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HIGHER ORDER CARTAN CONNECTIONS

(GEORGE VIRSIK

To Ivan Kold¥, on the occasion of his 60th birthday.

ABSTRACT. A Cartan connection associated with a pair P(M,G') C P(M,G) is
defined in the usual manner except that only the injectivity of w : T(P') — T(G)e is
required. For an r-th order connection associated with a bundle morphism ® : P/ — P
the concept of Cartan order ¢ < 7 is defined, which for ¢ = » = 1,® : P’ C P,
and dim M = dim G/G& coincides with the classical definition. Results are obtained
concerning the Cartan order of r-th order connections that are the product of r first
order (Cartan) connections.

1. PRELIMINARIES

All manifolds are assumed smooth and finite dimensional. Following [7], the
category of principal bundles P(M,G) for a fixed manifold M will be denoted by
PB(M). Thus a typical morphism (®,®¢) : P'(M,G') — P(M,G) of PB(M), is
given by a fibre preserving map ® : P/ — P and a homomorphism ®¢ : G/ — G
such that ®(h'g’) = ®(A)Pg(g'), for any ' € P’ ¢’ € G'. We shall write sometimes
simply ® : P/ — P instead of the explicit (®,®¢) : P(M,G") — P(M,G). Also,
FM(M) will denote the category of fibred manifolds over M and fibre preserving
maps.

If p: E — M is a fibred manifold denote by J"FE the space of holonomic r-jets
of its local sections which is again a fibred manifold « : J"E — M. By iteration of
J1 one obtains the fibred manifold J”E of non-holonomic jets of sections and its
submanifold J" E of semi-holonomic ones (c.f.[1]).

If p=pry : M x N — M, where N is another manifold, we write J"(M, N)
instead of J"(M x N), and J,(M,N), C J"(M,N) for the submanifold of jets

with source # € M and target y € N. Similarly J~’“(M, N) and J"(M,N). We
shall use the symbol o to denote composition of jets, ie. if 7 = jLf € J'(M,N)
and Y = jig € J'(N,Q),y = f(z), then Y o Z = ji(go f) € J"(M,Q) with an
appropriate extension to non-holonomic and semi-holonomic jets (c.f. (1.5) below).
Also, jr(t — f(t)) will sometimes stand for j7 f, and we shall use the abbreviated
notation jI = j7(t — t) and jllc] = jL(t — ¢) for the jets of the identity and
constant maps respectively.

1991 Mathematics Subject Classification: 53 C 05, 58 A 20.
Key words and phrases: non-holonomic jets and connections, semi-holonomic jets and connec-
tions, higher order relative, straight and Cartan connections.
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There is a functor J : FM(M) — FM(M) which assignes J'E to E and
jls— jl(fos)to f: E — F.By iteration one obtains the functor J” : FM(M) —
FM(M) which assigns J E to E. Also, there are natural transformations 7 : J© —
J® for 0 < s < r, where J° = idFam(ar), satisfying

(1.1) ﬂ'gojr(f) = js(f)owg for 0 < s <randany f € FM(M).

More generally, given F € FAM(M) and a pair s < r there are r — s+ 1 projections

(c.£. .[8])

(1.2) = J(x ) ot i=s,s+1,...,r.

5 K3

Note that 77 ~* = 7} and Z € J"E is semi-holonomic iff for any 1 <s<r
(1.3) m(Z)=7""7) € J*E whenever i=s+1,5+2,...,7.

An element X € J7(M,N) can be represented by its coordinates (X5 .)€
%(Rm,ﬂ%{"), where ¢1,...,4, =0,1,2,...,m; a=1,...,n (cf. [9]) which gives
the coordinate expression

(1.4) 7"2_”' : (Xﬁ,...,tr) = (Xﬁ,...,Ls_l,o,...,o,ts,o,...,o)a
where ¢; 1s in the i-th place.

