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Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT. We give an equivalence criterion on property A and property B for delay
third order linear differential equations. We also give comparison results on properties
A and B between linear and nonlinear equations, whereby we only suppose that

nonlinearity has superlinear growth near infinity.

INTRODUCTION
Consider the third—order nonlinear equations with deviating argument of the form

(N.h) (1% (%z'(t)) ) (O f(x(h()) = 0

and
A TRY B
(N4.h) (— (—) z (t)) ) g f(z(h(1))) = 0,

where

rp, g, h C%a, ),R), r(t)>0, pt) >0, ¢(t) >0on[a, ),

() /a r(t)dt = /a p(t)dt = |
W(t) 1, Jim h(D) =

[ C°(R,R), f(u)u>0 foru=0.

If x is a solution of (N, h) then the functions

—a, ozl oo Ly lomy
r pr p
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are called quasiderivatives of x. Similarly we can proceed for (NA, h). Equation
(N4, R) is obtained from (N, h) by interchanging coefficients p, r and by replacing ¢
with ¢. The notation (NA, h) is suggested by the fact that for the linear equation
without deviating argument, i.e. for equation

I TRAY -
(L) (m (@xu))) T ylt)e(t) = 0,

the adjoint equation 1s

A - Lz’ / z(t) = 0.
) (r@) (o <t>)) o)1) = 0

For simplicity, when h(t) ¢, we will denote (N,h) and (N4, ) with (N) and
(N4), respectively.

As usual, a solution # of (N, k) is said to be proper if it is defined for all large
tand sup z(t),t T > 0 for every large T. A proper solution x is said to be
oscillatory or nonoscillatory according to whether does or does not have arbitrarily
large zeros. Similar definitions hold for (N4, k). In addition, (L) [(L#)] is called
osctllatory if 1t has at least one nontrivial oscillatory solution, and nonoscillatory if
its all nontrivial solutions are nonoscillatory.

The study of asymptotic behavior of solutions, both in the ordinary case and in
the case with deviating argument, is often accomplished by introducing the concepts
of equation with property A and equation with property B. More precisely, (N, h)
is said to have property A if any proper solution x of (N, h) is either oscillatory or
satisfies

2ll(t) 0 ast ,i=0,1,2,
and (N, h) is said to have property B if any proper solution z of (N, h) is either
oscillatory or satisfies

i) as t ,i=0,1,2.
Here the notation y(¢) 0 [y(t) ] means that y monotonically decreases to zero
as t [monotonically increases to infinity as ¢ ]. Among the numerous

results dealing with this topic, we refer the reader in particular to [6,7,9-12] and to
the references contained therein.

In this paper we will study relationships between property A for (N, k) and
property B for (NA,h). In particular in section 2 the linear case is considered.
Here we give an equivalence criterion on property A for (L, h) and property B for
(LA, h). Such a result enables us to obtain criteria on property A for (L, h) from
criteria on property B for (LA, h) and vice versa. As far as we know, such approach
seems new, since usually properties A and B are studied independently each other.
As consequence relationships between the case with or without deviating argument
are obtained.

The nonlinear case is considered in section 3. Here comparison results on properties
A and B between linear and nonlinear case, which extend a previous one from [10],
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are given. The obtained results also generalize recent criteria which have been given
by the authors in [2,3] for the case without deviating argument.

Our approach is based on a study of asymptotic behavior of nonoscillatory solutions
of (N, h) and (N4, h) as well as on a comparison result [10] between equations with
different deviating argument. Such a comparison criterion, in the form here used, is
quoted in section 1. Finally we remark that our results are closely related to those
in [11] in which oscillation of a delay differential equation is deduced from that of
the corresponding differential equation without delay.

1. PRELIMINARY RESULTS

We introduce the following notation:

[e] [e] 3
I(ui):/ wi(t) dt, I(ui,uj):/ ul(t)/ u;(s)dsdt, i,j=1,2
[e] 3 s
I(ui,uj,uk):/ ul(t)/ uj(s)/ up(T)drdsdt, i,j,k=1,2,3,

where w;, ¢ = 1,2, 3, are continuous positive functions on [a, ).

In the recent papers [3,4] we have studied relationships among oscillation and
properties A and B for linear and nonlinear equations without delay. The main
results for linear equations without delay are summarised in the following:
Theorem A. ([3]) The following assertions are equivalent:

(i) (L) has property A.
(i’) (L*) has property B.
(ii) (L) is oscillatory and it holds I(q,p,r) =
(i) (LA) is oscillatory and it holds I(q,p,r) =

For nonlinear equations without delay the following holds:

Theorem B. ([4]) Assume
f(w) f(w)

limsup———= < , and liminf—= >0
u—0 u lu|—=c0 U

and let the linear equation

I TRNAY -
(m (W : <t>) ) T kg(t)a(t) = 0

be oscillatory for all k > 0. If (N') has property A, then (N*) has property B.

Remark. Theorem A holds even if I(r) < and/or I(p) < . In this case
condition I(¢,p,r) =  becomes I(q,p,r) = I(r,q,p) = I(p,r,q) =
Similarly, Theorem B holds even if I(r) < , I(p) = I(r,p) =

To extend these results to delay differential equations we will use the following
linear comparison criterion. It is a particular case of a more general theorem which
is stated in [10] for functional differential equations of higher order.
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Theorem C. ([10]) Consider the differential equations (i=1,2)

1 0\ / ' o
(L,hl)l (m (m x (t)) ) + qz(t)x(hl(t)) =0

1 RYY ' o
(LA by ); (m (p—t) z (t)) ) q:(1)z(h; (1)) =0
where ¢;, h;  C%([a, ),R), ¢:(t) >0, limy_ hi(t) = and

hl(t) hz(t), ql(t) QQ(t) for t > tg a.

If (L, hy)1 has property A then (L, ha)s has property A.
If (L4, h1); has property B then (L*, hy)s has property B.

Concerning the nonlinear case, by Theorem 1 in [10], we obtain the following:

Theorem D. ([10])
Let f(u) be nondecreasing in R and assume f(u) sgnu  wsgnu for all v .
Then:
if (N, h) has property A, (N) has property A;
if (N4, h) has property B, (N*) has property B.
In particular, the statements holds for linear equations.
From a slight modification of the well-known lemma of Kiguradze (see, e.g., [8])

it follows that nonoscillatory solutions x of (L, k) and (N, h) can be divided into
the following two classes:

o= =z solution, T, : z(t)zll(t) <0, z(t)x

(t)>0fort T

) (2]
9 = x solution, T} : x(t)x[l](t) >0, x(t)x[z](t) >0fort T, .

Similarly nonoscillatory solutions z of (L#, k) and (N4, h) can be divided into the
following two classes:

1 = =z solution, T, : z(t)z[l](t) >0, z(t)z[z](t) <0fort T,

3 = 2z solution, T} : z(t)z[l](t) >0, z(t)z[z](t) >0fort T, .
Tt is clear that (L, h) [(N, h)] has property A if and only if all nonoscillatory solutions
z of (L,h) [(N,h)] belong to the class ¢ and lim;_ x[i](t) =0,7=0,1,2
Similarly (L#, h) [(N4, k)] has property B if and only if all nonoscillatory solutions
z of (LA, h) [(N4, k)] belong to the class 3 and lim; o, 201(t) = | i=0,1,2.
Independently on properties A and B, it is easy to show the following.
Lemma 1.1. It holds:

(i) any solution x of (L,h) [(N,h)] from ¢ satisfies lim;_o, (1) = 0, i =

1,2;
(ii) any solution z of (LA, k) (N4, h)] from 3 satisfies lim;_o, (1) =
i=0,1.
When I(r) = I(p) = , then property B may be interpreted in a different way, as

the following lemma states.
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Lemma 1.2. Let z be a nonoscillatory solution of (L™ h) [[N* h)]. Then the
following assertions are equivalent:

(i) z 3, limy_ oo z[z](t) =

(ii) =z 3, lime_o, 2(t) = | i=0,1,2;

. (1)

lim =

1= [Tr(s) [T p(u)du ds

Proof. (i) (ii). It follows by Lemma 1.1.
(ii)  (iii). Tt follows by I"Hopital rule.
(iii) (i). Because z is nonoscillatory, we get (212(¢))’ > 0 for all large ¢. Integrating
this inequality we obtain z 3.

Without loss of generality we may assume that 2?1 is eventually positive. Now
assume there exists a positive constant L such that 2I21( ) < L, ie., 24(t) < L
fora t< . Integrating twice the last inequality we obtain

2(t) < z(a) + 2M(a) /atp(s) ds—l—L/atp(s)/asr(u) duds,

which implies that z(t)/ fat p(s) fas r(u) du ds is bounded from above, that is a con-

tradiction. O

2. LINEAR CASE

A first answer to the problem of equivalency between property A and property B
is given by the following:

Theorem 2.1. Let h(t) t,g(t) t whereg C%a, ),R),limi_o g(t) =

a) If (L, h) has property A, then (L*,g) has property B.

b) If (L4, h) has property B, then (L, g) has property A.
Proof. Claim a). By Theorem C (ha(t) = ¢), (L) has property A and so, by
Theorem A, (LA) has property B. The assertion follows again using Theorem C
with hi(t) =t and ha(t) = ¢(2).

Claim b). The argument is similar to this given in the claim a). O
For delay equations, the following holds:
Lemma 2.1. If (L) has property A then every solution = of (L,h) which is from

the class  satisfies limy_. oo x[i](t) =0,7=0,1,2.

