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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 127 { 138ON THE VALL�EE{{POUSSIN PROBLEM FORSINGULAR DIFFERENTIAL EQUATIONSWITH DEVIATING ARGUMENTSIvan Kiguradze and Bed�rich P�u�zaDedicated to the memory of Professor Otakar Bor�uvkaAbstract. For the di�erential equationu(n)(t) = f(t; u(�1(t)); : : : ; u(n�1)(�n(t)));where the vector function f : ]a; b[�Rkn! Rk has nonintegrable singularities withrespect to the �rst argument, su�cient conditions for existence and uniqueness ofthe Vall�ee{Poussin problem are established.x1. Formulation of the Existence and Uniqueness TheoremsIn the present paper for the vector di�erential equation with deviating argu-ments(1.1) u(n)(t) = f(t; u(�1(t)); : : : ; u(n�1)(�n(t)))we consider the multi-point boundary value problem of Vall�ee-Poussin(1.2) u(j�1)(ti) = 0 (j = 1; : : : ; ni; i = 1; : : : ;m);where k � 1, n � m � 2,ni 2 f1; : : : ; n� 1g; mXi=1 ni = n; a = t1 < t2 < � � � < tm = b;�j : [a; b]! [a; b] (j = 1; : : : ; n) are measurable,(1.3)1991 Mathematics Subject Classi�cation : 34K10.Key words and phrases: singular di�erential equation with deviating arguments, the Val�ee-Poussin problem, existence theorem, uniqueness theorem.Supported by the grant 201/96/0410 of the Grant Agency of the Czech Republic (Praque)and by the grant 619/1996 of the Development Fund of Czech Universities.



128 I. KIGURADZE, B. P�U�ZA(1.4) f(�; x1; : : : ; xn) : ]a; b[! Rk is measurable for every xj 2 Rk(j = 1; : : : ; n) and f(t; �; : : : ; �) : Rnk! Rk is continuousfor almost every t 2 ]a; b[:Equation (1.1) is called regular, if f(�; x1; : : : ; xn) is summable in ]a; b[ for arbi-trary �xed xj 2 Rk (j = 1; : : : ; n) and | singular otherwise.Previously, the Vall�ee{Poussin problem was mostly considered for equations ofthe form u(n)(t) = f(t; u(t); u0(t); : : : ; u(n�1)(t))both in the regular [2],[9]-[13] and singular [1], [3]-[8], [14] cases. As for equation(1.1), with �k(t) 6� t, (k = 1; : : : ; n) the problem was essentially left unexplored.In this paper we attempt to �ll in this gap in a certain way.We are interested mainly in the case when (1.1) is singular, although the resultsstated below are new also in the regular case.The following notation is used throughout the paper:nij = � ni + 1� j for j < ni + 10 for j � ni + 1 ;�j(t) = mYi=1 jt� tijnij (j = 1; : : : ; n);if � 2 [0; n� n1], � 2 [0; n� nm], thenn1j� = 8>>><>>>: n� �� j for j � n1; � > n� n1 � 1n1 + 1� j for j � n1; � � n� n1 � 10 for n1 < j � n� �n� �� j for j > n� � ;nmj� = 8>>><>>>: n� � � j for j � nm; � > n� nm � 1nm + 1� j for j � nm; � � n� nm � 10 for nm < j � n� �n� � � j for j > n� � ;�j��(t) = 8<: (t� a)n1j�(b� t)nmj� m�1Qi=2 jt� tjjnij for m > 2(t� a)n1j�(b� t)n2j� for m = 2 ;g0 : [a; b]� [a; b]! R is the Green's function of the di�erential equation(1.5) u(n) = 0



ON THE VALL�EE{{POUSSIN PROBLEM : : : 129with boundary conditions (1.2);(1.6) 
j�� = sup�(s� a)��(b� s)����1j��(t) ����@j�1g0(t; s)@tj�1 ���� : a < t; s < b�(j = 1; : : : ; n)1) ;Rk | space of k{dimensional column vectors x = (�j)kj=1 with elements�j 2 R (j = 1; : : : ; k) and the normkxk = kXj=1 j�jj;Rk�k | the space of k � k matrices X = (�ij)ki;j=1 with elements �ij 2 R(i; j = 1; : : : ; k) and the norm kXk = kXij=1 j�ijj;Rk+ = �(�j)kj=1 2 Rk : �j � 0 (j = 1; : : : ; k)	;Rk�k+ = �(�ij)ki;j=1 2 Rk�k : �ij � 0 (i; j = 1; : : : ; k)	 ;if x, y 2 Rk and X, Y 2 Rk�k thenx � y , y � x 2 Rk+; X � Y , Y �X 2 Rk�k+ ;if x = (�i)ki=1 2 Rk and X = (�ij)ki;j=1 2 Rk�k thenjxj = (j�ij)ki=1; jXj = (j�ijj)ki;j=1;r(X) | spectral radius of the matrix X;eCn�1�� ( ]a; b[ ;Rk) | the space of vector functions u : ]a; b[ ! Rk absolutelycontinuous2) together with their derivatives up to order n � 1 inclusive on anysegment contained in ]a; b[ andZ ba (t � a)�(b� t)�ku(n)(t)kdt < +1;eCn�1([a; b];Rk) | the space of vector functions u : [a; b] ! Rk absolutelycontinuous on [a; b] together with their derivatives up to order n � 1 inclusive.1)By Lemma 2.5 in the monography [4], 
j�� < +1 for 0 � � � n � n1, 0 � � � n � nm(j = 1; : : : ; n).2)Vector or matrix function is said to be absolutely continuous, measurable, etc. if all itscomponents have such a property.



130 I. KIGURADZE, B. P�U�ZAClearly, we can consider eCn�100 ( ]a; b[ ;Rk) and eCn�1([a; b];Rk) to be identical,since every element of eCn�100 ( ]a; b[ ;Rk) is a restriction to ]a; b[ of some element ofeCn�1([a; b];Rk).Along with (1.1) we will need to examine the vector di�erential inequality(1.7) ju(n)(t)j � nXj=1Hj(t)ju(j�1)(�j(t))j;where Hj : ]a; b[! Rk�k+ (j = 1; : : : ; n) are measurable matrix functions.We say that problem (1.1), (1.2) (problem (1.7), (1.2)) has a solution in thespace eCn�1�� ( ]a; b[ ;Rk), if there is a vector function u 2 eCn�1�� ( ]a; b[ ;Rk), satisfyingboundary conditions (1.2), which satis�es equation (1.1) (inequality (1.7)) almosteverywhere in ]a; b[.Note that by u(j�1)(a) (by u(j�1)(b)) in (1.2) we mean the right (left) limit ofu(j�1) at a (at b).Theorem 1.1. Let the inequalities�i(t) > a for i > n� �; �i(t) < b for i > n � � 3)(1.8)and jf(t; x1; : : : ; xn)j � nXj=1Hj(t)jxjj+ h(t)(1.9)hold in ]a; b[ and in ]a; b[�Rkn, where Hj : ]a; b[ ! Rk�k+ (j = 1; : : : ; n) andh : ]a; b[ ! Rk+, respectively, are measurable matrix and vector functions, whichfor some � 2 [0; n� n1] and � 2 [0; n� nm] satisfyZ ba (t � a)�(b� t)��j��(�j(t))kHj(t)kdt < +1 (j = 1; : : : ; n);(1.10) Z ba (t� a)�(b� t)�kh(t)kdt < +1:(1.11)Furthermore, let the problem (1.7), (1.2) admit only the trivial solution in thespace eCn�1�� ( ]a; b[ ;Rk). Then the problem (1.1), (1.2) has at least one solutionu 2 eCn�1�� ( ]a; b[ ;Rk).3)If � = 0 (� = 0) then the �rst (the second) inequality drops out.



ON THE VALL�EE{{POUSSIN PROBLEM : : : 131Corollary 1.1. Let the inequalities (1.8) hold in ]a; b[ and the inequality (1.9)hold in ]a; b[�Rn, where Hj : ]a; b[ ! Rk�k+ (j = 1; : : : ; n) and h : ]a; b[ ! Rk+,respectively, are measurable matrix and vector functions, which for some � 2[0; n�n1] and � 2 [0; n�nm] satisfy conditions (1.10) and (1.11). If, furthermore,(1.12) r0@ nXj=1 
j�� Z ba (t � a)�(b� t)��j��(�j(t))Hj(t)dt1A < 1;then the problem (1.1), (1.2) has at least one solution u 2 eCn�1�� ( ]a; b[ ;Rk).Corollary 1.2. Let the inequality (1.9) hold in ]a; b[�Rkn, where Hj : ]a; b[ !Rk�k+ (j = 1; : : : ; n) are measurable matrix functions and h : ]a; b[ ! Rk+ is asummable vector function. Furthermore, let �jHj (j = 1; : : : ; n) be summableand r0@ nXj=1 
j Z ba �j(�j(t))Hj(t)dt1A < 1;where
j = 1(n� j)!2n0j (b� a)n�j�Pmi=1 nij ; n0j = minf1; n1j + nmjg (j = 1; : : : ; n):Then the problem (1.1), (1.2) has at least one solution u 2 eCn�1([a; b];Rk).Corollary 1.3. Let the inequality (1.9) hold in ]a; b[�Rkn, where Hj : ]a; b[ !Rk�k+ (j = 1; : : : ; n) are measurable matrix functions and h : ]a; b[ ! Rk+ is asummable vector function. Furthermore, let there exist H0 2 Rk�k+ such thatr(H0) < 1 and the inequalitynXj=1 
�j �j(�j(t))Hj(t) � H0hold in ]a; b[, where
�j = 1(n+ 1� j)! (b� a)n+1�j�Pmi=1 nij (j = 1; : : : ; n):Then the problem (1.1), (1.2) has at least one solution u 2 eCn�1([a; b];Rk).Theorem 1.2. Let the inequalities (1.8) hold in ]a; b[ and let the inequality(1.13) jf(t; x1; : : : ; xn)� f(t; y1; : : : ; yn)j � nXj=1Hj(t)jxj � yj jhold in ]a; b[�Rkn, where Hj : ]a; b[! Rk�k+ (j = 1; : : : ; n) are measurable matrixfunctions satisfying the conditions of Theorem 1.1. Let further(1.14) Z ba (t� a)�(b� t)�kf(t; 0; : : : ; 0)kdt < +1 :Then the problem (1.1), (1.2) has a unique solution in the space eCn�1�� ( ]a; b[ ;Rk).



132 I. KIGURADZE, B. P�U�ZACorollary 1.4. Let the inequalities (1.8) hold in ]a; b[ and the inequality (1.13)hold in ]a; b[�Rkn, where Hj : ]a; b[! Rk�k+ (j = 1; : : : ; n) are measurable matrixfunctions satisfying the conditions of Corollary 1.1. Let further the condition(1.14) be ful�lled. Then the problem (1.1), (1.2) has a unique solution in thespace eCn�1�� (]a; b[;Rk).Corollary 1.5. Let Z ba kf(t; 0; : : : ; 0)kdt < +1and let the inequality (1.13) hold in ]a; b[�Rkn, where Hj : ]a; b[ ! Rk�k+ (j =1; : : : ; n) are measurable matrix functions satisfying either the conditions of Corol-lary 1.2 or the conditions of Corollary 1.3. Then the problem (1.1), (1.2) has aunique solution in the space eCn�1([a; b];Rk).Example. Consider the di�erential equation(1.15) u(n)(t) = n! mYi=1(t0 � ti)�niu(t0) + c0;where t0 2 [a; b] n ft1; : : : ; tmg, and c0 2 Rk is a nonzero vector. For (1.15) allconditions of Corollary 1.3 are satis�ed, except the condition r(H0) < 1, becausein this case H0 is the unit matrix. We will show that the problems (1.15), (1.2)have no solution. Assume, to the contrary, that there is a solution u. Since theright hand side of (1.15) is independent on t, u has the formu(t) = c mYi=1(t� ti)ni ;where c 2 Rk. Substituting this into (1.15), we get n!c = n!c + c0, which isimpossible, because c0 is a nonzero vector.This example shows that the condition r(H0) < 1 in Corollary 1.3 is optimaland cannot be replaced by r(H0) � 1.x2. Auxiliary Results2.1. Lemmas on Apriori Estimates. For arbitrary j 2 f1; : : : ; ng and u 2eCn�1�� ( ]a; b[ ;Rk) we set�nj = � �� n+ j for j > n� �0 for j � n� � ;�nj = � � � n+ j for j > n� �0 for j � n� � ;�(u)(t) = nXj=1(t � a)�nj (b� t)�njku(j�1)(t)k for a < t < b;�(u)(a) = limt!a �(u)(t); �(u)(b) = limt!b�(u)(t):



ON THE VALL�EE{{POUSSIN PROBLEM : : : 133Note that �(u) 2 C([a; b];R+) for every u 2 eCn�1�� ( ]a; b[ ;Rk). Hence there exists��(u) = maxf�(u)(t) : a � t � bg:Using the de�nition of eCn�1�� ( ]a; b[ ;Rk), it is easy to verify the following twolemmas.Lemma 2.1. Let �, � 2 [0; n], �0 > 0, and h0 : ]a; b[ ! R+ be a measurablefunction, satisfying(2.1) Z ba (t� a)�(b� t)�h0(t)dt < +1:Then the operator � maps the setnu 2 eCn�1�� ( ]a; b[ ;Rk) : ��(u) � �0; ku(n)(t)k � h0(t) for almost all t 2 ]a; b[ointo a compact subset of C([a; b];R).Lemma 2.2. There exists a positive constant �, depending only on �, �, tj andnj (j = 1; : : : ;m), such that for any � 2 [0; n�n1], � 2 [0; n�nm] and any vectorfunction u 2 eCn�1�� ( ]a; b[ ;Rk), satisfying boundary condition (1.2), the followingestimations hold:ju(j�1)(t)j � ���(u)�j��(t) for a < t < b (j = 1; : : : ; n):The following lemma is crucial in the proof of Theorem 1.1.Lemma 2.3. Let � 2 [0; n � n1], � 2 [0; n � nm], Hj : ]a; b[ ! Rk�k+ (j =1; : : : ; n) and h : ]a; b[! Rk+ be measurable matrix and vector functions, satisfyingconditions (1.10) and (1.11). Furthermore, let (1.8) hold in ]a; b[ and let theproblem (1.7), (1.2) have only the trivial solution in eCn�1�� ( ]a; b[ ;Rk). Then thereexists a positive number � such that any solution u 2 eCn�1�� (]a; b[;Rk) of thedi�erential inequality(2.2) ju(n)(t)j � nXj=1Hj(t)ju(j�1)(�j(t))j+ h(t)with boundary conditions (1.2) satis�es the estimations(2.3) ku(j�1)(t)k � ��j��(t) for a < t < b (j = 1; : : : ; n):Proof. By Lemma 2.2, it is enough to prove that there is a positive number �0such that any solution u 2 eCn�1�� ( ]a; b[ ;Rk) of the problem (1.1), (1.2) satis�esthe estimation ��(u) < �0:



134 I. KIGURADZE, B. P�U�ZAAssume there is no such �0. Then for any natural number l there is a solutionul 2 eCn�1�� ( ]a; b[ ;Rk) of the problem (1.1), (1.2) such that��(ul) > l :Put vl(t) = [��(ul)]�1ul(t) :Then ��(vl) = 1 ;(2.4) jv(n)l (t)j � nXj=1Hj(t)jv(j�1)l (�j(t))j+ 1l h(t) :(2.5)On the other hand, by Lemma 2.2,(2.6) kv(j�1)l (t)k � ��j��(t) for a < t < b (j = 1; : : : ; n):Taking into account this and condition (1.8), we get from (2.5)(2.7) kv(n)l (t)k � h0(t) for almost all t 2 ]a; b[;where h0(t) = � nXj=1�j��(�j(t))kHj(t)k+ kh(t)kand h0 satis�es (2.1), as follows from (1.10) and (1.11).By (2.1), (2.6) and (2.7), the sequences (v(j�1)l )1l=1 (j = 1; : : : ; n) are uniformlybounded and equicontinuous on any segment contained in ]a; b[. Therefore, by thelemma of Arcela{Ascoli, we can assume, without any loss of generality, that thesequences converge uniformely on any such segment.Denote by liml!+1 vl(t) = u(t) for a < t < b :Then liml!1 v(j�1)l (t) = u(j�1)(t) uniformly on any segment in ]a; b[:(2.8)By Lemma 2.1, from (2.4), (2.6){(2.8) it follows thatliml!1 �(vl)(t) = �(u)(t) uniformly on [a; b],u satis�es the boundary conditions (1.2) and(2.9) ��(u) = 1 :



ON THE VALL�EE{{POUSSIN PROBLEM : : : 135It follows from (2.5) that for any s, t 2 ]a; b[ we havejv(n�1)l (t) � v(n�1)l (s)j � nXj=1 ����Z ts Hj(�)jv(j�1)l (�j(�))jd�����+ 1l ����Z ts h(�) d����� :Passing to the limit for l ! +1 in these inequalities, then by conditions (1.10),(1.11), (2.6){(2.8) and by the Lebesque dominance theorem we obtainedju(n�1)(t) � u(n�1)(s)j � nXj=1 ����Z ts Hj(�)ju(j�1)(�j(�))jd����� ;ku(n�1)(t) � u(n�1)(s)k � k Z ts h0(�)d�k:Since s and t are arbitrary and (2.1) holds, it follows from these inequalities thatu 2 eCn�1�� ( ]a; b[ ;Rk) and satis�es the vector di�erential inequality (1.7). On theother hand, as we have already observed, u satis�es conditions (1.2) and (2.9).But that is impossible, for the problem (1.7), (1.2) has no nontrivial solution inthe space eCn�1�� (]a; b[; Rn). This contradiction proves the lemma. �2.2. Lemmas on Unique Solvability of the Problem (1.7), (1.2).Lemma 2.4. If the matrix functions Hj : ]a; b[ ! Rk�k (j = 1; : : : ; n) satisfyconditions of Corollary 1.1, then the problem (1.7), (1.2) has only the trivialsolution in the space eCn�1( ]a; b[ ;Rk).Proof. Let u 2 eCn�1�� ( ]a; b[ ;Rk) be an arbitrary solution of the problem (1.7),(1.2). Put v = Z ba (t� a)�(b � t)� ju(n)(t)jdt:Then by Lemma 8.4 and 8.5 from monography [4] and by (1.6)u(t) = Z ba g0(t; s)u(n)(s)dsand ju(j�1)(t)j � 
j���j��(t)v for a < t < b (j = 1; : : : ; n):From these estimates we �nd by (1.7)v � 0@ nXj=1 
j�� Z ba (t� a)�(b � t)��j��(�j(t))Hj(t)dt1A vwhich implies, by (1.12), that v = 0, i.e. u(t) � 0. �Applying Lemma 8.7 and 8.8 from monography [4], one can easily verify thefollowingLemma 2.5. If the matrix functions Hj : ]a; b[ ! Rk�k (j = 1; : : : ; n) satisfyeither conditions of Corollary 1.2 or conditions of Corollary 1.3, then the problem(1.7), (1.2) has only the trivial solution in the space eCn�1([a; b] : Rk).