Recall also the rule for the composition of non-holonomic jets (c.f. [2]) defined
recurrently as follows. If Z = jlp € JI(M,N) and W = j;(f € J;(N,Q), where p :

M~ J~T—1(M, N)and 0 : N ~~ J~’“_1(N, Q) are local sections in a neighbourhood
of £ € M and y = 7jj(Z) € N respectively, then their composition W o Z is given
by (c.f. [1])

(1.5) WoZ = jhur o(xy " p(u) o p(w)).

In coordinates, this rule is best expressed recurrently as follows: The coordinate
U;l .k, of U =W oZ is obtained by formally applying the differential operator

; Y B a Tgy
Dy to the function Uy (W . Z% ;) and writing

ze instead of 'the value of Z% . 7

L1, ,tp—1,0 [ATTEN PO

(a3 3 (a3
Zil,...,ir_l,ir instead of DTZil,...,ir_l’
we o o instead of 'the value of weo ’, and

JissJr—1, Jiye)r—1

n B s : 8
2=t Wi eoas %, 0,0, stead of DLW 5

In particular, we obtain the following
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Lemma 1.1. Let 7 € J~;+1(M, N), W e JZH(N, Q) and let 77 T1(Z) = jo[y]. Let
7 have coordinates Zﬁy~~~yiryir+l’i5 =0,1,...,m; a=1,... n and let W have
coordinates VV]ﬁl jr+1,jk =0,1,...,n; B =1,...,q. Then the coordinates of

U=WoZ are given by

n
E _ E j
U v = 2 Wo 0500050y
j:l

where the subscript j isin the place of the first non-zero index amongiy, ... , iy, ir41.

Note that by our assumption Z;; ; ;=0 hence also Uﬁ 0 =0.
One verifies easily that

(1.6) ﬂ'gowg_’i:ﬂ'g for0<g<s<i<r
and
(1.7) A (Ao B) = w7 (A) o 7T (B)

for any two non-holonomic r-jets for which the composition A o B is defined.

2. FIRST ORDER CARTAN CONNECTIONS

Recall the standard definition as given in e.g. [3]. Given a Lie group G, a subgroup
(' C G and a principal bundle P'(M, G") — giving rise to a reduction P'(M,G") C
P(M,G), with P(M,G) the extension by G C G — a Cartan connection for this
pair is a one-formw on P’ with values in the Lie algebra T((), satisfying w(A*) = A
for every A € T(G')., (Ra)*w = ad(a™1)w for every a € G’ and such that w(Y) =0
implies Y = 0 € T(P’). Tt follows then that dimG/G’ > dim M. Note that in [3]
and elsewhere one assumes equality of these dimensions. If that is the case we shall
speak of a classical Cartan connection giving rise to an absolute parallelism on P’.

Standard examples of classical Cartan connections are

(i) an affine connection on M: here P’ = PM, the standard frame bundle of M|
and P is the affine bundle, ie. the extension of the structure group GL(m,R)
of PM by the affine group;

(ii) a conformal connection on M: here P = PM and P’ is a conformal structure
on M, ie. a reduction of GL(m,R) to CO(M) = {A € GL(m,R): 'AA =
el for some ¢ > 0}. Such a Cartan connection is equivalent to one associated
with the pair given by P = P?M, the bundle of second order holonomic frames
of M, and a reduction of it to a certain subgroup of its structure group G2,
(c.f. [3]);

(iii) a projective connection on M: here P = P?M as above, and P’ is another
reduction of it to a suitable subgroup of its structure group G2, (c.f. [3]).

A connection in a principal bundle P(M,G) can also be seen as a morphism
C: P — JP of FM(M) satisfying 7} o C' = idp and C(hg) = C(h) ~j;h[g] for any
h € P, g € G. Here - denotes the jet-prolongation of the action of G on P (c.f. [1],
[2] and [6]). This can be generalized to Cartan connections.
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Proposition 2.1. For any reduction of principal bundles P'(M,G') C P(M,Q)
there is a canonical one-to-one correspondence between Cartan connections w :

T(P') — T(G). and morphisms T : P’ — J'P of FM(M) satisfying

(2.1) 7t oT = idp

(2.2) U(h'g") = T(h') -y ld']

(2.3) IfY € Jg(R, P and T'(h') 0 jt.p' oY =Y then necessarily
Y = ji[R'], where p' : P' — M is the projection.

