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ARCHIVUM MATHEMATICUM (BRNO)Tomus 33 (1997), 99 { 108ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF THIRDORDER DELAY DIFFERENTIAL EQUATIONSM. Cecchi, Z. Do�sl�a and M. MariniDedicated to the memory of Professor Otakar Bor�uvkaAbstract. We give an equivalence criterion on property A and property B for delaythird order linear di�erential equations. We also give comparison results on propertiesA and B between linear and nonlinear equations, whereby we only suppose thatnonlinearity has superlinear growth near in�nity.IntroductionConsider the third{order nonlinear equations with deviating argument of the form(N,h)  1p(t) � 1r(t) x0(t)�0!0 + q(t)f(x(h(t))) = 0and(NA,h)  1r(t) � 1p(t) z0(t)�0!0 � q(t)f(z(h(t))) = 0;where(H) r; p; q; h 2 C0([a; 1 );R); r(t) > 0; p(t) > 0; q(t) > 0 on [a; 1 );Z 1a r(t) dt = Z 1a p(t) dt = 1 ;h(t) � t; limt!1h(t) = 1 ;f 2 C0(R;R); f(u)u > 0 for u 6= 0:If x is a solution of (N; h) then the functionsx[0] = x; x[1] = 1r x0; x[2] = 1p (1rx0)0 = 1p (x[1])01991 Mathematics Subject Classi�cation : 34C10, 34C20.Key words and phrases: delay di�erential equation of third order, asymptotic properties ofnonoscillatory solutions, properties A and B, comparison theorems.Research supported by the Grant Agency of Czech Republic (grant 201/96/0410).



100 M. CECCHI, Z. DO�SL�A, M. MARINIare called quasiderivatives of x. Similarly we can proceed for (NA; h). Equation(NA; h) is obtained from (N; h) by interchanging coe�cients p; r and by replacing qwith � q. The notation (NA; h) is suggested by the fact that for the linear equationwithout deviating argument, i.e. for equation(L)  1p(t) � 1r(t) x0(t)�0!0 + q(t)x(t) = 0;the adjoint equation is(LA)  1r(t) � 1p(t) z0(t)�0!0 � q(t)z(t) = 0:For simplicity, when h(t) � t, we will denote (N; h) and (NA; h) with (N ) and(NA), respectively.As usual, a solution x of (N; h) is said to be proper if it is de�ned for all larget and sup fj x(t)j ; t � T g > 0 for every large T . A proper solution x is said to beoscillatory or nonoscillatory according to whether does or does not have arbitrarilylarge zeros. Similar de�nitions hold for (NA; h). In addition, (L) [(LA)] is calledoscillatory if it has at least one nontrivial oscillatory solution, and nonoscillatory ifits all nontrivial solutions are nonoscillatory.The study of asymptotic behavior of solutions, both in the ordinary case and inthe case with deviating argument, is often accomplished by introducing the conceptsof equation with property A and equation with property B. More precisely, (N; h)is said to have property A if any proper solution x of (N; h) is either oscillatory orsatis�es
j x[i](t)j # 0 as t ! 1 ; i = 0; 1; 2;and (NA; h) is said to have property B if any proper solution z of (NA; h) is eitheroscillatory or satis�es

j z[i](t)j " 1 as t ! 1 ; i = 0; 1; 2:Here the notation y(t) # 0 [y(t) " 1 ] means that y monotonically decreases to zeroas t ! 1 [monotonically increases to in�nity as t ! 1 ]. Among the numerousresults dealing with this topic, we refer the reader in particular to [6,7,9{12] and tothe references contained therein.In this paper we will study relationships between property A for (N; h) andproperty B for (NA; h). In particular in section 2 the linear case is considered.Here we give an equivalence criterion on property A for (L; h) and property B for(LA; h). Such a result enables us to obtain criteria on property A for (L; h) fromcriteria on property B for (LA; h) and vice versa. As far as we know, such approachseems new, since usually properties A and B are studied independently each other.As consequence relationships between the case with or without deviating argumentare obtained.The nonlinear case is considered in section 3. Here comparison results on propertiesA and B between linear and nonlinear case, which extend a previous one from [10],



