type are
said to be of infinite type (for instance the systems corresponding to the “infinite
groups” of E. Cartan).

A connection of order 1 relative to a fibered manifold (£, M, ) (i.e. a lifting
C: E — J1E) is of finite type because Ry = C'(F) is diffeomorphic to E.

A G-structure on a manifold i.e. a principal G-subbundle Hg of the frame
bundle H (M), with G a subgroup of L. = GL(n,R), is a differential system
which may be of finite type or of infinite type.

The obstructions to complete integrability of connections and G-structures lead
to the notions of curvature and “structure tensor”.

II. THE NOTION OF SEMI-HOLONOMIC JETS

1. The introduction of semi-holonomic jets gives a good formulation of the
notion of curvature and “structure tensor”. We shall obtain prolongations of dif-
ferential systems which are fibered manifolds.

Let (E, M, ) be a fibered manifold, J; F its first prolongation. The second non
holonomic prolongation is the set sz = J1J1 . By iteration we define the non
holonomic prolongation of order ¢ by qu =J; jq_lE. These prolongations define
fibered manifolds with base M.

Given two manifolds M and N, the set jq(M, N) of non holonomic ¢-jets from
M to N is defined considering the fibered manifold (£ = M x N, M, prq).
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The semi-holonomic prolongation JoE C JiJ1E is defined as follows; a local
section s : U C M — J1 E is said to be adapted at x € U if s(z) = jL(B0s), where
B : J1E — F is the target map; then the jet jls is called semi-holonomic. This
definition was introduced by C. Ehresmann [E3]. As remarked by J. Pradines, the
subset Jo E of sz, set of all semi-holonomic jets can be defined in the following
way. We have the commutative diagram

J1E ip JE
9 E
JLE 5 E

and JoF = {22 € 11 E; B(z2) = j1B(22)}. In other terms J» E is the inverse image
of the diagonal of J;E xg Ji F by the map (3,j'3). So JoE is a submanifold of
J1hE.

If we consider a local section of J; E which can be written s = j1f (where f
is a local section of E), then s is adapted at each point of its source and jls =
jLitf = j2f. We get a holonomic 2-jet. So JoF is contained in JoF.

By iteration we consider the commutative diagram

— .1 —
J1JgrE i JyJysE
9 E
jq_lE 6 jq—ZE

B As jq_lE C Jqu_zE, the proiection jq_}E — jq_zE 1s the restlliction to
Jg—1E of the target map 8 : JiJ;—2F — J,_»F; the projection JiJ;_1F —
J1Jg—2F is the 1-jet prolongation of 3. We define

JoE = {20 € NIy By Blzg) = 1 B(20)}

The semi-holonomic prolongation qu 1s a submanifold of J; jq_lE and of qu =
J1J~q_1E; JgF is contained in qu.

We also have to consider the prolongation J,4_1F, inverse image of J,_1 F
by the projection 7?3_1 =08 : JuF = J,1E, as well as the sesquiholonomic
prolongation J, F defined by

JoE ={zg € g1 B Blzg) = ' B(z)}-

This prolongation qu is contained in Jiqu_lE.

For ¢ = 2, jzylE and Jo F coincide with JoF.

Other semi-holonomic prolongations can be obtained if we consider the non
holonomic prolongations T;(M) = Tp1 (Tﬁ_lM), &%E =¢l (&%_1E); then the semi-
holonomic prolongations TZ?(M), ¢I E are obtained by iteration, starting with
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adapted mappings from R? to Tﬁ_l(M) or from R™ to €41 (F). The functors &g
and QE?L transform principal bundles into principal bundles. The relation between
prolongations of principal bundles and prolongations of their associated groupoids
as well as formulae 1.4, 1.5, 1.6 are still valid in the semi-holonomic case.

Forp=1, TE(M) =TT(M) (double tangent bundle), qu(M) = T(flq_l(M)).
The semi-holonomic prolongations coincide with the holonomic prolongations.