Proof. Let b’ € P’ be fixed and let w : T(P') — T(G). have the above properties,
in particular wo™ = idp(gr),. Then, as in the case of P’ = P, one can easily see
that T'(h") : T(M)y — T(P)ps, defined as T(A)X =Y — (Fow)(Y'), where YV is any
element of T'(P’),: such that T(p')Y = X, represents an element of J'P with the
required properties: (2.1) follows easily from the fact that T'(h') o ji,p' oY = Y
means w(Y) = 0, hence Y = 0 by assumption. Conversely, if T' : P/ — JLP has
the listed properties then viewing again T'(h) as a linear map T(M ), — T(P)n,
one defines w(Y) =*=1 (Y — [(K)T(p')Y) for Y € T(P")p» and any b’ € P’. The

required properties of w follow again easily from those of T.

REMARK. For the cannonical Cartan connection associated with the homoge-
neous space G/G’ we have P'(M,G") = G(G/G’',G') and P(M,G) = G/G'xG with
the one-form w : T(G), — T(G)e defined by w(Y) = T'(L,-1)Y. The associated
['(g) € JL(G/G' x G) defined by Proposition 2.1 becomes simply I'(g) = (51, jL[g]),
where x = gG’.

The choice of source 0 € R in (2.3) is rather arbitrary in the sense that if (2.1)
and (2.2) are satisfied then (2.3) is equivalent to

(2.4) W € JHV, Py and T'(h') o ji, o W = W implies W = ji[h'],

where V is any manifold and a € V. In fact, assuming (2.4), let Y € J (R, P')/
be such that ['(h’') o jl,p' oY = Y. Then for any Z € J}(V,R)y we have ['(h') o
Jip' oY oZ =Y oZ and thus by assumption Y o Z = jl[h']. As Z was arbitrary,
one concludes from the chain rule that Y = 0 € T(P')p:, ie. Y = ji[A']. Conversely,
assuming (2.4), one obtains WoZ = 0 € JL(V, P')p:, for any Z € J} (R, V), whence

again W = jL[1'].

3. THE GENERAL CASE

From now on all higher order jets, connections etc. will be assumed non-holono-
mic unless otherwise stated. Recall (c.f. [6]) that an r-th order connection in
P(M,G) is a morphism I' : P — J'P of FM(M) which satisfies #f o T' = idp
and T'(hg) = T'(h) ~j;h[g] for any g € G.
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Let (®,®¢) : P'(M,G) — P(M,G) be a fixed morphism of PB(M). An r-
th order ®-connection (or relative connection) is a morphism I' : P’ — JTP of
FM(M) which satisfies 75 o I' = ® and T'(h'g") = T(R') - j}.p/ [Pa(g')] for any
¢ € G’'. Both an r-th order connection in a principal bundle as well as a first
order Cartan connection for P/ C P are special cases of a relative connection. Also,
if & is an r-th order connection in P/(M,G’) then J"(®) o ¢ is an r-th order ®-
connection, and if n is an r-th order connection in P(M, ) then 7o ® is again
an r-th order ®-connection. Note that Prop. 6.1 of [6], Ch. IT says that for any
first order connection ¢ in P’ there is a unique first order connection 5 in P such
that the two ®-connections J(®) o ¢ and 5 o ® coincide. This can be extended to
connections of arbitrary order r > 1.

