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SOME CLASSES OF LINEAR N-TH ORDER
DIFFERENTIAL EQUATIONS
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Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT. Sufficient conditions for the n-th order linear differential equation are

derived which guarantee that its Cauchy function K, together with its derivatives
'K
atl . . . . . . .
the linear differential equations. Further properties of these classes are investigated.

,t=1,...,n—1, is of constant sign. These conditions determine four classes of

1. INTRODUCTION

In the last fourty years the theory of ordinary linear differential equations has
been intensively developed. O. Boruvka began the systematic study of global pro-
perties of the second order linear differential equations. He summarized his results
in the monograph [1]. The results on higher order equations have been brought
in monographs written by several authors, among them by M. Gregus [5], I. T.
Kiguradze-T. A. Canturija [7], F. Neuman [9]. The results from that theory are
often used to solve the problems in nonlinear differential equations, see [12].

Consider the n-th order (n > 1) linear differential equation

(1) (L(y) =) o™ + > pet)y™= =0,

where the coefficients p, € C(I,R), k =1,...,n,and I = [a,00), —00 < a < 0.
The sign of the Cauchy function for (1) K = K(¢,s), t,s € I, plays an important
role in the Caplygin comparison theorem [10], p.99. If (1) is disconjugate in I,
then K(t,s) has a constant sign for t > s as well as for ¢ < s, ¢,s € I. In the

paper sufficient conditions will be given in order that not only K, but also aa—ltK,—,
t=1,...,n—1, be of constant sign in both mentioned cases. The considerations
from [13] will be extended here to the full equation (1). Throughout the paper,

only real functions will be dealt with.

1991 Mathematics Subject Classification: 34A30, 34A40, 34DO05.
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Sometimes the following assumptions will be required:

n t k-2
(H1) Pl(s)-l-Z/ pk(u)%dugo for all s,t €I, s <t;
k=27% ’
n t (u—s)k_z
(H2) Pl(s)-l-Z/ pk(u)wduzo forall s,t e, s <t,
k=27% ’
¢ noot (u — s)k=?
/ [p1(s) + Z/ pk(u)wdu] ds<1 forall tel;
a k=2v"% o :
n s k=2
(H3) —P1(5)+Z/ pk(u)%dugo forall s,tel,t<s;
k=271 o :
n s k=2
(H4) —Pl(s)-l-Z/ pk(u)%duzo for all s,t €I, t<s,
k=21 s
T n s (u_s)k—Z
/ [—Pl(s)—l—Z/ pk(u)wdu]ds<1 forall t, Tl t<T.
t k=21 o ’

Remark 1. If p1(¢) = 0 in I, then hypothesis (A4) in [13], p. 350, implies (H1)
and (H3).

Remark 2. If all pi(t) < 0, ¢t € I, &k = 1,...,n (all px(t) > 0, ¢t € I,
k=1,...,n, >y f;pk(u)%du < 1 for all t > a), then assumption
(H1) ((H2)) is satisfied. Similarly, if (=1)*pp(t) < Oforallt € I, k =1,...,n
k—1
(=Dfpat) 2 0forallt € I k= 1,...,n, Th_, [ (=) pe(w) Ty—du < 1
forall t,T € I,t <T), then assumption (H3) ((H4)) is satisfied.
We shall also use the assumptions:

(H1U) Al pp(t) <0, tel, k=1,... n;
(H2") Al pr(t)>0,tel, k=1,... n,

n_opt k=1

Z/ pk(u)%du < 1forall t > q;

a (k_ 1)'

k=1
(H3') The functions (—=1)*pi(t) <0, t €T, k=1,...,n;
(H4") The functions (—=1)*pi(t) >0, t €1, k=1,...,n,

n T k—1
T —
> j/t (—1)kpk(u)%du <lforallt,T€l, t<T.
k=1 ’
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2. PRELIMINARIES
The following lemma is a slight modification of Lemma 1 in [13], p. 351.

Lemma 1. Let to € I, yi, i = 0,...,n — 1, be arbitrary numbers. Then the
initial value problem

(2) Ly) =0, yD(te)=wh, i=0,...,.n—1,

is equivalent to the following Volterra’s integral equation

(3) y () = g(t) + /tt A(t, s)y"Y(s)ds, t € I,

S—toj n+k

“ T 3 [ e

j=0 k=n—j
n k2

(5) At s) = —pi(s Z/ pr(u U_S) du, t,s€l

Proof. Integrating equation (1) from g to ¢ and taking initial conditions (2) into
consideration, we get

S0 =i = [ e sy
n t k=2 n k+1 s s —u
(6) _kz—z/fup (Z : S_tO)l—i_/tu ﬁy(n Du)d )d5~

Comparing (6) with (5) in [13], p. 351, we obtain that (6) can be put into (3)
where g is determined by (4) and A by (5), respectively.

We remind that it suffices to consider continuous solutions of (3).
Let tg € I, g1 € C(I) and Ay € C'(I x I). We shall study the equation

(7) z(t) = g1(t) —|—/t Ay (t, 5)x(s)ds

either on the interval [tp, o0) or on the interval [a,tg] if @ < tg. In both cases
equation (7) has a unique continuous solution and the method of successive ap-
proximations can be applied on each compact subinterval [b, ¢] of these two inter-
vals in the space C([b, ¢]) provided by the sup-norm ([8], pp. 15, 26). Both spaces
C([to,o0)) and C([a,tg]) can be partially ordered by natural ordering. Then the
linear operator

Tx(t):/t Aq(t, s)x(s)ds
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is nondecreasing (nonincreasing) in (C([tg, 00)), <) if A1(¢,s) > 0 (A1(¢, s) < 0) for
tg < s <t < oo, while T is nondecreasing (nonincreasing) in (C([a,o]), <) when
Ai(t,s) <0 (Ar(t,s) > 0) for a <t < s < ty. Choosing the zero approximation
2o = 0 we get the following lemma which extends Lemma 3 in [11], p. 331 (compare
with Lemma 2 in [13], p. 352). Another proof of that lemma is given in [2], [3]
and [4].

Lemma 2. Let the functions g1 € C(I), A1 € C(I x I). Then equation (7) has a
unique continuous solution x in I. Moreover, if g1(t) > 0 in [ty, o) and

A1(t,s) > 0for tg <s<t<oo (Ai(t,s)<0fortg <s<t<ooand

(8) / 1(t,8)g1(s)ds > 0 for tg <t < 00),
then
(9) z(t) > g1(t) (z(t) > g1(t) —I—/t A1t $)gi(s)ds), tg <t < oo.

If a < tg, g1(t) <0 in [a,tg] and

Aty s) <0for a<t<s<ty (Ai(t,s)>0for a<t<s<tyand
(10) / 1(t,8)g1(s)ds < 0 for a <t < ty),
then
t
(11) () < g1(t) (z(t) < g1(t) —1—/ A1t s)g1(8)ds), a <t <tg.
to

Now we apply Lemma 2 to integral equation (3) where we take the solution y
of equation (1) satisfying the conditions

(12) ¢ D) =0, i=0,....,n—2(fn>2) y" Dtg) =y £0.

Lemma 3. Let y be the solution of (1) satisfying initial conditions (12). Then
the following statements are true:

(i) If yy~' > 0 and (H1) ((H2)) holds, then

y(n—l)(t) Zyg—l ( (n— 1)( 1_/ [pl

(13) +Z/pk u_s) du]ds), to <t < o0
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and
(14) y(t) >0, i=0,...,n—2(ifn>2), to <t < 0.
(i) If y2 =1 < 0 and (H3) ((H4)) holds, then

y=(1) < ot (y“‘”(t)éyg‘l(l—/tD[—Pl(s)

u — 5 k 2
(15) +Z/m )CHMJSK%
and
(16) (=)' () >0, a<t <ty i=2,...,n(ifn >2).

Proof. Tn Lemma 2 we put g1(t) = yi~ ', t € I, A1(t,s) = A(t,s), t,s € [ and
x(t) = y"~V(), t € I. A is determined by (5). If 2~ > 0, then (H1) ((H2))
implies (8) and, in case yi~! < 0, from hypotheses (H3) ((H4)) we get (10). Then
(9) gives (13) and (11) implies (15). In view of (12), inequalities (13) lead to (14)
and inequalities (15) to (16).

Remark 3. If y satisfies (12) with =" > 0 and (H3) ((H4)) holds, then by

Lemma 3 we have

S0 > I > - / i)

u _ 5 k 2
(17) +Z/m )thaﬁgm
and
(18) (=D)Fy =D (@) >0, a<t<ty, i=2,...,n(ifn>2).

Under condition (H1') or condition (H3') stronger results can be proved.

Lemma 3°. Suppose that (H1') holds and let y be the solution of (1) satisfying
at ty € I the initial conditions

y Dty =y >0, i=0,....n—1.
Then
(19) y(i)(t)Zyé forallt>1ty, i=0,...,n— 1.

Moreover, if p,, is not identically zero in any subinterval of I and y is a nontrivial
solution of (1), then

(20) y(t) >y forallt>tg, i=0,...,n—1.
Proof. Since g(¢) > 0 for all ¢ > ¢y and A(t,s) > 0 for {5 < s < ¢, by Lemma 2

we have y(*=1 (1) > g(t) > y(()n 1), t > tp. Hence (19) is true. In view of (1), the
second statement easily follows.

The following lemma can be similarly proved.
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Lemma 3”. Suppose that (H3') holds, n = 2m + 1 (n = 2m) and ¢ty > a. Let y
be the solution of (1) satisfying the initial conditions

(1’ t) = (=D'yy <0 (=D)'yD(te) = (=1)'y; > 0), i=0,...,n—1L
Then
(D' < (=D'yy  (“1)'yD() > (=1)'h)  for allt,
(21) a<t<tg,i=0,...,n—1.

Moreover, if p,, is not identically zero in any subinterval of I and y is a nontrivial
solution of (1), then

(=17 < (=D'yy (D)) > (=1)'gh)  for allt,
(22) a<t<tg,i=0,....,n—1.
Proof. By the initial conditions (—1)'y) < 0 ((—=1)%y, > 0) and (H3') it follows
n— n—2 94 n to i—n 0—38 J—ntk .
that g(t) = y§ ™ 30725 vh Siicmy S pa(s) (=1 T B ds < 0in [a, 4]
and A(t,s) < 0 for a <t < s <ty. Then Lemma 2 implies that 3= (1) < g(t) <

Y™t a <t <t and (21) is true. The second statement follows from the fact that
in view of (1), (=1 is strictly increasing in [a, o).

3. MAIN RESULTS

Similarly as in [13], pp. 356—358, we can prove theorems on the existence of
monotonic solutions.

Theorem 1. Suppose that (H1) or (H2) holds. Then there exists a solution y of
(1) such that

(23) y () >0 forallt>a,i=0,...,n—1.

Theorem 2. Suppose that (H3) or (H4) holds. Then there exists a solution z of
(1) such that either

(=)D >0 foralltel, i=0,...,n—2,
(24) (=)D >0 in 1,
or
z(t) >0 forall t € I and there exists a to € I such that
z(i)(t) =0 forall t>tp,i=1,...,n— 1.
Remark 4. If p,(¢) Z 0 in any neighbourhood of co, then in Theorem 2 only the
first statement can hold.