We have to remark that 7*7™(M) is not a non holonomic prolongation because
T*(M) is a set of 1-jets from M to R, while T*T™(M) is a set of 1-jets from T* (M)
to R. We shall introduce later T*Z(M), set of all semi-holonomic jets order 2, from
M to R with target 0.

2. We shall give examples of semi-holonomic prolongations which occur natu-
rally in differential geometry:

Example 1. Let (E, M, ) be a fibered manifold and C' : E — J; E be a connec-
tion of order 1. We define the 1-jet extension j'C : JJE — Jy 1 E. It is easy to
check that the lifting j'C'oC : E — J;J E takes its values in JoE. The connection
C is integrable (as a differential system) if and only if J1C' o C' takes its values into
the holonomic prolongation Js F; indeed if we use local coordinates, we are in the
situation of a “total differential” equation and we use Frobenius theorem.

If we start with a linear connection TM — JiTM, by iteration we obtain a
lifting C'q : jq_lTM — quM, called semi-holonomic connection of order g¢.

For a holonomic connection of order ¢ i.e. a lifting Cy : J,_1 £ — J,F, then
J1Cy o C, takes its values in the sesquiholonomic prolongation jq_|_1 E. More gen-
erally for a regular differential system R, — M, fibered submanifold of J,F — M,
we define the sesqui-holonomic prolongation of R, by

Rq+1 == Jqu n jq+1E;

when Rg41 is diffeomorphic to Ry (system of finite type), then according to Frobe-
nius theorem, the system R, is completely integrable if and only if Rq+1 coincides
with Rq+1 .

Example 2. Let w: M — T*(M) be a Pfaffian form; then for any € M, there
exists a function f : U C M — IR such that f(z) = 0 and jlf = w(z); so the
section w is adapted at any point # € M. The 1-jet jlw belongs to T*?(M) (space
of all semi-holonomic 2-jets from M to R or semi-holonomic 2-covelocities). So we
have proved that

J1T*(M) is diffeomorphic to  T**(M) .
The jet jlw belongs to T*?(M) at any z if and if w = j'f i.e. w = df in the

neighbourhood of . So w must be closed.
In terms of local coordinates, we write in an open subset U of M

w= E a;dx’;
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jlw is defined by
ay(z), ..., an(x), 6?(1‘) :
The jet is a holonomic 2-jet if and only if

3ai_8aj ..
927 = Bat (i,j=1,...,n),

with U assumed to be simply connected.

Example 3. For a principal bundle (P, M, ), the prolongation J; P — M is not
necessarly a principal bundle (contrary to €, P — M). But in the case of the frame
bundle H(M), the prolongation J, H(M) — M is endowed with a principal bundle
structure. Indeed we shall prove the following property (due to P. Ver Eecke [Ve]):

Proposition IL.1. There exists a natural diffeomorphism ® from J; H (M) onto
the principal bundle H?(M) where H?(M) is the semi-holonomic frame bundle of
order 2.

Proof. The manifold HZ(M) is a submanifold of €, &, H, inverse image of the
diagonal of ¢, M x €, M by the map (3, j'3); as 3 and j'3 are principal bun-
dle morphisms, we may deduce that FIZ(M) — M is a principal subbundle of
¢, €, M — M. We remark that the projection H(M) — M is also a target map 3
(as HM) =¢, M).

Let s : U C M — H(M) be alocal section of 8. For # € U, the frame h; is the
1-jet ji where ¢ is a local diffeomorphism from an open neighbourhood V of 0
in R™ onto a neighbourhood of x. The map ¢ = so ¢ from V' = V Ne~Y(U) to
H(M) is adapted at 0; indeed (0) = h,. Moreover fo ¢y = fosoyp = |V and
he = ji(Bo); so jiu is an element of H2(M).