Of course, not every ®-connection can be written as J"(®)of for some connection
&P — J~’“P’; if it can, the ®-connection will be called straight. On the other
hand, I' = o ® defines a one-to-one correspondence between ®-connections I' and
connections 7 in P. To see this, first assume 77;0® = 130®. Then for any h € P there
isan A’ € P’ and a ¢ € GG such that h = ®(h')g. Thus n1(h) = m(P(R)) - jo[g] =
n2(h). Hence there is at most one 5 such that T' = 5 o ®. One verifies easily, that
n(h) = T(R') - jilg], defines the required connection in P.

The following is obvious.

Proposition 3.1. Let ®; : P, — P and ®, : P35 — P, be two morphisms of
PB(M). Let further Ty : P» — J" Py be an r-th order ®;-connection, and T'y :
P3 — J* Py be an s-th order ®,-connection. Then

(3.1) [y #0y:=J5(Ty)oly: Ps— J't5 P
is an (v + s)-th order (¥, o ®3)-connection, (called their product), and
(3.2) J*(®y)oly: Py — J* P

is an s-th order (®1 o ®s)-connection, (called the extension of 'y by @1 ).

It is also easily verified, that any ®-connection I' of order r > 1 gives rise to
r — s+ 1 ®-connections of order s where 1 < s < r, namely (c.f. (1.2) and (1.6))

(3.3) wr_’ioF:J(wizll)oﬁoF:P/—>jsP fori=s,s+1,...,7,

5

in particular to r first order ®-connections
(3.4) 7ol =J(a Hoal o : P = JIP fori=1,...,r

It follows from Proposition 3.1 that if C'is a ¢-th order ®-connection, ¢ is an a-th
order connection in P’ and 5 a b-th order connection in P then 5 C * ¢ is an
(a 4+ b+ ¢)-th order & -connection. We shall be interested only in the special case
where C' 18 a first order ®-connection, & = & * ... * &, and 5 = 5y * --- % 7 with
&1,...,& and ny,...,n first order connections in P’ and P respectively.
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Proposition 3.2. Put r = a+ b+ 1, where a > 0 and b > (0 are some integers,
and let

(3.5) F=mrs-sxmeC & *- %,

be an r-th order ® connection as above. Then

. 77 ol =n;0 ori=1,...,
3.6 7ol =no0® fori=1 b
=C fori=0+1
=J(®)ol_p—1 fori=b+2,...;b+a+1=r

Proof. First note that 77_j ol =al_jo0J(n* -+« C*& *x.. . %E_1)0&, =
Mok ok xCxlyk . k&g (or mp*...xnp if a =0), hence 77 o T will be of the
form (3.5) truncated to the first ¢ terms only. Explicitly, a7 o T equals

(3.7) Mmook 0 fori=1,...,b
nok--xknp kO fori=b+1
mk-okgkC k€% x&_p1 fori=b+2 ... 7

Applying now J(ﬂ'é_l) to these products we get the last connection preceded by
J(®) iff the other ¢ — 1 terms contained C'. This gives exactly (3.6) as required.

We shall say that the r-th order ®-connection I' : P/ — J" P has Cartan order
at least q, where 0 < ¢ < r, if for each h' € P’

(3.8) T(h)oJ"(p)Y = I (®)Y for some Y € Ji (R, P')yi
implies 7Y = ji[A'].

Here 37(p')Y = j;,p' oY . Thus we use the same notation J for this endofunctor on
any category of fibred manifolds over a fixed base given from the context (in this
case R).

The ®-connection I is said to have Cartan order ¢ if ¢ < r is the largest integer
satisfying (3.8), and T is called a Cartan ®-connection if its Cartan order is r. In
view of Proposition 2.1, a first order Cartan connection for the pair P’ C P is the
same thing as a first order Cartan ¢-connection, where ¢ is the inclusion P’ C P.

