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Dedicated to the memory of Professor Otakar Boritivka

ABSTRACT. On the background of Bortvka’s pioneering work we present a survey
of the development related to the Minimum Spanning Tree Problem. We also com-
plement the historical paper Graham-Hell [GH] by a few remarks and provide an
update of the extensive literature devoted to this problem.

In the contemporary terminology the Minimum Spanning Tree problem can be
formulated as follows:

Given a finite set V and a real weight function w on pairs of elements of V' find
a tree (V,T) of minimal weight w(t) =3 (w(a:, y) {z,y} € T).

For example when V 1s a subset of a metric space and the weight function is
defined as the distance then a solution T" presents the shortest network connecting
all the points V.

Another frequent formulation which also explains its name is

MST PROBLEM :

Given a connected (undirected) graph G = (V| E') with real weights attached to
its edges find a spanning tree (V,T) of G (i.e. T C FE) such that the total weight
w(T) is minimal.

This is a cornerstone problem of Combinatorial Optimization and in a sense its
cradle. The problem is important both in its practical and theoretical applications.
We want to demonstrate this interest seems not to be dying until now.

The problem was isolated and attacked in the fifties with the vigor and confi-
dence of then newly developing fields theory of algorithms and computer science.
The contributions were numerous and illustrious: K. Culik, G. Dantzig, E. W. Di-
jkstra, A. Kotzig, J. B. Kruskal, H. W. Kuhn, H. Loberman, A. Weinberger, R. Kal-
aba, R. C. Prim, E. W. Solomon (see the references : it is only fitting and fortunate
that this Boravka’s memorial volume contains a reminiscence of these early days
written by J. B. Kruskal). These pioneering works made the MST problem popular
and the further development only contributed to it. The paper of R. L. Graham
and P. Hell [GH] described accurately the development until 1985. Here are some
of the main features that indicate the role and importance of this problem in
contemporary discrete mathematics:
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1. MST problem may be efficiently solved for large sets by several algorithms.
These algorithms were studied even before the right complexity measures
and problems were isolated. Very early attempts were made to classify
the various algorithms according to their basic underlying idea (see e.g.
[CDF] and [Tal]). Basically, all known algorithms make use of various
combinations of the following two (dual) properties of trees:

(CUT RULE) The optimal solution 7" to MST problem contains an edge
with minimal weight in every cut.

(CIRCUIT RULE) The edge of a circuit C' whose weight is larger than the
weights of the remaining edges of C' cannot belong to the optimal solution
T.

1. There is a variety of algorithms to solve MST problem efficiently. Among
those the prominent role is played by Kruskal’s Greedy Algoritm [Kr].
Greedy algorithm is perhaps the most thoroughly studied and used heuris-
tic in Combinatorial Optimization. Greedy Algorithm is easy to state : one
simply sorts the edges of our graph by increasing weights and then the
desired set T' is defined recursively as follows: the next edge is added to
T iff together with 7" it does not form a circuit.

1. MST problem has a polynomial solution regardless of the weight function
w (e.g. for negative weights).

iv. Problems analogous to the MST problem were also solved efficiently, par-
ticularly the directed version of the problem (i.e. minimal branching from
a given root, see [E]).

v. MST problems appears as a subroutine to heuristic and approximate al-
gorithms to other combinatorial optimization problems (such as Traveling
Salesman Problem).

vi. The class of problems solvable by Greedy Algorithm were identified with
the class of matroids (no such a similar characterization seems to be known
for other MST algorithms), greedoids [KLS], and more recently with “jump
systems” .

While the Greedy Algorithm is esthetically pleasing and perhaps easiest to for-
mulate it is NOT the fastest known algorithm (if only for the fact that we need
to sort the edges according to their weights that leads to a nonlinear nlogn lower
bound). These complexity considerations revived the interest in alternative pro-
cedures and in other algorithms for solving MST problem. It seems that this also
revived the interest in the history of MST problem. And it appeared that the pre-
computer age history of the problem is as illustrious as the modern development.
This is covered carefully in a great detail [GH]. Particularly it appeared that the
standard procedure known as Prim’s Algorithm [P] was discovered and formulated
very clearly and concisely by the prominent number theoretician Vojtéch Jarnik
in 1930 [Ja]. (Jarnik and Kossler [KJ] were also the first to formulate the Fu-
clidean Steiner Tree Problem, see [KN] for the history of Jarnik’s contribution to
Combinatorial Optimization.) Consequently also the work of Otakar Bortivka was
reexamined.

Let us recall that Bortivka formulated in [Bol] and [Bo2] the first efficient solu-
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tion of MST problem as early as 1926. His contribution was not entirely unrecog-
nized (as opposed to Jarnik’s work) and both standard early references [Kr] and
[Pr] mention Boriivka’s paper. However this reference was later dismissed as the
Boruvka Algorithm was regarded as “unnecessarily complicated”. Well, perhaps a
few words of explanation are in order here.

While perhaps not so easy to formulate as the Greedy Algorithm the Boruvka
Algorithm is easy to formulate using the present terminology as well :

BORUVKA ALGORITHM

1. For each vertex v of the given graph G select the edge of minimal weight which
is incident with v. (Comment: It is best to formulate the Bortivka Algorithm for
graphs with distinct weights of edges. This is either a realistic assumption or it can
be solved by a convenient tie breaking procedure. For example we can enumerate
the edges and n the case of a tie of edges we select the edge with lower number.)

2. We contract all the selected edges replacing by a single vertex each connected
component of the graph defined by the selected edges. In this procedure we elimi-
nate loops (i.e. edges with both ends in the same component) and all the parallel
edges (i.e. edges between the same pairs of components) with the exception of the
lowest weight edge.

3. We apply the algorithm recursively to find the minimal spanning tree 7’ of
the contracted graph. The minimal spanning tree 7' is formed by the contracted
edges together with the edges of T".

One should stress that such a concise description was not available in twenties
(not only in the pre-computer age but also in the “pre-graph theory” age). One
has to see that the operation “contraction” became appreciated much later (in
the context of planar graphs and theory of matroids) but even the term “tree” is
not mentioned in Boruvka’s paper. The later seems to be the main difficulty in
[Bol]. Instead of saying that the selected edges (in Step 1. of the algorithm) form
connected components which are (obviously) trees, Bortivka elaborately constructs
this tree: first he finds a maximal path P containing a given point then starts
with a new vertex and finds a maximal path P’ which either is disjoint with P or
terminates in a vertex of P and so on. As a result of this the Step 2. has to be
tediously described and thus the description of the algorithm takes full 5 pages of
[Bol]!

However all this one should regard as technical difficulties only. Moreover there
is an evidence that Boruvka had a simple description in mind as he published
a follow up article in an electrotechnical journal [Bo2] where he illustrated his
method by an example (of points in the plane together with their distance as
weights).

Although each of the iterations of 1. and 2. is more involved than the simpler
rule in Greedy Algorithm, we need only logn of these iterations: in each step we
select at least n/2 edges and thus the number of vertices of contracted graph is at
most half of the size of the original graph.

The following is another view : although we start with many (i.e. n) components
(as many as there are blueberries in a forest) the number of components is halved
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each time and thus we are quickly done. (“Blueberry” is “bortvka” in czech.)

So it appeared that the “simplicity” and effectiveness of Boruvka Algorithm
was recognized much later and basically during the last 10 years.

One never knows. Contradicting to the earlier evidence, presently it seems that
Boruvka Algorithm is the best algorithm available. This is based on experimental
evidence as well as its “parallel” character and its theoretical analysis. Let us be
more specific here and let us outline the recent development. It 1s a spectacular
development as it is related to some of the key problems and advances of the
modern theory of algorithms.

Given a connected undirected graph G = (V, E) we denote as usual n = |V the
number of its vertices and m = |E| the number of its edges. As G is connected
it is n — 1 < m and we can identify m with the size of the input of the graph
G. To concentrate on the combinatorial structure of the algorithms we consider
the computational model unit-cost RAM with the additional restriction that the
only operation allowed on edge weights are binary comparisons of weights. Thus
m can be thought as the size of the weighted graph, too. This seems to be the
most natural model for solving MST problem. However, one should bear in mind
that the detailed complexity analysis is model-dependent as was also shown for
MST e.g. in [FW]. The above mentioned algorithms are very efficient, for example
the naive implementation of Greedy Algorithm is of order mn and it is easy to
turn Boruvka Algorithm into an mlogn deterministic algorithm. However, this also
indicated that for MST problem we can hope for very fast algorithms. Here is a
summary of the results in this direction mostly related to R. Tarjan:

A. Yao [Ya] was the first to implement Boruvka Algorithm and obtained bound
mloglogn. This was further improved by Fredman and Tarjan [FT] and finally by
Gabow, Galil, Spencer and Tarjan [GGS] and [GGST] to the bound mlog 3(m, n)

where G(m,n) is a very slowly growing function defined as follows:

B(m, n) = min{i; loglog .. .log(n) < m/n}
_(_/

Currently this is the best known deterministic algorithm for MST problem. This
algorithm also involved an important new data structure Fibonacci Heaps that
found its way to standard textbooks of Computer Science.

But one can hope for even more. For example Tarjan [T2] showed that one can
implement the Greedy Algorithm for graphs with presorted edge-weights so that
its complexity is ma(m, n) where a(m, n) is the functional inverse to the Ackerman
function. This function grows much slower than (already very slow) function §.
However for general weighted graphs [GGST] still presents the best deterministic
algorithm for MST problem and the following seems to be the most important
problem in this area:
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PROBLEM :
Does there exist a linear deterministic algorithm which solves MST Problem ?
More precisely, does there exist a deterministic algorithm and a constant K
such that for a given weighted connected graph G with m edges the algorithm
finds a minimum spanning tree of GG in at most Km steps 7

One should note that many combinatorial optimization problems can be solved
by a linear deterministic algorithm (e.g. shortest path problem or finding of a
planar drawing of a graph; see [Tal]). A bit surprisingly for MST problem this is
still an open problem. However the problem has been intensively studied. The key
role in the recent development has been played by the following sub problem of

MST:

MST VERIFICATION PROBLEM :

Given a weighted graph G = (V, F) and its spanning tree T decide whether T
i1s a minimal.

Building on an earlier work of Tarjan [Ta2] and an algorithm of Komlos [Ko] it
has been showed by Dixon, Rauch and Tarjan [DRT] that the MST Verification
problem can be solved by a linear deterministic algorithm. Recently a simpler
procedure has been found by King [K]. Valerie King observed that the Komlos
algorithm is simple and linear for balanced (full branching) trees. In order to
apply this she transformed every tree to a full branching tree of at most double
size with “preservation” of weights. This transformation is achieved by applying
the Boruvka Algorithm to a tree itself, indeed King calls the tree produced in this
way Bortivka Tree. (Borivka tree of a tree (V,T) has all the vertices as leaves
and internal vertices correspond to components which appear during Boruvka
Algorithm, the edges represent which components produce in the next step a new
component.)

This is not the end of the story, perhaps rather beginning of the new interesting
period. The combination of the previously obtained methods yields unexpected
results. So recently Bortvka Algorithm has been combined with the linear verifi-
cation algorithm to obtain the first randomized linear algorithm for MST problem,
see Klein, Tarjan [KT] and Karger, Klein and Tarjan [KKT]. Also an optimal ran-
domized parallel algorithm has been recently found by Cole, Klein and Tarjan
[CKT].

In all these results the Boruvka Algorithm plays a key role. Indeed in order
to simplify their complicated parallel algorithm and its analysis Cole, Klein and
Tarjan [CKT] call each iteration of Boruvka Algorithm (i.e. each iteration of edge
selection and subsequent contraction) “Bortivka Step”.