DELAY THIRD ORDER DIFFERENTIAL EQUATIONS 101are given. The obtained results also generalize recent criteria which have been givenby the authors in [2,3] for the case without deviating argument.Our approach is based on a study of asymptotic behavior of nonoscillatory solutionsof (N; h) and (NA; h) as well as on a comparison result [10] between equations withdi�erent deviating argument. Such a comparison criterion, in the form here used, isquoted in section 1. Finally we remark that our results are closely related to thosein [11] in which oscillation of a delay di�erential equation is deduced from that ofthe corresponding di�erential equation without delay.1. Preliminary resultsWe introduce the following notation:I(ui) = Z 1a ui(t) dt; I(ui; uj) = Z 1a ui(t) Z ta uj(s) ds dt; i; j = 1; 2I(ui; uj; uk) = Z 1a ui(t) Z ta uj(s) Z sa uk(� ) d� ds dt; i; j; k = 1; 2; 3;where ui, i = 1; 2; 3, are continuous positive functions on [a; 1 ).In the recent papers [3,4] we have studied relationships among oscillation andproperties A and B for linear and nonlinear equations without delay. The mainresults for linear equations without delay are summarised in the following:Theorem A. ([3]) The following assertions are equivalent:(i) (L) has property A.(i') (LA) has property B.(ii) (L) is oscillatory and it holds I(q; p; r) = 1 :(ii') (LA) is oscillatory and it holds I(q; p; r) = 1 :For nonlinear equations without delay the following holds:Theorem B. ([4]) Assumelim supu!0 f(u)u < 1 ; and lim infjuj!1 f(u)u > 0and let the linear equation 1p(t) � 1r(t) x0(t)�0!0 + kq(t)x(t) = 0be oscillatory for all k > 0. If (N ) has property A, then (NA) has property B.Remark. Theorem A holds even if I(r) < 1 and/or I(p) < 1 . In this casecondition I(q; p; r) = 1 becomes I(q; p; r) = I(r; q; p) = I(p; r; q) = 1 :Similarly, Theorem B holds even if I(r) < 1 , I(p) = I(r; p) = 1 .To extend these results to delay di�erential equations we will use the followinglinear comparison criterion. It is a particular case of a more general theorem whichis stated in [10] for functional di�erential equations of higher order.



102 M. CECCHI, Z. DO�SL�A, M. MARINITheorem C. ([10]) Consider the di�erential equations (i=1,2)(L,hi)i  1p(t) � 1r(t) x0(t)�0!0 + qi(t)x(hi(t)) = 0(LA,hi)i  1r(t) � 1p(t) z0(t)�0!0 � qi(t)z(hi(t)) = 0where qi; hi 2 C0([a; 1 );R), qi(t) > 0, limt!1 hi(t) = 1 andh1(t) � h2(t); q1(t) � q2(t) for t > t0 � a:If (L; h1)1 has property A then (L; h2)2 has property A.If (LA; h1)1 has property B then (LA; h2)2 has property B.Concerning the nonlinear case, by Theorem 1 in [10], we obtain the following:Theorem D. ([10])Let f(u) be nondecreasing in R and assume f(u) sgnu � u sgn u for all u 2 R:Then:if (N; h) has property A, (N ) has property A;if (NA; h) has property B, (NA) has property B.In particular, the statements holds for linear equations.From a slight modi�cation of the well{known lemma of Kiguradze (see, e.g., [8])it follows that nonoscillatory solutions x of (L; h) and (N; h) can be divided intothe following two classes:
N 0 = f x solution, 9 Tx : x(t)x[1](t) < 0; x(t)x[2](t) > 0 for t � Tx g

N 2 = f x solution, 9 Tx : x(t)x[1](t) > 0; x(t)x[2](t) > 0 for t � Tx g :Similarly nonoscillatory solutions z of (LA; h) and (NA; h) can be divided into thefollowing two classes:
M 1 = f z solution, 9 Tz : z(t)z[1](t) > 0; z(t)z[2](t) < 0 for t � Tz g

M 3 = f z solution, 9 Tz : z(t)z[1](t) > 0; z(t)z[2](t) > 0 for t � Tz g :It is clear that (L; h) [(N; h)] has property A if and only if all nonoscillatory solutionsx of (L; h) [(N; h)] belong to the class N 0 and limt!1 x[i](t) = 0, i = 0; 1; 2.Similarly (LA; h) [(NA; h)] has property B if and only if all nonoscillatory solutionsz of (LA; h) [(NA; h)] belong to the class M 3 and limt!1 j z[i](t)j = 1 , i = 0; 1; 2.Independently on properties A and B, it is easy to show the following.Lemma 1.1. It holds:(i) any solution x of (L; h) [(N; h)] from N 0 satis�es limt!1 x[i](t) = 0, i =1; 2;(ii) any solution z of (LA; h) [(NA; h)] from M 3 satis�es limt!1 j z[i](t)j = 1 ,i = 0; 1.When I(r) = I(p) = 1 , then property B may be interpreted in a di�erent way, asthe following lemma states.



DELAY THIRD ORDER DIFFERENTIAL EQUATIONS 103Lemma 1.2. Let z be a nonoscillatory solution of (LA; h) [(NA; h)]. Then thefollowing assertions are equivalent:(i) z 2 M 3, limt!1 j z[2](t)j = 1 ;(ii) z 2 M 3, limt!1 j z[i](t)j = 1 , i = 0; 1; 2;(iii) limt!1 j

z(t)R ta r(s) R sa p(u)du ds j = 1 :Proof. (i)) (ii). It follows by Lemma 1.1.(ii)) (iii). It follows by l'Hôpital rule.(iii)) (i). Because z is nonoscillatory, we get (z[2](t))0 > 0 for all large t. Integratingthis inequality we obtain z 2 M 3.Without loss of generality we may assume that z[2] is eventually positive. Nowassume there exists a positive constant L such that z[2](1 ) < L, i.e., z[2](t) < Lfor a � t < 1 . Integrating twice the last inequality we obtainz(t) < z(a) + z[1](a) Z ta p(s) ds + L Z ta p(s) Z sa r(u) du ds;which implies that z(t)= R ta p(s) R sa r(u) du ds is bounded from above, that is a con-tradiction. �2. Linear caseA �rst answer to the problem of equivalency between property A and property Bis given by the following:Theorem 2.1. Let h(t) � t, g(t) � t where g 2 C0([a; 1 );R), limt!1 g(t) = 1 :a) If (L; h) has property A, then (LA; g) has property B.b) If (LA; h) has property B, then (L; g) has property A.Proof. Claim a). By Theorem C (h2(t) = t), (L) has property A and so, byTheorem A, (LA) has property B. The assertion follows again using Theorem Cwith h1(t) = t and h2(t) = g(t).Claim b). The argument is similar to this given in the claim a). �For delay equations, the following holds:Lemma 2.1. If (L) has property A then every solution x of (L; h) which is fromthe class N 0 satis�es limt!1 x[i](t) = 0, i = 0; 1; 2.Proof. By Lemma 1.1, it is su�cient to prove that any nonoscillatory solution x of(L; h), x 2 N 0, satis�es limt!1 x(t) = 0. Assume by contradiction that x(1 ) 6= 0.Without loss of generality we may suppose that there exists T � a such thatx(t) > 0, x[1](t) < 0, x[2](t) > 0 for all t � T . Integrating (L; h) three times in(t; 1 ), with t � T and taking into account that x[1](1 ) = x[2](1 ) = 0, we obtainx(t) = x(1 ) + Z 1t r(s) Z 1s p(u) Z 1u q(�)x(h(�)) d� du ds:



104 M. CECCHI, Z. DO�SL�A, M. MARINIBecause x is eventually decreasing, we getx(t) > x(1 ) Z 1t r(s) Z 1s p(u) Z 1u q(�) d� du dsand then, by interchanging order of integration, we get I(q; p; r) < 1 . Since (L) hasproperty A, it holds by Theorem A that I(q; p; r) = 1 , which is a contradiction.�Theorem 2.2. a) Assume(2.1) Z 1a q(t) Z h(t)a r(s) ds dt = 1 :If (LA; h) has property B, then (L; h) has property A.b) Assume I(q; r) = 1 and(2.2) Z 1a q(t) Z th(t) p(s) Z sa r(u) du ds dt < 1 :If (L; h) has property A, then (LA; h) has property B.Proof. Claim a). Assume that (L; h) does not have property A. Let x be anonoscillatory solution of (L; h).By Theorem D, equation (LA) has property B and so, by Theorem A, equation(L) has property A. Hence, by Lemma 2.1 any solution x 2 N 0 satis�es x(1 ) = 0.Let x 2 N 2. Without loss of generality we may suppose that there exists T � asuch that x(t) > 0, x[1](t) > 0, x[2](t) > 0 for all t � T . Because for t � T(x[2](t))0 = � q(t)x(h(t)) < 0, we have x[2](1 ) < 1 . Let T1 > T be such thath(t) > T for all t � T1. Integrating (L; h) in (T1; 1 ) we obtain(2.3) Z 1T1 q(t)x(h(t)) dt < 1 :Because x[1] is an eventually positive increasing function, we have x[1](t) > x[1](T ),i.e., x(t) > x[1](T ) Z tT r(s) ds (t � T ):Hence x(h(t)) > x[1](T ) Z h(t)T r(s) ds > x[1](T ) Z h(t)T1 r(s) ds (t � T1):Substituting into (2.3) we getZ 1T1 q(t) Z h(t)T1 r(s) ds dt < 1 ;which contradicts (2.1). Claim a) is now proved.



DELAY THIRD ORDER DIFFERENTIAL EQUATIONS 105Claim b). Assume that (LA; h) does not have property B. Let z be a propernonoscillatory solution of (LA; h). By Lemmas 1.1 and 1.2 there are two possibili-ties: I) z 2 M 3 such that j z[2](1 )j < 1 ; II) z 2 M 1.Case I). Without loss of generality we may suppose that there exists T � a suchthat z(t) > 0, z[1](t) > 0, z[2](t) > 0 for all t � T . Let T1 > T be such that h(t) > Tfor all t � T1. Because z[2](1 ) < 1 , by integrating (LA; h) in (t; 1 ), we obtainz[2](1 ) � z[2](t) = Z 1t q(s)z(h(s)) dsand so(2.4) Z 1T1 q(t)z(h(t)) dt < 1 :Because z[2] is increasing for t � T , we have z[2](t) > z[2](T ) > 0. Integrating twicein (T; t) we get z(t) > z[2](T ) Z tT p(s) Z sT r(u) du ds (t � T )or z(h(t)) > z[2](T ) Z h(t)T p(s) Z sT r(u) du ds > z[2](T ) Z h(t)T1 p(s) Z sT1 r(u) du dsfor t � T1. From (2.4) we obtainZ 1T1 q(t) Z h(t)T1 p(s) Z sT1 r(u) du ds dt < 1which implies Z 1a q(t) Z h(t)a p(s) Z sa r(u) du ds dt < 1 :From (2.2) it follows I(q; p; r) < 1 . By Theorem D, equation (L) has property Aand so, by Theorem A, I(q; p; r) = 1 , which is a contradiction.Case II). Without loss of generality we can suppose that z is eventually positive.Hence 0 � � z[2](1 ) < 1 . Integrating (LA; h) in (t; 1 ), with t su�ciently large,we obtain
� z[2](t) = � z[2](1 ) + Z 1t q(s)z(h(s)) ds > Z 1t q(s)z(h(s)) ds:Because 0 � z[1](1 ) < 1 , by integrating again in (t; 1 ) we getz[1](t) > z[1](1 ) + Z 1t r(s) Z 1s q(u)z(h(u))du ds >z(h(t)) Z 1t r(s) Z 1s q(u) du ds = z(h(t)) Z 1t q(u) Z ut r(s) ds du;which gives a contradiction with I(q; r) = 1 . The proof is now complete. �Under additional assumptions, we can state a comparison theorem, which givesan opposite result with respect to Theorem D:



106 M. CECCHI, Z. DO�SL�A, M. MARINITheorem 2.3.a) Assume (2.1). If (L) has property A then (L; h) has property A.b) Assume I(q; r) = 1 and (2.2). If (LA) has property B then (LA; h) hasproperty B.Proof. The assertion follows by using a similar argument to this given in the proofof Theorem 2.2. The details are omitted. �Denote by (L; � ) [(LA; � )] equation (L; h) [(LA)] with the delay h(t) = t � � (t),where � is a bounded function. Kusano and Naito [10] proved the equivalency ofproperty A between (L) and (L; � ) and of property B between (LA) and (LA; � ).From this and Theorem A we get the following result:Corollary 2.1. Let I(r) = I(p) = 1 , r; p be nonincreasing for t 2 [0; 1 ). Then,(L; � ) has property A if and only if (LA; � ) has property B.3. Nonlinear caseHere we state comparison theorem between linear and nonlinear delay equations.Theorem 3.1. Let(3.1) limu!1 f(u)u = 1 :a) If (L; h) has property A, then (N; h) has property A.b) If (LA; h) has property B, then (NA; h) has property B.Proof. Claim a). Because (L; h) has property A, by Theorem D, (L) has propertyA and, by Theorem A, I(q; p; r) = 1 . Assume that (N; h) does not have propertyA. Let x be a proper nonoscillatory solution of (N; h). By Lemma 1.1 there are twopossibilities: I) x 2 N 0 such that x(1 ) 6= 0; II) x 2 N2.Case I). Without loss of generality we may suppose that there exists T � 0 suchthat x(t) > 0 for all t � T . Because limt!1 h(t) = 1 , there exists t1 � T suchthat h(t1) = T , h(t) > T for t > t1. Let H be the functionH(t) = � t1 for t 2 [T; t1]h(t) for t 2 (t1; 1 )and consider, for t � T , the function F given by F (t) = f(x(H(t)))=x(t). Then thenonlinear ordinary di�erential equation 1p(t) � 1r(t) w0(t)�0!0 + q(t)F (t)w(t) = 0 t 2 [t1; 1 )has a nonoscillatory solution (the function x) such that x 2 N 0, x(1 ) 6= 0. Henceby Lemma 4{(i) in [3], we get I(qF; p; r) < 1 . Because x does not approach zeroas t ! 1 , there exists a positive constant k such that F (t) > k for all t � t1, whichimplies I(q; p; r) < 1 , that is a contradiction.



DELAY THIRD ORDER DIFFERENTIAL EQUATIONS 107Case II). Without loss of generality we may suppose that x is eventually positive.Now the linear equation with delay (t large) 1p(t) � 1r(t) z0(t)�0!0 + q(t)F1(t)w(h(t)) = 0where F1(t) = f(x(h(t)))=x(h(t)), does not have property A, because x is an itsnonoscillatory solution, x 2 N 2. In view of the facts x(1 ) = 1 and (3.1), thereexists T � 0 such that F1(t) > 1 for t � T . Hence by Theorem C (h1(t) = h2(t) =h(t)), (L; h) does not have property A, which is a contradiction.Claim b). Assume that (NA; h) does not have property B. Let z be a propernonoscillatory solution of (NA; h). Without loss of generality we may suppose thatz is eventually positive. By Lemma 1.1 and Lemma 1.2 there are two possibilities:I) z 2 M 3 such that z[2](1 ) 6= 1 ; II) z 2 M1.Case I). Consider, for all large t, the linear equation with delay(3.2)  1r(t) � 1p(t) w0(t)�0!0 � q(t)F2(t)w(h(t)) = 0where F2(t) = f(z(h(t)))=z(h(t)). Since z is an its nonoscillatory solution, (3.2)does not have property B. In view of the facts z(1 ) = 1 and (3.1), there exists alarge T � 0 such that F2(t) > 1 for t � T . Hence by Theorem D, (LA; h) does nothave property B, which is a contradiction.Case II). If z(1 ) = 1 , then, by reasoning as above, we get a contradiction. Assumez(1 ) < 1 . Because z[1] is eventually positive decreasing, we have for all large tthat z[1](t) > z[1](1 ) or (T large, t > T )z(t) > z(T ) + z[1](1 ) Z tT p(s) ds:Because z is bounded as t ! 1 and I(p) = 1 , we get z[1](1 ) = 0. By using asimilar argument we obtain z[2](1 ) = 0. Integrating (NA; h) three times in (t; 1 ),with t � T , we obtain(3.3) z(1 ) � z(t) = Z 1t p(s) Z 1s r(u) Z 1u q(v)f(z(h(v))) dv du ds =Z 1t q(v)f(z(h(v))) Z vt r(u) Z ut p(s) ds du dv:Taking into account that z is positive increasing, there exists a positive constantk such that f(z(h(t))) > k for all large t. Hence (3.3) implies that I(q; r; p) <
1 . By a result in [1, Theorem 5], (L) is nonoscillatory. On the other hand, byTheorem D, (LA) has property B and so, by Theorem A, (L) is oscillatory, whichis a contradiction. �Remark. Theorem 3.1 does not require that the nonlinearity j f(u)j dominates thelinear term j uj in the whole R+. In addition monotonicity assumptions of f areunnecessary. Then Theorem 3.1 extends, as far as third order delay equations, thequoted criterion in [10] (Theorem 1).



108 M. CECCHI, Z. DO�SL�A, M. MARINIConcluding remarks. When p = r, the linear/nonlinear equations without aswell as with delay argument present special properties. This, together with ap-plication of Theorems 3.2, 3.3, and 4.1 to obtain integral criteria under which thelinear/nonlinear delay equations have property A, resp. B, will be given elsewhere.References[1] Cecchi M., Do�sl�a Z., Marini M., Villari G., On the qualitative behavior of solutions of thirdorder di�erential equations, J. Math. Anal. Appl 197 (1996), 749{766.[2] Cecchi M., Do�sl�a Z., Marini M., Comparison theorems for third order di�erential equations,Proceeding of Dynamic Systems and Applications, Vol.2 (1996), 99{106.[3] Cecchi M., Do�sl�a Z., Marini M., An equivalence theorem on properties A, B for thir orderdi�erential equations, to appear in Annali Mat. Pura Appl..[4] Cecchi M., Do�sl�a Z., Marini M., On nonlinear oscillations for equations associated to discon-jugate operators, Proceeding of WCNA'96, Athens (1996).[5] Cecchi M., Marini M., Oscillation results for Emden{Fowler type di�erential equations, toappear in JMAA.[6] D�zurina J., Asymptotic properties of n�th order di�erential equations with delayed argument,Math. Nachr. 171 (1995), 149{156.[7] Erbe L., Oscillation and asymptotic behavior of solutions of third order di�erential delayequations, SIAM J. Math. Anal. 7 (1976), 491{499.[8] Kiguradze I. T., Chanturia T.A., Asymptotic properties of solutions of nonautonomous ordi-nary di�erential equations, Kluwer Academic Publishers, Dordrecht-Boston-London (1993).[9] Koplatadze R., On oscillatory properties of solutions of functional di�erential equations,Memoirs on Di�erential Eqs. and Math. Phys. 3 (1994).[10] Kusano T., Naito M., Comparison theorems for functional di�erential equations with deviat-ing arguments, J. Math. Soc. Japan 3 A (1981), 509{532.[11] MahfoudW.E.,Comparison theorems for delay di�erential equations, Pac. J. Math. 83 (1979),187{197.[12] Philos Ch.G., S�cas Y.G., Oscillatory and asymptotic behavior of second and third orderretarded di�erential equations, Czech. Math. J. 32 (107) (1982), 169{182.M. Cecchi, M. MariniDepart. of Electr. Eng., University of FlorenceVia S. Marta 3, 50139 Firenze, ItalyE-mail : marini@ing.unifi.itZ. Do�sl�aDepart. of Mathematics, Masaryk UniversityJan�a�ckovo n�am. 2a, 66295 Brno, Czech RepublicE-mail : dosla@math.muni.cz
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