REMARK. In the same sense as (2.3) was equivalent to (2.4), also (3.8) is equiv-
alent to
(3.9) L(h') o 3" (p')Y = J"(®)Y for some Y € J5(V, P')p
implies ;Y = ji [A'], where V is any manifold and a € V.
This is true in particular for V.= M and @ = x = p’h’/. Note, however, that in this

case the condition in (3.9) can never be satisfied by Y € J"P' with ¢ > 0 since
jL[h'] ¢ JLP’. On the other hand, if ® is an immersion then (3.9) is always satisfied



HIGHER ORDER CARTAN CONNECTIONS 349

with ¥V € j;(M, Py and ¢ = r. In fact, now J"(p')Y = ji[z], so the relation in
(3.9) becomes ji[h] = J"(®)Y € j;(M, Pp)p, where h = ®(h'). A simple application
of the Rank theorem shows that ® has a local left inverse whence Y = jI[A/].

Conversely, if ® has Cartan order at least one then ® must be injective. In fact,
let g : R ~» ker &g be smooth in a neighbourhood of 0, g(0) = e. If ker & C G’ is
non-trivial then g can be chosen so that j}(t — h'g(t)) # ji[h']. This means that
Y = jh(t — h'g(t)) will satisfy the condition in (3.8) but #7Y # ji[h'], and so the
Cartan order of ® 1s 0.

If FF = G/®g(G") then G acts to the left on F' and one obtains the associated with
P bundle = (P x F')/G. For each x € M the element e(z) = [P(h'), ePa(G')] €
Ey,x=p'h, isindependent of the choice of A’ € P/, and so we have a distinguished
section e : M — FE. In case of a (classical) first order Cartan connection, the absolute
differential of this section defines a soldering of E along the section e. This can
again be generalised. First note that each i € P can be seen as a diffeomorphism
{h} : F — E,; assigning to £ € F the element [h, ] giving rise to a composition
PxF — FE.If r > 1 then its prolongation is the composition Jr=1Px J~T—1(M, F)y—
J1E, (Z,B) — [Z - E], which again for a fixed 7 € J"=1P is a diffeomorphism
J~T—1(M, F)y— J~T—1(M, F;) and so we also have a composition JIPx JTIE —
J~T—1(M, F),(Z,5) — Z71.S. Thus we can write the absolute differential with
respect to [(K') = jlo € JTP of e at z (c.f. [2] and [5]) as

(3.10) Ve(z) = jy(ur—o(@) - (o(w)™" - ji7"e)) € T (M, Be)ea)
In particular, we get a map
(3.11) Th (R, M)y — T3 (R, By o)
X — Ve(x)o X.
Note that the formula (3.10) can also be written as
(3.12) Ve(x) = jo(u— [o(x) - g(u), 7,7 [e@a(G)])

where g(u) € J~5_1(M, (). is such that j7=1(® o p) = o(u) - g(u) for some section
p: M ~ P p(x) = k. To see this first assume » = 1 and let p be an arbitrary
smooth section as above. Then ®(p(u)) = o(u)g(u) for some smooth g : M ~ G and
so o(u)™te(u) = g(u) - D(p(u)) =t -e(u) = g(u)@s(G"). Thus o(z)-(o(u)~t-e(u)) =
[oc(2)g(u), ePe(G")] as required. Note that g(u) depends on p(u), however not so
the equivalence class. If » > 1, observe that the composition P x G — P — both
(h,g) — hg as well as (h,g) — hg~! — can be prolonged to a multiplication
JrLP x Jr=1(M,G) — Jr=1P and so we conclude that there is an element g(u) €
J~5_1(M, (). with the required property. A prolongation of the formulae obtained
for r = 1 leads to (3.12) for a general r > 1.

Note also that g in (3.12) was chosen so that J"(®)j5p = T'(h') - §,§ = jig €
JE(M, ()., and though § depends on the choice of p, T'(h') uniquely determines its
equivalence class [g] € JE(M, G)e/j;“(M, D (G"))e. Thus we can also write

(3.13) Ve(r) = [Gplo(@)] - g, jrle@a(G]].
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Proposition 3.3. If the r-th order ®-connection I' has Cartan order ¢ < r then
(3.11) is injective in the sense that Ve(z) o X = jile(x)] with X € J5(R, M),
implies 7, X = jd[x].