We need one more definition (related to the MST verification algorithm): Given
a weighted graph G = (V, F) and a spanning forest F' (i.e. (V, F) contains no
circuits but is need not be connected), we say that an edge e not in the forest F’
is F-heavy if the endpoints of e are connected by a path in F' and the weight of
every edge on that path is less than the weight of e.

It follows from the Circuit Rule that a tree 7" is a minimal spanning tree iff
every edge outside T is T-heavy. All the MST verification algorithms determine
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all heavy edges (with respect to a particular tree or forest).
Let us end this paper by a description of the first linear randomized algorithm

[KT], [KKT]:

LINEAR RANDOMIZED ALGORITHM FOR MST

1. (Bortivka Step) :

For each vertex v of the weighted graph G select the edge with minimal weight
which is incident with v. Contract all the selected edges replacing by a single vertex
each connected component of the graph defined by the selected edges. Eliminate
all the loops and all the parallel edges with the exception of the lowest weight edge
(between a given pair of vertices).

2. If the density of the contracted graph is less than 6 then continue with 3.
(The density is the number of edges divided by the number of vertices, i.e. m/n.)
Otherwise we choose a random subgraph H of the contracted graph by including
each edge with probability 1/2. Apply then the algorithm recursively to the graph
H. Then let F' be a minimum spanning forests of H. Using linear MST verification
algorithm find all F-heavy edges in the whole contracted graph and delete them.
(According to the CIRCUIT rule these edges cannot be contained in the minimum
spanning tree of the whole graph.) Proceed with 3.

3. Apply the algorithm recursively to the remaining graph (i.e. either the con-
tracted graph or the contracted graph without F-heavy edges) to obtain a min-
imum spanning tree 7. The minimum spanning forest of G consists from those
edges contracted in the Boruvka Step 1. together with the edges of T".

It follows from the correctness of the Bortivka Algorithm and from from the
CIRCUIT rule that the algorithm correctly computes a minimum spanning tree
of the given graph. It has been shown in [KT] that the expected number of the
F-heavy edges of the graph H is large (as the expected number of F-light edges is
bounded by 2n). One can the prove that the expected length of the algorithm is
linear and even that the algorithm runs in linear time except with the exponential
small probability. The analysis of the algorithm and related algorithms given in
[KT], [KKT] and [CKT] is quite involved.

The Combinatorial Optimization has gone a long way in its relatively short
history. But it is a bit surprising how persistent are the classical motivations and
algorithms. But possibly for a (positive) solution of some of the key problems (such
as the linearity of MST problem) some new combinatorial trics are needed.

Acknowledgement : I thank to P. Hell, M. Karpinski and R. Tarjan for their help
with the recent literature about MST problem.
This work was supported by GAUK 194 and GACR 0194.

REFERENCES
[Bo1] O. Bortivka, O jistém problému minimdinim (About a certain minimal problem),
Préce mor. pfirodovéd. spol. v Brné III, 3 (1926), 37-58.
[Bo2] O. Boriivka, Prispévek k resent otdzky ekonomické stavby elektrovodnych siti (Contri-

bution to the solution of a problem of economical construction of electrical networks),



A FEW REMARKS ON THE HISTORY OF MST-PROBLEM 21

Elektrotechnicky obzor 15(1926), 153-154.

K. Culik, K jednomu minimdinimu problému O. Bordvky, Cas. pro pést. mat. 85(1960),
93-94.

K. Culik, V. Dolezal, M. Fiedler, Kombinatorické analyza v prawi, SNTL, Prague,
1967.

R. Cole, P. N. Klein, R. E. Tarjan, A lnear-work parallel algorithm for finding min-
imum spanning trees, Proc. of SPAA, 1994.

G. Dantzig, Discrete variable exvtremum problems, Oper. Research 5(1957).

E. W. Dijkstra, Some theorems on spanning subtrees of a graph, Indag. Math. XXII,
2(1960), 196-199.

B. Dixon, M. Rauch, R. Tarjan, Verification and sensitivity analysis of minimum
spanning trees in linear ttme, SIAM J. of Computing 21, 6(1992), 1184-1192.

J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Standards 71B(1967), 233-240.
M. Fredman, D. E. Willard, Trans-dichotomous algorithms for minimum spanning
trees and shortest paths, Proc. 31st Annual IEEE Symp. on Found. of Comp. Sci.,
1966, 719-725.

M. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in network optimization
algorithms, Proc. 25th Annual IEEE Symp. on Found. of Comp. Sci., 1984, 338-346.
H. N. Gabov, Z. Galil, T. H. Spencer, Efficient implementation of graph algorithms
using contraction, Proc. 25th Annual IEEE Symp. on Foundations of Computer Sci.,
1984, 347-357.

H. N. Gabov, Z. Galil, T. H. Spencer, R. E. Tarjan, Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs, Combinatorica 6(1986),
109-122.

R. L. Graham, P. Hell, On the history of the minimum spanning tree problem, Annals
of the History of Computing 7(1985), 43-57.

V. Jarnik, O jistém problému minimdlnim, Prace mor. pfirodovéd. spol. v Brné VI,
4(1930), 57-63.

V. Jarnik, M. Késsler, O minimdlnich grafech obsahujicich n daniych bodi, Cas. pro
pést. mat. 63(1934)7 223-235.

R. Kalaba, On some communication network problem, Proc. Symp. Applied Math.
(1960), 261-280.

D. R. Karger, Random sampling in matroids, with applications to graph connectivity
and minimumspanning trees, Proc. 34th Annual IEEE Symp. on Found. of Computer
Sci. 1993, 84-93.

D. Karger, P. N. Klein, R. E. Tarjan, A randomized linear-time algorithm to find
minimum spanning trees, J. Assoc. Comp. Mach. 42(1995), 321-328.

V. King, A simpler minimum spanning tree verification algorithm, manuscript 1993.
P. N. Klein, R. E. Tarjan, A randomized linear-time algorithm for finding minimum
spanning trees, Proc. 26th Annual ACM Symp. on theory of Computing, 1994, 9-15.
J. Komlos, Linear verification for spanning trees, Combinatorica 5(1985), 57—65.

B. Korte, L. Lovasz, R. Schrader, Greedoids, Springer Verlag (1991).

B. Korte, J. Neset#il, Vojtéch Jarnik’s work in combinatorial optimization, KAM
Series No. 96-315.

A. Kotzig, Sivislé grafy s minimdlnou hodnotou v koneénom sivislom grafe, Cas pro
pést. mat. (1961), 1-6.

J. B. Kruskal, On the shortest spanning subtree of a graph and the travelling salesman
problem, Proc. Amer. Math. Soc. 7(1956), 48-50.

J. Lukasiewicz, K. Florek, J. Perkal. H. Steinhaus, S. Zubrzycky, Sur la liaison et la
division des points d’un ensemble fini, Colloq. Math. 2(1949-1951), 282-285.

E. Milkova, Prohleddvdni, tridéni a optimalizace stromi, doctoral dissertation, Prague,
1997.

R. C. Prim, The shortest connecting network and some generalisations, Bell. Syst.
Tech. J. 36(1957)7 1389-1401.



22
[Se]
[Tal]

[Ta2]

JAROSLAV NESETRIL

E. W. Solomon, A comprehensive program for network problems, Computer J. 3(1960),
89-97.

R. E. Tarjan, Datae structures and network algorithms, CBMS-NSF Regional Conf.
Series in Applied Math., STAM 44(1983).

R. E. Tarjan, Applications of path compressions on balanced trees, J. Assoc. Comput.
Math. 26(1979), 690-715.

A. Yao, An O(|E|loglog|V|) algorithm for finding minimum spanning trees, Inform.
Process. Lett. 4(1975), 21-23.

DEPARTMENT OF APPLIED MATHEMATICS
CHARLEs UNIVERSITY

MALOSTRANSKE NAM. 25

118 00 PraHa 1, CZECH REPUBLIC



		webmaster@dml.cz
	2012-05-10T11:55:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