Conversely given the adapted map ¥, the map ¢ = [ o 18 a local diffeomor-
phism inducing a section s = 1/ o =1 and a jet jls.

We have proved in [L3], [L5] the existence of a diffecomorphism

&7 J H(M) — HITHY (M),
the image by ®7 of J,H (M) being the principal bundle T4(H) N H?+.

3. A connection C': H(M) — JyH(M) is said to be principal if it is a principal
bundle morphism; then the distribution of horizontal spaces on H is invariant for
the translation of the structure group. We recover the Ehresmann connections.
The connection (' is said to be symmetric if C' takes its values in H*(M), the
holonomic frame bundle of order 2.

III. AFFINE BUNDLE STRUCTURES ON THE SEMI-HOLONOMIC PROLONGATIONS

1. Let (E, M, n) be a fibered manifold. We shall denote by 7? the projection
qu — M, by 7] the projection qu — Jp B (for 0 < k < q with the convention
JoFE = FE). The main property of semi-holonomic prolongations is the following
theorem (proved in [L3] for Banach manifolds).
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Theorem III.1. The projection 7?3_1 : qu — jq_lE defines an affine bundle
structure whose associated vector bundle is (%g_l)*LqE(ﬂ*TM, VE) ie. the pull
back to J,_1 E of the vector bundle, with base F, of the g-linear morphisms from

mTM to VE = ker T'w.

Proof. This theorem is known for ¢ = 1. Let 2, € J, B, 24-1 = 71'3 (zq), y =
ma(zq), ¥ = w(y). As J,E C J1Jy—1E, the projection 7rq_1 is a target map 3. For
any z;, € J1Jg—1 E such that 8(z;) = B(2q) = z¢—1, the jets z4 and z;, which can be
considered as linear maps from 1, M to T, _, J,_1F, satisfy the relation z4 — Z</1 €
L(Ty M, ker T, 74~ 1). Now z belongs to JyE if and only if Blzy) = jlﬁ(z(/]) =
Zq—1; j* B can be considered as a linear morphism T3 : T'J,_1 E — T'J,_» E; so the
condition j!3(z ’) = jlﬁ(zq) is equivalent to T, _, 3 (2g — 2) = 0 i.e. 2y — 2, €
L(Ty M ker T, _, Tye 2) If the theorem is true for the projection Jq 1E — jq zE

the condition is equivalent to: 2y — z; € L(T: M, L9~ YT M, VyE)) i
2g — 2 € LY(T, M, VyE) . -

As we deal with finite dimensional manifolds, we may write:
LT, M,V,E) =V, E@ QT M.

In the case of the prolongations J q,q—1 15 and J E (see section II. 1) the inverse
image of z4_1 € Jy—1 E by the projection Jqq 1E — Jy_1 E (resp. J E— J,_1E)
is an affine space whose associated vector space is Vy I ® @917 M (resp VuE ®
QY2 M @ T; M); here O is the multiplication in the symmetric algebra of the
tensor algebra of TF M. It is known that the inverse image of z;_y € J,_ 1 Ein J, F
is an affine space whose associated vector space is Vy E @ Q%1 M.

As was done by C. Ehresmann [E3] for T4 (IR¥), we define by iteration local co-
ordinates on qu. Let (2!, y%, Yis s y}xl,...,jq_l) be local coordinates in the neigh-

bourhood of z,_1 € jq_lE; then a section s : U C M — jq_lE is adapted at

v = 7 Y(z4—1) if it is defined by functions yo‘(xl,...,x”),yf(rl,...,x”),...,
Y Jq_l(xl,...,x”) such that for «* = o (Where a' are the values at z of
xl""’xn) Ey ( ) l‘] dy] Zy]1]2( ) xh "dy?1,~~yjq—1(al) =
Zy‘;?‘lqu(a )da:h. Then (z° S YSs "’y31,~~~,jq) constitute a system of local coor-

dinates on J,E around jis.

For J,E we have local coordinates (z',y,y%,..., yjl.“jq_l,y}?‘lqu) with the
conditions: for & = 2,...,j,, yg(j1)~~~0'(jk) = yj, j. for any permutation on
(1,... k).

For quq_lE we have this condition only for k = 2,...,j,_1. For qu C quq_lE
we must add the condition: the iy, j, are symmetric with respect of the (¢ — 1)

first indices.

2. In this section we fix an element z,_1 € Jy_1 E; let y = ﬂg_l(zq_l), = 7(y)
its projections on £ and M. We shall denote by z, and Z</1 elements of J, 41 F

such that 7?3_1(zq) = ﬁ'g_l(z(’]) = Zg-1.
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An element 2, of J, ,_1 F belongs to qu (resp. J4E) if and only if
g — 2 €VYE (O ' T M @ Ty M) for  z; € J,B
(resp. 2z — 2z, €V, E@ (OT; M) for 2, € J,F).

These conditions are independent of the choice of zj in JyE (resp. J,E). Let
Sy be the projection:

VyE @ (@1T; M) = Vy,E @ (OYT; M)
defined by

1
Sy(v®u):EZv®0'u, for veV,E, uwe!T, M,
" oeP,

P, being the group of permutations of [1, ¢].
Let A, be the projection

VyE @ (@%1; M) — Ker S,

defined by
Ajveu)=v0u—Sy(vu).
As Ker A, =image Sy, if 2; € J I/, then Ay (2 —z;) in independent of the choice
of Z</1 in JoE. So we have defined a mapping

V. quq_lEﬁ (7?3_1)_1(zq_1) — Ker 9y

such that A (2q) = Ay(zq — Z</1) .
We remark that Ker A.,_, = J, N (ﬂg_l)_l(zq_l).

We shall show that the mapping
Seqor t2g = Zg = 2g — Az (29)

takes its values in J, £ Indeed for z; € J,F, we have Z, — z; = Sy (24 — 2); from
a previous remark, 7, belongs to J, /.
Let Wy = J.,_,(2¢) = 24 — 2A.,_,(24); this element W, satisfies the relation

Zq = % So we have an involution [J,,_, : 2z, — W, acting on quq_lE N
(73_) " (zgm1). )

With the same process for all elements of J, ;1 E/, we obtain a contradiction & :
quq_lE — JyF and an involution J : quq_lE — Jiqu_lE. Using local coordinates
we see that & and J are differentiable.

We remark that the maps § and 87 coincide as S|J E is the identity map.

If we consider the restriction of J to qu, its image s qu. In this case the image
of the mapping A.,_, is V, E® (O Ty M) @ (A*T; M), as was proved in [L2] and
[L3]. Then this operator coincides with the restriction of the cohomology operator
§ introduced by D. Spencer. Using local coordinates (z!,y%, Yis s yjo»‘lyqu_qu)
satisfying the conditions of symmetry explained in section I11.1 we obtain for the
expression of A the quantities yjo»‘lyqu_qu — y‘?lpwyjqjq—l.

From these developments, we deduce

Zg—1
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Theorem ITL.2. Given a fibered manifold (E, M, ) there exists for the prolon-
gation J, o1 I a natural contraction § : J, 41 F — J,F and a natural involution
J g g-1E — Jg 41 E such that j(qu) = qu and J|J,E = id. The maps S

and J may be expressed as follows:
S(zq) = 24 — Alzq) T (zq) = 24 — 2A(2q)
where A is a mapping from quq_lE onto the kernel of the projection: VE ®
(Im*TM) - VE @ (Ofn*TM); this map A vanishes on J,E.
Remarks.
1°) The projectors A, and Sy were introduced in [L2] and [L3].

2°) If ¢ = 2, then Jo  F = JoF = J,FE. The mapping A takes its values in
VE @ (A?T} M). We recover the involution introduced by J. Pradines [P] utilizing
other methods (see section V).

Previously I. Kolaf has introduced the symmetrization § on Jy 1 £ for any ¢
[K5] as well as the notion of “equivalence with respect to curves”.

3°) When (E, M, ) is a vector bundle, we have the following exact sequences
of vector bundles with base M.

0= Eo(QOT"M

0= Fe@T"M

0= Fe@T"M

0= Eo (O 'T"MeT"M

= JgF = Jy 1 B =0
= JuE = J; 1 E— 0
— Jygq1 B = Jyo1 B =0
— JyE — J, 1 E =0

— e e e

4°) The theorem can be extended to the spaces J99~1 (M, N) and J¢(M, N) in
particular to T;’q_l(M), T;(M), CLI=1 (M), €2 (M).

I'V. CURVATURE, TORSION, “STRUCTURE” TENSOR

1. As was seen in example 1 of section II, given a connection C' : £ — J, F,
where (E, M, 7) is a fibered manifold, the map j! C'oC takes its values in JoE. From
theorem III. 2, we deduce a morphism A : JoE — VE @ (A’7*TM). Combining
with the lifting j'C o C' we get a morphism

0: B = VE@ (A7 TM)

which vanishes if and only if j1C o C takes its values in Jo F i.e. if the connection
is integrable. The map g 1s called the curvature of the connection.

Similarly for a connection of order ¢ i.e. a lifting Cy : Jy_1 £ — J,F/, the map
jlc'qu'q takes its values in the sesquiholonomic prolongation jq_|_1 E. We have seen
that the connection, considered as a differential system, is integrable if j'C o C
takes its values in J,41 £. The curvature, obstruction to integrability, is the map
0, = Ao j1Cy o C,. This map g4 is a morphism of fibered manifolds with base E;

04 Jgm1 E = VEQ (QU ' T*M) @ (A*T*M).
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2. Let us consider example 2 of II. 1. A Pfaffian form w : M — T* M induces
a connection C' : Fy — J1 Ey, where Ey is the trivial bundle M x R and Jy Fy =
T*M @ Ey; this connection is defined by C'(xz,t) = (w(#),?); the curvature is the
differential dw.

3. Let us consider example 3 of II. 1. Let C' : H(M) — JH(M) = H*(M) be
a principal connection on H(M). As H*(M) = €2 (M), according to remark 4°)
concerning theorem II1.2, we define a contraction § : H2(M) — H?(M) = €2 (M)
and an involution J : H?*(M) — H?*(M). The mappings H(M) = &,(M) —
€2(M) and €,(M) — €2(M) defined by S o C and J o C are also principal
connections. The connection & o C' is symmetric. The obstruction to symmetry for
C' is the torsion.

It i1s known that C induces linear connections TM — JiTM and T*M —
J1T* M , defined locally by Christoffel symbols F;k The connection defined locally
by f;k = FJ’C;J 1s symmetric. The torsion is defined by T?Zk = F;k — sz; it
depends on the connection itself while the curvature depends on j'C' o C; locally
the curvature is function of the Christoffel symbols and their first order derivatives.
It is an obstruction to the integrability of the connection i.e. to the property that

jTC o C takes its values in JoH.

4. Let us consider a G-structure on M i.e. a principal G-subbundle Hg (M) of
the frame bundle H(M). To simplify we shall write Hg and H instead of Hg(M)
and H(M). The semi-holonomic prolongation of order ¢ of Hg is the intersection

Hg+1 = QEZ(Hg) N H ! ;

so 1t 1s defined by iteration as the kernel of the double arrow

¢, 1, ¢, HL!

HE

and the mapping lffgl'l — M defines a principal bundle structure. Moreover the
mapping lffgl'l — H¢ is surjective. The prolongation lffgl'l is also the image of
JyHg by the diffeomorphism @, : J,H — H! (see section I1.1).

The holonomic prolongation Hg"l of He is defined by

HE = gt ngE .

It is not necessarily a principal bundle.

A necessary condition for the G-structure Hg to be integrable in the sense of
differential systems (see T) is the surjectivity of the mapping Hg"l — Hg; if this
condition is satisfied, the G-structure is said to be g-integrable.

It was proved in [L5] and [L7] that the following conditions are equivalent
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a) the G-structure is ¢-integrable

b) Hg"l is a principal subbundle of Ht! and of Hg"l

c) there exists principal bundle morphisms Hg — lffgl'l which take their values
in HEH

G

The “structure tensor” was introduced to express the g-integrability of a G-
structure. First C. Ehresmann [E2] and D. Bernard [B] introduced this “tensor”
at the order 2. Then many mathematicians worked on this higher order; among
them D. Lehmann [Leh], P. Molino [M] without utilizing semi-holonomic jets, P.
Yuen [Y] as well as I. Kol4f.

In [L2] and [L5] we proceeded as follows. Let L+t (resp. LZt1) be the structural
group of the principal bundle H4t! (resp. H4t1). To the projections Hit! — H
and H9t' — H| there corresponds the projections LIt — L, and LIt! — L,,
where L, = GL(n,R). The group Lit! is the semi-direct product L, x NZt1
where N9+! is the kernel of the projection L4t! — L,. Similarly the group LI+t
is the semi-direct product L, x Nt! and G+t (structural group of lffgl'l) is
the semi-direct product G x G‘f“, where G‘f“ is the kernel of the projection
G G.

For every h € Hg, let (H4t1), and (ﬁg+1)h the inverse images of h by the
projections Ht! — H, Hg"l — Hg. If we fix hgq1 € (H?T1),, then for ﬁq+1 and
7zﬁ1+1 elements of (HLT )5, we have hyy1 = hyg1s, hgy1 = hqp15g where s € NIt1,
g € GISo with (Hg+1)h is associated an element g ,, of N+ /GIT When
hgt1 describes (HTY),  then gy, (h) described an orbit of the group Nt acting
on N,‘{"’l/é(f-l'l. We deduce the “structure tensor”

) Ta+l /gt 1
ag Ha = (N [GIF) N+
We say that o, “vanishes” if aq(Heg) is the orbit of the equivalence class of the
unity of N2t1 condition equivalent to the following: for every h € Hg, the inter-
section (Hg"l)h N (H9*YY), is non empty.

For ¢ = 1, we recover the structure tensor of C. Ehresmann. Similarly we could
define another “structure tensor” as a mapping

By + Ha — (NI NG+ [G1H

fixing first 71<1+1 € (Hg"’l)fb and COI}sidering hgt1, h£1+1 in (HItYY,.
For ¢ = 1, the groups N2, N2, G? are abelian. Then 3, takes its values in

where A =1—.5 and g is the Lie algebra of . We recover the “tensor” introduced
by D. Bernard [B].
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V. DOUBLE VECTOR BUNDLES (J. PRADINES [P])

1. Let us consider the triplet (£, M, 7) where &£ is a set, M a differentiable
manifold and 7 : £ — M a surjective map.

Definition V.1. The set £ is endowed with a double vector bundle structure (with
double base M) if there exists an atlas A on & satisfying the following conditions:

1°) Each local chart C, is a bijection @, from 7=1(U,) onto Uy x R™1 x R2 x R™0
compatible with the projections 7 and pri; on U,. Here U, is an open subset of
M and the family (Uy)qer is an open covering of M.

2°) The change of local chart 5 o 81 over U, N Us may be expressed as
(Vl) (l‘,Xl,Xz,Xo) — (x,ul(x) . Xl,UQ(l‘) . Xz,Uo(l‘) . Xo —|—w(x) . (Xl,Xz))

with © € UsNUg; u;(j = 1,2,0) is a differentiable map from U, NUp to GL(n;,R),
w is a differentiable map from U,NUg to the set £?(IR™1,R"2; R™0) of bilinear maps:
R™ x R"2 — R™_ This atlas defines on £ a differentiable manifold structure for
which 7 is a submersion.

2. From formula (V.1), it can be deduced the following properties:

1°) The local conditions X3 = 0, Xy = 0 are independent of the chart and
define a submanifold & of €. Likewise the conditions X3 = 0, Xg = 0 (resp.
X; =0, X2 = 0) define a submanifold &; (resp. &).

Moreover the restrictions 7wy, mq, mg of m to £, &2, & define on these submani-
folds vector bundles structures, with base M.

2°) There exists a projection tw; (resp. ws) from £ onto & (resp. £2) whose
local expression is

(l‘,Xl,Xz,Xo) — (l‘,O,XQ,O) (resp. (l‘,Xl,Xz,Xo) — (l‘,Xl,0,0)) .

These projections w; and wy define on & vector bundle structures with bases
&1 and &;. For the first one the operations are

A, X1, Xo, Xo) = (2, A X1, X2, A X))
(2, X1, X0, Xo) + (2, X7, X0, X{)) = (2, X1 + X], Xo, Xo + X{) .
For the second one the operations are
Az, X1, Xo, Xo) = (2, X1, AX2, AX0)
(2, X1, X0, Xo) + (2, X1, X}, X{)) = (2, X1, Xo + X}, Xo + X7) .
We remark that
(V.2) r=mow =mows and wi|fy=m, wo|&1=m.

If we consider the vector bundle & @& &; with base M and projection (my, ma),
we obtain a surjective map @ = (twy, ww2) from & to & & & such that

S ={ye& =(y) =)}
In this section we have identified the zero section Op of any vector bundle with
its base B for B = M,&;,&>. According to J. Pradines [P], the vector bundle
(&, 7o, M) will be called the “heart” of the double vector bundle.
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Examples. 1) Let P : E — M be a vector bundle; then £ = T'E is endowed with
a double vector bundle for which

T=Pop, &1=TM, & =F, w1 =TP, ws=p

(where p is the projection TE — F).

As was proved in [L8], the heart & is the restriction to the zero section Opr of
the vertical bundle V E = ker T'P. This vector bundle & is isomorphic to E. If we
consider E as a groupoid for which @ = 7 = P, the heart & is the Lie algebroid
of E.

2) In the particular case of the tangent bundle p : TM — M, then £ = TTM
and &1, &, &y are isomorphic to T'M as vector bundles; but we have remarked in
[L8] that & is a subspace of T?M (set of holonomic 2-jets from R to M with
source 0) and the action of R on & (considered as a subspace of &) is different
from the action of R on T'M .

3) In the particular case of the cotangent bundle ¢ : T*M — M, then & =
TT*M and &1, &2, & are isomorphic to TM, T* M, T* M. The Liouville form p on
T* M may be defined through the projection w : TT*M — TM & T*M. As seen
in [L8] the duality induced by the symplectic form du maps & onto T*M.

These examples lead to the notion of soldering (strict soldering in the termi-
nology of J. Pradines).

Definition V.2. Let £ be a double vector bundle with base M; a 1-soldering
(resp. 2-soldering) of & is a vector bundle isomorphism o from & (resp. &) onto

&o.

In example 1, there exists a 1-soldering as & = E and &y is 1somorphic to E.
In example 3, the 1-soldering is defined by the symplectic duality. In example 2
(€ = TTM) there exists also a 2-soldering.

For a double vector bundle £ endowed with a 1-soldering, there exists adapted
local charts such that the local expression of the 1-soldering o is (2, X,0,0) —
(2,0,0,X).