Proof. The condition Ve(z)o X = jile(x)] can be written as Ve(x)o X = Ve(x)o
j5z]. By (3.13) we have Ve(z) o X = [ji[o(2)] - (g0 X), j5[e®s(G)]] and similarly
with jj[e(z)] instead of X. Since the action of J~5(}R,G) on jg(R,P) is free we
conclude that §o X = §o ji[x], ie.g o X = ji[e] since 75§ = e. On the other hand,
Jr(q))jxp =T() g gives T (®)Z = (K)o X - §go X, where 7 = jilpo X €
JE(R, P')y and so 37 (p')Z = X. Thus we get J7(®)Z = T(K') 0 3" (p))Z - ji[e] or
J'(®)Z = ['(h')0J"(p')Z which implies 77 7 = J&[h'] by the Cartan property of T'.
Applying J¢(p’) to this relation we obtain 7 X = J&[x] as required.

EXAMPLE. If P/ = M x G’ and ® = idy x @G then an r-th order ®-connection
is in fact a map T : M x G' — J§(M,G) satistying #{T'(z,¢') = ®¢(¢') and
T(z,¢'g")=T(x,9")  ji[®c(g"”)]. Clearly, it has Cartan order at least ¢ < r if
(3.14) [(z,0)o X =J"(®)Y, X € JJ(R, M)y, Y € J5(R, Gy

implies 7; X = ji[«] and 7Y = ji[g'].
Let now M = R™ G/ = GL(m,R), G = A(m), the affine group seen as a subgroup
of GL(m + 1,R), ®g(g’) = (%’ f). Put

. o 11 Fia
3.15 T(z,¢)=jIF =j
(3.15) (,9) =t =J; <F21 Fzz)
. (-2 1)y u—=x
:jx(UH<ZZ—1( . )9 ) ))

It is easily verified that this defines a holonomic ®-connection. We claim that its
Cartan order is r. So let X € %(R,Rm)x,Y € jg(}R,Gl(mR)gz. The condition in
(3.14) says

JpF o X =(jy®g)oY.

Since the second and higher order derivatives of F' at x and of ®g at ¢’ are all zero,
it follows from the coordinate expression of the composition of non-holonomic jets

(c.f. end of Section 1) that (3.16) in the ¢1,¢2,..., 4 coordinate gives
(m,m)
(3.17) Z DoF(2)X2 .= > Diag®alg)Y, )
(o,8)=(1,1)
unless, of course, t; = 15 = =1, = 0. Since

Ao gy 0
( ) and DW@G@/):( 57 0)’

where the ik entry in A(a, 3) is 636’5 we conclude easily that X[}
for all @, = 1,...,m and ¢1,...s, that are not all zero. Thus X = ji[= ] and
Y = jil¢'] showing that T defined in (3.15) has indeed Cartan order r.

Y(a ﬁ) -0

s b1,y
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Proposition 3.4. IfT : P/ — J"P is a ®-connection such that for some 1 <g<
s < i < r the ®-connection 77" o I' : P' — J*P has Cartan order at least ¢, then
so does T'.

Proof. Let i’ € P’ be fixed and assume that T'(h') o J"(p")Y = J"(®)Y for some
Y € jg(R,P’)h/. Then by (1.7) we have also (777% o T(h') o J*(p') o a7 ~H)Y =
(J*(®)o77~%)Y and so, by assumtion, (m; o’ %)Y = ji[A'] which by (1.6) implies
m, Y = j§[I'] as required.

REMARK. If ¢ = s, ie. if a7 "7 o' : P/ — J* P is Cartan then (1.6) does not work
and Proposition 3.4 must be applied with ¢ = s — 1. Except when s = ¢ in which
case (1.6) is not needed. Thus we get

Corollary 3.4a. IfT : P/ — J"P is a ®-connection such that for some 1 <s <
i < r the ®-connection 77~% o [' : P’ — J*P is Cartan then I' has Cartan order at
least s — 1. If @ oI' is Cartan, then I' has Cartan order at least s.