136 I. KIGURADZE, B. P�U�ZAx3. Proofs of the Existence and Uniqueness TheoremsProof of Theorem 1.1. Let � be a positive constant for which conclusion ofLemma 2.3 holds. For arbitrary t 2 ]a; b[, xj 2 Rk, j 2 f1; : : : ; ng and a naturalnumber l denote(3.1) �j(t; xj) = ( xj for kxjk � ��j��(�j(t))�kxjk�j��(�j(t))xj for kxjk > ��j��(t) ;(3.2) �l(t) = � 1 for t 2 �a+ b�a2l ; b� b�a2l �0 for t 62 �a+ b�a2l ; b� b�a2l � ;(3.3) fl(t; x1; : : : ; xn) = �l(t)f(t; �1(t; x1); : : : ; �n(t; xn))and consider the di�erential equation(3.4) u(n)(t) = fl(t; u(�1(t)); : : : ; u(n�1)(�n(t)))with boundary conditions (1.2).By (1.3), (1.4), (1.8){(1.11) and (3.1) the vector function fl : [a; b]�Rnk! Rkbelongs to the Caratheodory class and satis�es in ]a; b[�Rnk the inequalitiesjfl(t; x1; : : : ; xn)j � nXj=1Hj(t)jxjj+ h(t) ;(3.5) kfl(t; x1; : : : ; xn)k � hl(t) � h0(t) ;(3.6)where h0(t) = � nXj=1�j��(�j(t))kHj(t)k+ kh(t)k ; hl(t) = �l(t)h0(t) ;h0 satis�es condition (2.1) and hl is summable in [a; b]. Applying the Schauder'sprinciple and condition (3.6), it becomes clear the problem (3.4), (1.2) has a solu-tion ul 2 eCn�1([a; b];Rk) and(3.7) ul(t) = Z ba g0(t; s)fl(s; ul(�1(s)); : : : ; u(n�1)l (�n(s)))ds:Since eCn�1([a; b];Rk) � eCn�1�� ( ]a; b[ ;Rk) we have ul 2 eCn�1�� ( ]a; b[ ;Rk). On theother hand, by (3.5) and (3.6), for almost every t 2 ]a; b[ we have the inequality(3.8) ku(n)l (t)k = kfl(t; ul(�1(t)); : : : ; u(n�1)l (�n(t)))k � h0(t)



ON THE VALL�EE{{POUSSIN PROBLEM : : : 137and ul is a solution to the problem (2.2), (1.2). Consequently, by the choice of �,we get the estimates(3.9) ku(j�1)l (t)k � ��j��(t) for a < t < b (j = 1; : : : ; n):By (3.1), (3.8), (3.9) and the lemma of Arcela{Ascoli we can assume, withoutany loss of generality, that the sequences (u(j�1)l )1l=1 (j = 1; : : : ; n) are uniformlyconvergent on every segment in ]a; b[. Denote(3.10) u(t) = liml!1 ul(t):Then by (3.1){(3.3) and (3.9) for almost every t 2 ]a; b[ we have(3.11) liml!1 fl(t; ul(�1(t)); : : : ; u(n�1)l (�n(t))) = f(t; u(�1(t)); : : : ; u(n�1)(�n(t))):On the other hand, by (1.6) and (3.8)(3.12) kg0(t; s)fl(t; ul(�1(s)); : : : ; u(n�1)l (�n(s)))k � 
1��(t)(s� a)�(b� s)�h0(s):From conditions (3.1), (3.10){(3.12) and from Lebesque's dominance theorem weobtain that u(t) = Z ba g0(t; s)f(s; u(�1(s)); : : : ; u(n�1)(�n(s)))dsand ku(n)(t)k � h0(t) for almost all t 2 ]a; b[. Consequently, u 2 eCn�1�� ( ]a; b[ ;Rk)is a solution of the problem (1.1), (1.2). �In order to verify Theorem 1.2, it is enough to note that (1.13) and (1.14)implies (1.9) and (1.11), where h(t) = f(t; 0; : : : ; 0).By Lemmas 2.4 and 2.5, Theorems 1.1, 1.2 imply Corollaries 1.1{1.5.References[1] BessmertnychG. A.,On existence and uniqueness of solutions of multipoint Vall�ee-Poussinproblem for nonlinear di�erential equaitions, Di�erentsial'nyje Uravnenija 6, No 2 (1970),298-310 (in Russian).[2] de la Vall�ee-PoussinCh. J., Sur l'equation di�erentielle lineaire de second ordre. D�etermina-tion d'une integrale par deux valeurs assign�ees. Extension aux �equations d'ordre n, J.Math. pures et appl. 8, No 2 (1929), 125-144.[3] Kiguradze I. T., On a singular multi-point boundary value problem, Ann. Mat. Pura edAppl. 86(1970), 367-399.[4] Kiguradze I. T., Some singular boundary value problems for ordinary di�erential equations,Tbilisi: Tbilisi University Press (1975) (in Russian).[5] Kiguradze I. T., On some singular boundary value problems for ordinary di�erential equa-tions, Equadi� 5 Proc. 5 Czech. Conf. Di�. Equations and Appl. Leipzig: Teubner Ver-lagsgesselschaft (1982), 174-178.
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