Definition V.3. Let (£, M,x) and (&', M’ ') be double vector bundles, f a
differentiable mapping from M to M’. A mapping ¢ : £€ — &' will be called a
f-double vector bundle morphism if for any * € M, there exists a local chart
c= (U,0,R" x R"2 x R™) and a local chart ¢ = (U’, g/ R™ x R x }R”g) of &
such that the local expression ¢ o f o #~! of ¢ by means of these local charts is
written:

(V3) (l‘,Xl,Xz,Xo) — (f(l‘), al(x) . Xl, az(l‘) . Xz, ao(l‘) . Xo + b(l‘)(Xl,Xz)) s
where z € U, f(U) C U’, a; (j=1,2,0) is a differentiable map from U to L(}R”’,R”Il),

b is a differentiable map from U to the set LZ(RM,RM;R”B) of bilinear maps:
R" x R"2 — R The set of all these morphisms will be denoted by L(E,E).



INTRODUCTION TO THE THEORY OF SEMI-HOLONOMIC JETS 187

The local components of g are (f, a1, a2, (ao,b)). Double vector bundle mor-
phisms can be composed. If g € £(&,&') and ¢’ = L(E',E"), then g'og € L(E,E"),

with the composition law

(V.4) { (f', ), db, (@), b)) © (f, a1, as, (ao,b))

:(f’of,(a’lof)~a1,(a/20f)~a2,(a60f)~a0,b”)

with 8" = (af o f) - b+ (b/ o f) - (a1, aq).

For any element of £(&£,&’) the restriction of g to each & (¢ = 1,2,0) is a
vector bundle map ¢; into &/; also g is a vector bundle map for the vector bundles
(£,&61, @) and (&, &2, @7%).

If £ and & are endowed with 1-solderings the morphism ¢ will be said to be
1-soldered if

/
Jo o0 =0 0O(gs,

where o : &5 — & and o : & — &) are the 1-solderings. In terms of adapted
local charts, the local expression (f,a1,as, (ag,b)) of a l-soldered morphism is
characterized by a1 = ag. Double vector bundles with base reduced to a point (for
instance the restriction TTM |, of the double tangent bundle to a fiber T; M) and
morphisms between them are called elementary. Utilizing formula (V.4) and the
composition law between non holonomic jets introduced by C. Ehresmann [E3], J.
Pradines has proved the following

Proposition V.1. There exists a diffeomorphism between the manifold sz,y (M, N)
of non holonomic 2-jets from M to N with source x € M, target y € N and
the manifold £L,(TTM|,,TTN|,) of elementary double vector bundle morphisms
which are 1-soldered.

Utilizing the notion of symmetry in double vector bundles, J. Pradines has intro-
duced an involution J in the set L(TTM|,, TTN|,) of all elementary double vec-
tor bundle morphisms. But this involution does not keep invariant
Lo(TTM|y, TTN|y). On the other hand the subset of £,(TTM|.,TTN|,) which
corresponds to the set szyy(M, N) is transformed into itself by [J. So a natural
involution [J : szyy(M, N) — szyy(M, N) is obtained and each holonomic jet is
invariant by J.

These results have been interpreted by Janyska-Koldf [JK] (see also [J]) as
follows: an element Y of szyy(M, N) is a 1-jet jls where s is a local section U C
M — Jxlyy(M, N) such that s(z) € L(TyM,T,N). For any u € U, s(u) is a
map S, : TyM — TN which defines a map S : TM|U — TN; for v € TM|U,
S(v) = s(p(v)) - v where p is the projection TM — M. The 2-jet Y is represented
by an element pY of the restriction of T'S to TTM|,.

Utilizing local coordinates, the authors show that the composition law in non
holonomic 2-jets can be expressed as

w(Z oY) = (pZ)o (uY).
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The natural involution J : TT'M — TTM transforms TT M|, into itself and
induces an involution [J, : TTM|, — TTM|,.
Similarly we define 7, on TTN|y. The involution

T JHM,N) = J*(M,N) is defined by
WIX)=TyopXoJs.

The natural transformations of JigyzE have been studied by G. Vosmanska.

S

[CK]
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