In particular, if @7 o I' is Cartan, then the Cartan order of I' must be at least
one.

Proposition 3.5. If the ®-connection ' : P’ — J" P is such that for some 0 < s <
r the ®-connection 7’ o' : P’ — J* P has Cartan order less than s, then so has T.

Proof. Let Z # j§[h'] € jg(ﬂ%, P be such that (777 o)(h")oJ*(p')Z = J*(®)Z
and put Y = ji7*[Z]. Then J"(p")Y = ji 3 () Z], T(A) o I (p)Y = ji * (7] o
YR ) o I (p")Z], I (@)Y = j5 °[I(®) 7] so Y satisfies the condition in (3.8) but
7Y # j§[h'] as required.

In particular if 77 o I' is not Cartan then the Cartan order of I' must be zero.
A first order connection in a principal bundle can, of course, never be a Cartan
connection. It follows now that neither can an r-th order connection, where r > 1.
More generally, we have

Proposition 3.6. The Cartan order of a straight ®-connection of order r > 1 is
always zero.

Proof. Let T' = J"(®) o . We have seen that & has Cartan order zero, ie. there is
anY € fg(}R,P’)h,,w{Y # j§[h] such that £(h')oJ"(p')Y = Y. Hence J"(®)E(R')o
J(p )Y = J7(®)Y with #7Y # ji[h'] showing that the Cartan order of T is less
than one.

Proposition 3.7. If T' is an arbitrary r-th order ®-connection and if £ is a first
order connection in P’ then the Cartan order of the (r + 1)-st order ®-connection
I'* & is less than v + 1.

Proof. Again, since the Cartan order of ¢ is zero, there exists a ¥ = jly €
JE(R, Py # ji[R'] such that £(R') o J(p')Y = Y which implies ji, I o {¢(R') o
IV = jl ToYl] Here we have defined YUl = ji (¢ — j2[y(2)]) € J~6+1(R, P.
Explicitly,

(3.18) JwT o go(t = i [e(p'(y(t))D) = Jo(t = T(y(1) o ji [y()],
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where we have written &(h’') = jle. The left hand side in (3.18) is easily seen to
be ji,T o NI o I (p )Y T — these are all composition of (# 4 1)-jets — or
{(J(T)o&)(h)} o JT‘H( YU = (T *€)(h') 0 37 (p")Y ], whereas the right-hand-
side is ji(t — Jr[mT(y())]) = js(t — j7[@(y())]) = I (p")YV). Thus we have
shown that

(3.19) (I E)(W) o I ()Y = T4 (@) with YFT £ jy (),

and so the Cartan order of I' % £ is less than » + 1.
A slight modification of the proof gives immediately

Proposition 3.7a. If n is an arbitrary r-th order connection in P and if C' is a
first order ®-connection that is not Cartan, then the Cartan order of the (r 4 1)-st
order ®-connection i * C' is less than r + 1.

Proposition 3.8. Let n be an r-th order connection in P, where the ®-connection

r—i

n o ® is Cartan. Assume also that the r first order connections 777" ono ® are
Cartan. Let further C' be a first order Cartan ®-connection. Then the (r + 1)-st
order ®-connection n* C' is also Cartan.

Proof. Since the Cartan property is local, we can assume P’ = M xG' P = M x G
and D®(z, ¢") = (z,®s(¢')). Then, as in (3.14), we have to show that

(3.20) (n*C)(x,¢')o X = I TH(D)Y,
X € TR, M), Y € JIT (R, Gy
implies X = jg+1[ Jand ¥V = JSH[Q ]

We have 77+ o(n+C) = no® and so by our assumption and Corollary 3.4a we know

that 771 (X) = j5[z] and 27 FH(Y) = ji[g]. