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ON SUPERMINIMAL SURFACES

THOMAS FRIEDRICH

Dedicated to the memory of Professor Otakar Borivka

ABSTRACT. Using the Cartan method O. Bortivka (see [B1], [B2]) studied
superminimal surfaces in four-dimensional space forms. In particular, he de-
scribed locally the family of all superminimal surfaces and classified all of
them with a constant radius of the indicatrix. We discuss the mentioned re-
sults from the point of view of the twistor theory, providing some new proofs.
It turns out that the superminimal surfaces investigated by geometers at the
beginning of this century as well as by O. Boruvka have a holomorphic and
horizontal lift into the twistor space. Global results concerning superminimal
surfaces have been obtained during the last 15 years. In this paper we inves-
tigate superminimal surfaces in the hyperbolic four-spaces.

1. THE INDICATRIX OF A SURFACE IN A FOUR-SPACE.

Let (X%, ¢) be a Riemannian manifold and consider an isometric immersion of a
surface M? into X* f: M?  X*. We denote by T(M?) and N(M?) the tangent
bundle and the normal bundle of the surface M?, respectively. The bundle S of
all symmetric (1,1)-tensors

A:TM?*  TM?
is a 3-dimensional Euclidean vector bundle over M? with the inner product

< A,B>=Tr(A B).

The second fundamental form 11(7) : T,,(M?)  T,,(M?) depending on a normal
vector @ Np,(M?) is an element of the space S,,,. For a fixed point m  M? of
the surface we define the indicatrix of the normal curvature by

I(m)= (@) :7 Np(M?), @ =1.
I(m) is a closed curve contained in the 3-dimensional Euclidean space Sp,, and

it 1s the analogue of the Dupin indicatrix of an ordinary surface in the Euclidean
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3-space.

Proposition 1 (Kommerell 1897). Let f : M? X* be an isometric im-
mersion of a surface into a 4-dimensional Riemannian manifold X*. Then the
indicatrix of the normal curvature is one of the following curves:

(1) I(m)= 0

(2) I(m) is a stretch symmetric with respect to the origin 0 S,

(3) I(m) is the intersection of a cylinder over an ellipse and a two-plane in

Sm -

The indicatrix I(m) is a set of operators acting on the tangent space Tp, (M?). We
can evaluate this family of operators on a fixed tangent vector ¢ T,,,(M?) and
then we obtain a closed curve I(m;{) in the tangent space Tp,(M?),

I(m; 1) = (@A) : A7 Np(M?), @ =1 .

Fix an orthonormal basis e3, e4 Nm(MZ) in such a way that the mean curvature
H(e4) vanishes. We choose the tangent vectors ey, es T (M?) to be eigenvectors
of the second fundamental form IT(e4). Then we obtain the matrix representations

wer= (32 30) = (% %),

and the indicatrix I(m) is given by the formula

_ A1 cosp+ pysing Az cosp )
I(m)_{< Ag cos Azcosp  ppsing 0 2w

We introduce the isometry S,, R3 given by the formula

( a;  as ) <a1 +az3 = @ Clg)
=, 2&2, = .
az as 2 2

Then I(m) as a curve in R? has the parametrization

1 _ _
I(m) = { (—5(/\1 + Ag)cosyp, 2Azcosp, 2uisin go) o 271'}.

Suppose now that f: M?  X*is a minimal immersion, i.e., the mean curvature
vanishes for all normal vectors. Then A\; = Az and we obtain

Proposition 2 (Kommerell 1905, Eisenhart 1912). The indicatrix of a min-
imal surface at each point is an ellipse, a circle, or a stretch.

Consider a surface f: M?  X* such that for any tangent vector ¢ T (M?) the
curve I(m;1) T, (M?) is a circle with center 0. An easy calculation yields the
conditions Ay = A3 =0 , As = 1. In particular, in this case the indicatrix
I(m) is the circle (0,  2pjcosp, 2uising):0 ¢ 27 .
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Definition. A surface f : M? X* is called superminimal if any curve I(m,f)
is a circle with center 0 (Ay = p1).

Proposition 3. Any superminimal surface is a minimal surface. Its indicatrix at
each point is a circle with center 0.

Example (R-surfaces in R*; Kommerell 1905). Let U ¢ R? be an open
subset of the complex plain and let f(z) be a holomorphic function. The graph of
the function f

MP= (2 f()):2 U

is a superminimal surface of the Euclidean space R*.