Proof. By Lemma 1.1, it is sufficient to prove that any nonoscillatory solution x of
(L,h), x 0, satisfies lim_, oo #(¢) = 0. Assume by contradiction that z( )= 0.
Without loss of generality we may suppose that there exists 7' a such that
x(t) > 0, () <0, 2P (t) > 0 for all t  T. Integrating (L, h) three times in
(t, ), witht T and taking into account that z[( ) =2PI( ) =0, we obtain

z(t) = x( )Jr/too r(s)/soop(u) /uoo a(o)z(h(e)) do du ds.
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Because z is eventually decreasing, we get

() > x( )/too r(s)/soop(u) /uoo ¢(0) do du ds

and then, by interchanging order of integration, we get I(¢,p,r) < . Since (L) has
property A, it holds by Theorem A that I(¢,p,r) = , which is a contradiction.O

Theorem 2.2. a) Assume

(2.1) /aoo a(t) /ah(t) r(s)ds dt =

If (L*, h) has property B, then (L, h) has property A.
b) Assume I(q,r) =  and

(2.2) /aoo g(t) /h;) (s) / r(u) duds dt <

If (L, h) has property A, then (L*,h) has property B.

Proof. Claim a). Assume that (L, h) does not have property A. Let z be a
nonoscillatory solution of (L, h).

By Theorem D, equation (LA) has property B and so, by Theorem A, equation
(L) has property A. Hence, by Lemma 2.1 any solution x o satisfies () = 0.

Let 2 2. Without loss of generality we may suppose that there exists 7'«
such that (t) > 0, 2l0(t) > 0, 2®(t) > 0 for all t  T. Because for t T
(«P1)) = q@)x(h(t)) < 0, we have zl2l( ) < . Let Ty > T be such that
h(t) > T for allt  Ty. Integrating (L, h) in (T}, ) we obtain

(2.3) /Oo g(O)x(h(t)) dt <

T

Because z[! is an eventually positive increasing function, we have a:[l](t) > l‘[l](T),

le.,
¢

2(t) > (T / r(s)ds  (t T).

T

Hence
RB(t)
2(h(t)) > (1) /

T

r(s)ds > 2(T) / r(s)ds  (t Ty).

T

Substituting into (2.3) we get

[ h(t)
/ q(t)/ r(s)dsdt < |
' '

which contradicts (2.1). Claim a) is now proved.
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Claim b). Assume that (L#, h) does not have property B. Let z be a proper
nonoscillatory solution of (LA, h). By Lemmas 1.1 and 1.2 there are two possibili-
ties: 1) z 5 such that z[z]( )y < Iz 1.

Case T). Without loss of generality we may suppose that there exists T «a such
that z(t) > 0, 2l9(t) > 0, 2L2)(t) > 0 forallt  T. Let Ty > T be such that h(t) > T
for all ¢ Ty. Because zIJ( ) < | by integrating (L, k) in (¢, ), we obtain

and so
(2.4) / qW)z(h(t)) dt <
Ty
Because 217 is increasing for t T, we have 2[?1(¢) > 21(T) > 0. Integrating twice

in (7,t) we get
¢

2(t) > 2T / p(s) /T s r(u)duds  (t T)

T
or

h(t) s h(t) s
2(h(t)) > (1) / p(s) /T r(u) duds > 2(T) / p(s) / r(u) du ds

T Ty
fort Ti. From (2.4) we obtain

/Tjo q(t) /Tf(t)P(S) /Ti r(u) duds dt <

/aoo a(?) /ah(t)P(S) /as r(u) duds dt <

From (2.2) it follows I(q,p,r) < . By Theorem D, equation (L) has property A
and so, by Theorem A, I(¢q,p,7) = , which is a contradiction.

Case TI). Without loss of generality we can suppose that z is eventually positive.
Hence 0 A2 ) <L Integrating (L4, ) in (¢, ), with ¢ sufficiently large,
we obtain

which implies

My = 0 )+ /too q(s)z(h(s)) ds > /too q(s)z(h(s)) ds.
Because 0 2[( ) < | by integrating again in (¢, ) we get
Ay > 2 )+/too r(s)/oo q(u)z(h(w))duds >
z(h(1)) /too 7(s) /800 q(u) duds = z(h(1)) /too q(u) /t“ r(s) ds du,

which gives a contradiction with I(¢,7) = . The proof is now complete. a

Under additional assumptions, we can state a comparison theorem, which gives
an opposite result with respect to Theorem D:
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Theorem 2.3.

a) Assume (2.1). If (L) has property A then (L, k) has property A.

b) Assume I(q,r) = and (2.2). If (L*) has property B then (L* h) has
property B.