Remark 5. Theorem 2 extends the statement of Corollary 2.2 in [6], p. 594.
The fundamental property of equation (1) under assumptions (H1)—-(H4) is
given by the following theorem which can be proved in a similar way as Theorem

3 in [13], pp. 358-359.
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Theorem 3. Let tg € I and let u(t), v(t) € C"(I) be two functions such that
u(i)(to) :v(i)(to), i=0,...,n—1, and
(25) L(u)(t) >L(v)(t) forall tel.

Then the following statements hold:
(i) If assumptions (H1) or (H2) are satisfied, then

u(i)(t) > v(i)(t) forall t >tg,i=0,...,n—1.
(i) If assumptions (H3) or (H4) are fulfilled, then
(=)D () > (=)D (1) forall t,a<t<to,i=0,...,n—1.

Moreover, if there is a {1, tg < t1 Iin case (i) (a < t1 < ty in case (ii)) such that
L(u)(t1) > L(v)(t1), then
u(t) > o D(t) forall t>ty,i=0,...,n—1
(=) tD(@) > (=) D(t) forallt,a<t<t,i=0,...,n—1).
The proof of the following theorem is based on Lemma 3’ and can be proceeded
in the same way as that of Theorem 3’ in [13], pp. 359-360.
Theorem 3°. Suppose that (H1') holds. Let tq € I and let u, v € C™(I) be two
functions such that
u(i)(to) Zv(i)(to), i=0,...,n—1, and
(25%) L(u)(t) >L(v)(t) for all t >ty.
Then ' '
u(l)(t) > v(l)(t) forall t >tg,i=0,...,n—1.
If we apply Lemma 3”7 instead of Lemma 3’, we get the following theorem.

Theorem 3”. Suppose that assumption (H3') is fulfilled, n = 2m+1 (n = 2m)
and tg > a. Let u, v € C™(I) be two functions such that

(=D D(to) <(=1)'vD(t0)  (=1)uD(t0) > (1) (t0)), i=0,...,n -1,
(257)
and L(u)(t) >L(v)(t) forall t,a <t <ty

Then

(=1 D(0) < (=)D (1) (=1)7uD() > (=1 (1))
forall t,a <t <ty,:=0,...,n—1.
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Let ¢ € I. Denote by g, ..., yn—1 the solutions of (1) defined on I which are
determined by the initial conditions

yl(»j)(to) = §;; (the Kronecker symbol), ¢,j=0,...,n—1.

It is clear that for each j € {0,...,n—1} each solution y of (1) such that y/)(t5) = 0
1s a linear combination ZZ;& cpyr. The set of all such solutions will be called

k
the band of solutions of (]jsjof the j-th kind at the point ty. If the wronskian
W(Yo,---,¥j-1,Yj+1, - - > Yn—1) does not vanish on a subinterval J C I, then we
say that this band is regular on J.
The following lemma can be proved in a similar way as Theorem 4 in [13], pp.

360-361.

Lemma 4. Let tg € I (o > a), j € {0,...,n — 1}. Then the band of solutions
of (1) of the j-th kind at tg is regular in (tg,00) (in [a,to)) if and only if for each
t1 > tg (for each t1, a <ty < tg) the solution y of the initial value problem (1),

(12") y () =0, i=0,....,n—2(ifn>2)and y" " D(t)) =427  £0

is such that y\)(to) # 0.
By this lemma the following theorem holds.

Theorem 4. Suppose that (H3) or (H4) ((H1) or (H2)) holds. Then for each
point ty € I (for each point tg > a), each j € {0,...,n— 1}, the band of solutions
of (1) of the j-th kind at ty is regular in (g, 00) (in [a,tg)) and hence the functions
Yo, Yi—1,Yj+1,- - -» Yn—1 form a fundamental system of solutions for a certain
homogeneous linear differential equation of the (n — 1)-st order in (tp,00) (in

[a,t0)).

Remark 6. The notion of the band of solutions has been shown especially fruitful
in the theory of the third order linear differential equations, see [5].
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