In case of a superminimal surface, the length TII(7) = 2u; = 2 does not
depend on the normal vector @ Np,(M?) and equals the radius of the indicatrix
I(m) at the point m M2,

2. SUPERMINIMAL SURFACES FROM THE POINT OF VIEW OF TWISTOR
THEORY.

Let (X%, g) be an oriented, 4-dimensional Riemannian manifold. Consider a point
r X% and let Z, be the set of all linear maps J : T,,(X*)  T,(X?) satisfying
the following conditions:

(1) J2= Id

(2) J is compatible with the metric and preserves the orientation.

(3) If Q(t1,t2) = g(Jt1,1s), then Q Q defines the orientation of X*.
Theset Z = |J Z, isa PY(@)-fibre bundle over X* that is associated to the frame

reX*?
bundle of the oriented Riemannian manifold. Denote by 7 the projection into the

bundle and consider the decomposition induced by the Levi-Civita connection of
the tangent bundle of 7

T(Z)=T"(Z) T'(7)

into the vertical and horizontal subspaces. There exists an almost complex struc-
ture on Z preserving this decomposition and coinciding with the canonical
complex structure on the fibres SO(4)/U(2) = PY(@). On the horizontal space
THZ) at the J 7, is defined by = a7l m.. It is well-known that (7, ) is
a complex manifold if and only if X* is self-dual, i.e., if one part of the Weyl ten-
sor vanishes. The almost complex manifold (7, ) is called the twistor space of X*.

Now consider an oriented, 2-dimensional manifold M? and an immersion f :
M?  X*. Using the orientation of M? and X* we see that the spaces T,,,(M?)
and N,,(M*?) are oriented, 2-dimensional Euclidean vector spaces. We define
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g(m) P Tyom)(XY) = Tn(M?) - Nn(M?) - Tu(M?) - Nop(M?) = Tym)(X7)
y

F(m) = rotation around the angle 7 in the positive

(negative) direction on T, (M?) (on N, (M?)).

Then F : M?  Z is a lift of the immersion f : M? X% into the twistor space,

A
F
m
M2 —f> X4
Proposition 4 (see [F], 1). An immersion f : M?  X* is superminimal if

and only if the lift ' : M? 7 is horizontal, i.e.,
dF(T(M?))  TMZ).

In this case the lift F - M?  Z is a holomorphic map. Conversely, let F - M? Z
be a holomorphic and horizontal immersion. Then f := 7 F : M? Xtisa
superminimal immersion.

Now we give a further geometric characterization of superminimal immersions.
This description is well-known in case of the Euclidean space (Kwietniewski 1902)
and has been generalized in the paper [F]. First let us recall some linear-algebraic
facts. Let V be a four-dimensional Euclidean vector space and consider two planes
E and F in V. Then E is called isoclinic to F if the angle between e E and its
projection prr(e) into F' does not depend on e E. The relation has the following
properties:

I.1.) If F is isoclinic to F, then F is isoclinic to E.
1.2.) FEisisoclinic to F' if and only if the projection prp : £ F'is a conformal
map.
1.3.) If F is isoclinic to F', then E is isoclinic to the orthogonal complement
Pt
Suppose now that V' has a fixed orientation. If £ is an oriented plane, we denote
by E*+ the orthogonal complement with the orientation given by the condition
E  EY = V. Two oriented planes E, I are called oriented-isoclinic if either
E = F1 (as oriented planes) or the projection prp : F I is a non-trivial,
conformal map preserving the orientations. Then we have the properties:
I.1.%) If F is oriented-isoclinic to F', then F' is oriented-isoclinic to E.
[.2.%) If F is oriented-isoclinic to F', then E* is oriented-isoclinic to F'*.
1.3.%) TIf £ is an oriented plane and F' is a non-oriented plane such that £ and
I are 1soclinic, then F' admits exactly one orientation with respect to this
E, and F' are oriented-isoclinic.
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In general it is not true that the condition ” F is oriented isolclinic to F”7 implies
” F is oriented-isoclinic to +F* or F17. Therefore, we define that an oriented
plane E is negatively oriented-isoclinic to F' if F is oriented-isoclinic to F' and to
( F1). The link between this relation and complex structures is given by the
following

Lemma (see [F]). Let E, F be two oriented planes in V and denote by JZ : V
V' the map acting as the rotation around w/2 in the positive (negative) direction
on E (on E1). E is negatively oriented-isoclinic to F if and only if J¥ = JI'.

Consider an oriented surface f : M?  X* in a 4-dimensional, oriented Rieman-
nian manifold X*. If v is a curve in X*, we denote by 7, the parallel displacement
along v in the tangent bundle T(X*). We say that M? is a negatively oriented-
isoclinic surface if, for every curve v in M? from z to y, the planes 7o, (Tf(x)Mz)
and Tf(y)(Mz) are negatively oriented isoclinic planes in Tf(y)(X4). The men-
tioned geometric characterization of superminimal surfaces can be formulated now.

Proposition 5 (Kwietniewski 1902; [F]). An immersion f : M? X% is su-
perminimal if and only if it is negatively oriented-isoclinic.

3. SUPERMINIMAL SURFACES IN SPACES OF CONSTANT CURVATURE.

Let X* be the Euclidean space R* (or, more generally, a space form). Denote
by H* the standard positive line bundle on P(€). The twistor space Z of R*
is isomorphic to H*  H*. Therefore, we have a projection p : Z PH@), the
projection in the vector bundle H* H*.

H* H*= A

The mapp: 7 = H* H* PL(@) can also be described in the following way:
Consider the twistor space 7 : 7 R*. Since R* is flat and simply connected,
the parallel transport defines a fibration p : «  PY@) of the twistor space
over one of its fibres.

If F: M> Z=H* H*is aholomorphic map, then p F:M?  PLY{)is a
meromorphic function on M?. Therefore, the holomorphic maps F : M? =
H*  H* correspond to the sets (g, s1, s2) such that

a.) g: M?  PY(Q) is a meromorphic function on M?2.
b.) s1, s are holomorphic sections of the bundle ¢*(H*) over M2
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F = (g, s1,s2) is horizontal if and only if dg = 0, i.e., g is constant. Consequently,
the superminimal immersions f : M? R* correspond to pairs (hy, h2) of holo-
morphic functions such that dhy + dha > 0. A similar argument for spaces of
constant curvature yields the following

Theorem 1 (Borivka 1928). Let X*%(c) be a space of constant curvature. The
family of superminimal immersions f : M? X*(¢) depends (locally) on two
holomorphic functions.

In particular, the isoclinic surfaces M? < R* are locally R-surfaces, i.e., graphs
of holomorphic functions A& (Eisenhart 1912).

1982 R.. Bryant proved the following global existence results for superminimal sur-
faces in a space of positive constant curvature:

Theorem 2 (Bryant 1982). Every compact Riemann surface M? admits a con-
formal, superminimal immersion into the sphere S*.

We sketch the idea of the proof. The twistor space of the sphere S* is the projective
space P3({). On the subset

[21 : 29 1 23 : 24] P?’(@):zlzo = [l:29:23: 24] PS(@)
the horizontal distribution T"(P3({)) of the twistor fibration is defined by the
equation

de Z4d23 + 23d24 =0.

A general holomorphic and horizontal map F : M? P3(@) depends on two
meromorphic functions 4, B: M*  PY({@):

1 _dA 1dA
F—[l.A 5 E.B.i@].

Example. Consider a torus T = ¢/T and the Weierstrass function
1 1 1
=se ¥ e wl
AED A0

With A = p(z),B = p'(z) we obtain a holomorphic, horizontal immersion
T P3(@) that defines a superminimal immersion f : T S*. The Eu-
ler number of this immersion equals e = 12.

We study now the radius R of the indicatrix of a superminimal immersion f :
M?  X*(). With respect to a local frame e, e, €3, e4 on the surface we have
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H(eg):<2 6‘) H(@:(S‘ Oﬂ),

and this radius equals R = 2p.

Theorem 3 (Borivka 1928). Let X%(c¢) be a space of constant non-positive
curvature. Then there is no superminimal immersion with constant radius
R = const > 0.

Proof. We sketch the proof using the Cartan method of moving frames. Denote
by 01, ...04 the dual frame to ey, ...,e4 and let w;; =< €;,e; > be the connection
forms. The special form of the second fundamental form yields

w3l = Ho2 W32 = Hoq

Wal = Hoq W42 = HO32.

From the structure equation of X*(c) restricted to M? we obtain

dwiz = wip woz+wia W4z = Wiz 01  HO] W43
However, dwis = d(po2) = pdoa = pwa o1, and finally we conclude
2uwis 01 = pwas  O1.
Using the form ws3 a similar calculation provides the equation
2uwis 09 = fwas O3
This implies 2wis = w43. On the other hand, we have

_ _ 2
dwiz =wa1 wiz+war waz= 2u° o1 03

2
dwis = wiz w3z +wia way coy oy =+2u 0y 0y coy 0o

The equation 2wis = was yields now 3u? = c. O

Remark. The Gaussian curvature K of the surface is related to the radius
R? = 22 of the indicatrix by the formula K = ¢  RZ2.

Remark. In case p is not constant, we obtain the differential equations

dpu= p(2wi2 + waa)

and
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for the radius R? = 2u? of the indicatrix of a superminimal surface f : M? «

X%(e).

The superminimal surfaces in S* with a constant radius R > 0 of the indicatrix
were described by Boravka:

Theorem 4 (Bortuvka 1928). A superminimal surface f : M? S* with a
constant radius R > 0 of the indicatrix is a Veronese surface.

We consider now a compact superminimal surface f : M? X%, Then there is

a link between the Euler number e of the normal bundle and the volume of the
surface in case X*? is a self-dual Einstein manifold.

Theorem 5 (see [F]). Let X* be a self-dual Einstein space with scalar curvature

7 and consider a superminimal immersion f : M? X* of a compact surface.
Then
Tvol(M?)
=xy(M*H —2
c=x(MT)
holds.

The Killing-Lipschitz curvature G : N} (M?)  R?* on the set N'(M?) of all unit
normal vectors of a superminimal immersion does not depend on the normal vector
and is given by

L R
Gi)y= p'= —.

Therefore, the total absolute curvature of the surface coincides with the mean

value of R?,
/ G ITF/RZ.
Nl

M2

In case of a space X* of constant curvature, the mean value of R? is a topological
invariant:

Theorem 6 (see [F]). If f : M? X*%(c) is a superminimal immersion of a
compact surface M? into a space X*(c) of constant curvature, then

cvol(M?) 1 9
= — = — | R".
cTAX 2w 271'/
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4. COMPLETE SUPERMINIMAL SURFACES IN THE HYPERBOLIC SPACE H*.

We identify the four-dimensional sphere $* with @2 and use the coordinates
(w1, ws). The twistor space of S* is the complex projective space P3({). Let
[21 : 22 : z3 : z4] be its homogeneous coordinates. The projection 7 : P3(€)  S*
in the twistor bundle is given by

Za23 + 2421 wo — Zoza + Z321
2324 242 2324 242

Note that the following formulas hold:

wp =

2 2
9 z1 7+ 29
wy T+ wy = 5,
23 “ 4+ 24
Z1 = wazz +wiza , Z2 = W1Z3+ WaZ4.
Therefore, the equations
le = w2d23 + w1d24 s de = lz}le:«; + 12}de4

describe the vertical bundle TV of the twistor fibration. We consider the space of
constant curvature (¢ = 4,0, 4)

Hi)= (wy,ws) 54;1+§(w12+ wy 2) > 0

with the Riemannian metric
d 9 dw1 2 + dw2 2
— .
(15w T4 we ?2))?

The analytic structure of the twistor space depends only on the conformal structure
of the underlying 4-dimensional Riemannian manifold. Consequently, the twistor
space Z(c) of H*(¢) coincides with the preimage 7~1(H%(c)):

Z(c) = [z1:22: 23 24] P?’(@):c(zlz—l— z22)+4(z32—|— z42)>0.

In case ¢ = 0, the twistor space Z(¢) admits a natural metric g. such that
(Z(¢),g.) " (H*(¢),ds?) is a Riemannian submersion. The metric g. is given
by the formula

1
9e = 75— be(3,3)b:(d3,d be(ds, 2’
0055 Cc@3)beldsda) belds;3)

where b, denotes the Hermitian form in ¢*:
be(3,37) = (2171 + 2275) + 42325 + 2 Z]).

If ¢ = 4, the metric g, is the Fubini-Study metric of the projective space P3({). In
case ¢ = 4, g, is a pseudo-Riemannian metric of signature (2,4), and (Z( 4),g-4)
is an Einstein space as well as a (pseudo-) Kahler manifold. It is a matter of fact
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that the horizontal bundle T of the twistor space Z(c) with respect to the metric
ds? coincides with the g.-orthogonal complement of T%:

Th(Z(c)) =7 T(Z(c)) :gc(t_: t_i) =0 forall ¢ TV .

A direct calculation yields now the following result:

Proposition 6. The horizontal distribution T"(Z(c)) on the subset z 11is
given by the equation

edzo + 4( zadzz + z3dze) = 0.

In particular, we consider the case of ¢ 0. The twistor space Z(0) is a rank-two
vector bundle over P({). Indeed, let

Pl(@): [21: 29 : 25 : 24] P?’(@):zlzzzzo
and denote by p : Z(0) PL(@) the map plz1 : 29 123 : 24]) = [0:0: 23 : 24]. A
point in the dual Hopf bundle H* is a pair ([z3 : z4], &), where [25: za] PYQ) is
a line in €% and ¢ is a linear map on this line. We identify Z(0) with H* H* via
the map W : H* H* Z(0),

\I’([23 : 24],51,52) = [51[23 : 24] 352[23 : 24] S 23 Z4]~

Then, the diagram

H* H*

commutes and the twistor space Z(c¢) (¢ < 0) corresponds to
* * 4
Z(e)= (&,6) H* H: &7+ &7°< i

Consequently, a holomorphic map F : A? Z(c) is given by a meromorphic
function ® = p F : M? PL(@) and two holomorphic sections s, s2 in the
induced bundle ®*(H*) such that

4
s1(m) 2 4 so(m) ? < -

We fix the holomorphic section « in H* given by «a[z3 : z4] = 2a.
The sections s1,s2  ['(®*(H™)) are multiples of ®*(«),

s1 =AD" () 53 = BD"(«).
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A, B:M?  PY@) are meromorphic functions on the Riemann surface M?, and
the holomorphic map F: M? ~ H* H* = Z(0) can be written in the form

B 1 1
F=[4A0" . B®*:®% . dY=[1:=: =& -]
[ 1=1 17 A]

I is horizontal if and only if

()3

The equation is equivalent to

and, finally, we obtain

Theorem 7. A conformal superminimal immersion f : M?  H*() (¢ 0)is
given by three meromorphic functions A, B, ® : M?  PY(Q) such that

c B
a.) ZAZd (Z) =dd
b.) A?4+ B?< %(1+ ®?).
It is easy to derive the formula for the immersion f: M?  H%*(¢) depending on
A B,®:
1

F=173%>2

( B®+ A4, B+ A®).

Example. Denote by o?  0,630415 the unique root of the polynomial 3 9z?
92 + 9 in the interval [0,1]. On the unit disk M2 = z (: z <1 we consider
the functions

1
A(z)=a*2? | B(z)=azr , ®(2)= oS

Then A%d (%) =d® as wellas A?+ B? <14+ ®(z)? hold for all z < 1.

The map F : M?  PY(Q) is given by F(z) = [a%z : az : £a2® : 1]. The metric
[*(ds%,) induced by the corresponding immersion f : M? H*( 4) coincides
with
1
F*(goa) = 5——— b_a(F, F)b_s(dF,dF) b_4(dF, F)? .
(9-4) L) a(F, F)b_y(dF, dF) a(dF, F)

A calculation of F*(g_4) yields the following result: f*(ds?,) = G( z 2)%,

where Izllir—*nl G(z?) = const = 0. Since the hyperbolic metric % 1s a com-
plete Riemannian metric on M? = z € : z < 1 , the metric f*(ds%,) is
complete, too.

The formula for the superminimal immersion
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f:z @ z <1 HY( 4) «@*
is
1

_ 2,2 22 - 4 4

flz) = PR (3a %3 o 27),3a2(34+a” 2 ))

and f is a complete and superminimal embedding of the unit disk into H*( 4). We
project f(M?) H*( 4) onto the 3-dimensional Euclidean space R®> = ¢' R
@?. Then we obtain the following picture of this projected surface in the unit ball
of R3:

ParametricPlot3D[{3(0.793987) " 2r"2Cos[2t]
(3-(0.793987)"2r"2)/((0.793987)"6r"6+9), 3(0.793987) " 2r~2Sin[2t]
(3-(0.793987)"2r"2)/((0.793987)"6r"6+9),

3(0.793987)r Cos[t](3+(0.793987)"4r"4)/
((0.793987)"6r"6+9)},{r,0,1},{t,0,2Pi}]

-Q 55

In particular, we obtain

Theorem 8. There are embedded, complete, simply-connected and superminimal
surfaces M?  H* that are not totally geodesic. d
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Remark. The constructed surface is holomorphic to the unit disk. A surface of
this type that is holomorphic to € (or to S?) cannot exist since the curvature K
of a superminimal surface is K = 4  2u? 4. On the manifold ¢ R?, there
are no complete Riemannian metrics such that K 4 (Sattinger 1972).

The example explained above is a special case of a more general family of complete
superminimal immersions. Let Q(z) be a holomorphic function. We put

B(z) =z, A(z)=22Q(z) + zZQ'(z), P(z) = zSQ/(z).

Then we have a solution of the differential equation AZ%d (%) = d®. Suppose
now that the connected component Qg of the domain defined by

V() =14+ 2°Q' ()% 2% 272Q(2)+:2Q'(2)*>0

is a bounded domain with a smooth boundary and denote by K¢q(#, z) its Bergman
kernel. Then K¢(#, z) has the form (see [BFG])

K(z,2) = 1202(8) + ¢(z) log¥(z),

where ¢ and ¢ are smooth functions on Qg, and ¢(z) = 0 on 9Qg. The immersion

[:Q¢ HY'isgiven by itslift F: Qg Z( 4) P3@Q),

F(2) = [22Q(2) + Q' (2) : 2 : 2°Q'(2) : 1]

and we obtain the following formula for the induced metric : f*(d52_4) =

G(z) dz ?, where

1
- P(2)

If = 2y 0fQgq, we have

G(z) Y()b_a(dF,dF)  b_y(dF, F)? .

G(z) _ o (@b-a(dFdF)()  ba(dF F)*(z) _ boa(dF F) *(z0)

ARG TR T o)+ (R g v(e) #lz0)

The Bergman metric K(z,z) dz ? is a complete metric on €g. Consequently, in
case b_y4(dF,F)? = 0 on 0Qq, the metric f*(ds%,) is a complete metric, too.
This construction provides a whole family of complete superminimal immersions
of the unit disk into the hyperbolic four-space H*. The example explained above
corresponds to the case Q(z) = % In case we consider Q(z) = z or Q(z) = ¢*
for example, we obtain a superminimal surface in H* whose projection onto the

3-dimensional Euclidean space looks as follows:
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ParametricPlot3D[{(-2r~5+4r~3)Cos[3t]/(r"8+4),
(-2r~5+4r~3)Sin[3t]/(r"8+4), (4r+2r~7)Cos[t]1/(r"8+4)},
{r,0,0.841406},{t,0,2Pi}]

ParametricPlot3D[{((1-r~2)r 2Exp[r Cos[t]](Cos[r Sinl[t]]Cos[2t]
—-Sin[r Sin[t]1]Sin[2t])+2r Explr Cos[t]](Cosl[r Sin[t]]Cos[t]
-Sin[r Sin[t11Sin[t]))/(1+r"6Exp[2r Cos[t1]),

((1-r~2)r~2Exp[r Cos[t]]1(Sin[r Sin[t]]Cos[2t]

+Cos[r Sin[t]]Sin[2t])+2r Explr Cos[t]](Sinl[r Sin[t]]Cos[t]
+Cos[r Sinl[t11Sin[t]))/(1+r~6Exp[2r Cos[tl]),

(r Cos[t]+Exp[2r Cos[t]lr~4((2+Cos[t])Cos[2t]+r Sin[t]1Sin[2t]))
/(1+r~6Exp[2r Cos[t]]1)},{t,0,2Pi},{r,0,13}]



ON SUPERMINIMAL SURFACES 55

The hyperbolic space H* does not contain compact minimal surfaces. On the other
hand, the Riemann surface M? = H?/T is a totally geodesic (compact) submani-
fold in X*(c) = H*/T. It seems to be an open question whether or not there exist
conformal, superminimal and non-totally geodesic immersions f : M? X*(e)
of a compact Riemann surface into a (non-simply connected) space form X*(c).
Compact surfaces of this type do not exist, we will return to this problem occa-
sionally.
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