Proof. The assertion follows by using a similar argument to this given in the proof
of Theorem 2.2. The details are omitted. d

Denote by (L, 7) [(L*, 7)] equation (L, h) [(L*)] with the delay h(t) =t 7(t),
where 7 is a bounded function. Kusano and Naito [10] proved the equivalency of
property A between (L) and (L, 7) and of property B between (L*) and (L4, 7).
From this and Theorem A we get the following result:

Corollary 2.1. Let I(r) = I(p) = , r,p be nonincreasing fort [0, ). Then,
(L, ) has property A if and only if (L*, 1) has property B.

3. NONLINEAR CASE
Here we state comparison theorem between linear and nonlinear delay equations.

Theorem 3.1. Let

S ()

(3.1) uli»ngo =

a) If (L, h) has property A, then (N, k) has property A.

b) If (L*, h) has property B, then (N, h) has property B.
Proof. Claim a). Because (L, h) has property A, by Theorem D, (L) has property
A and, by Theorem A, I(¢g,p,7) = . Assume that (N, h) does not have property
A. Let « be a proper nonoscillatory solution of (N, k). By Lemma 1.1 there are two
possibilities: T) x o such that ( )=0; II) x N,.
Case T). Without loss of generality we may suppose that there exists T 0 such
that z(¢t) > 0 for all t  T. Because lim;_.o h(t) = , there exists t; T such
that h(t1) =T, h(t) > T for t > t;. Let H be the function

tl for ¢ [T,tl]
h(t) fort (t1, )

H(t) = {

and consider, fort T, the function F' given by F'(t) = f(x(H(t)))/x(t). Then the
nonlinear ordinary differential equation

(L (me)) TPt =0t [, )

p(t) \r(?)
has a nonoscillatory solution (the function x) such that x 0, () = 0. Hence
by Lemma 4—(i) in [3], we get I(¢F,p,r) < . Because x does not approach zero
ast , there exists a positive constant k such that F'(¢) > k forall ¢  ¢;, which

implies I(q,p,r) < , that is a contradiction.
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Case IT). Without loss of generality we may suppose that x is eventually positive.
Now the linear equation with delay (¢ large)

trr Y -
(— (r—) : <t>) ) () (u(h(t)) = 0

p(t) \r(t
where Fy(t) = f(z(h(?)))/z(h(t)), does not have property A, because z is an its
nonoscillatory solution, z 2. In view of the facts z( ) = and (3.1), there

exists T 0 such that Fy(¢) > 1 fort T. Hence by Theorem C (hy(t) = ha(t) =
h(t)), (L, h) does not have property A, which is a contradiction.

Claim b). Assume that (N4, h) does not have property B. Let z be a proper
nonoscillatory solution of (NA, h). Without loss of generality we may suppose that
z 1s eventually positive. By Lemma 1.1 and Lemma 1.2 there are two possibilities:
T) z 3 such that z[z]( Y= ; )z M.

Case I). Consider, for all large ¢, the linear equation with delay

r(t) \p(l

where Fy(t) = f(z(h(t)))/z(h(t)). Since z is an its nonoscillatory solution, (3.2)
does not have property B. In view of the facts z( )= and (3.1), there exists a
large T 0 such that Fy(t) > 1 fort 7. Hence by Theorem D, (L4, h) does not
have property B, which is a contradiction.

CaseIT). If z( )= , then, by reasoning as above, we get a contradiction. Assume
z( ) < . Because 21 is eventually positive decreasing, we have for all large ¢
that 2[1(t) > () or (T large, t > T)

(3.2) (L (pL) w’(t)) ) g Fa(t)w(h(t)) =0

¢
z(t) > 2(T) + z[l]( )/ p(s)ds.
T
Because z is bounded as t and I(p) = , we get 2l1( ) = 0. By using a
similar argument we obtain zJ( ) = 0. Integrating (N, h) three timesin (¢, ),
with ¢ T, we obtain

() 0= [ [ [ e s =
[ st [ v [t dsavan

Taking into account that z is positive increasing, there exists a positive constant
k such that f(z(h(t))) > k for all large ¢. Hence (3.3) implies that I(q,r,p) <

. By a result in [1, Theorem 5], (L) is nonoscillatory. On the other hand, by
Theorem D, (L#) has property B and so, by Theorem A, (L) is oscillatory, which
is a contradiction. d

(3.3)

Remark. Theorem 3.1 does not require that the nonlinearity f(u) dominates the
linear term wu in the whole R*. In addition monotonicity assumptions of f are
unnecessary. Then Theorem 3.1 extends, as far as third order delay equations, the
quoted criterion in [10] (Theorem 1).
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Concluding remarks. When p = 7, the linear/nonlinear equations without as
well as with delay argument present special properties. This, together with ap-
plication of Theorems 3.2, 3.3, and 4.1 to obtain integral criteria under which the
linear/nonlinear delay equations have property A, resp. B, will be given elsewhere.
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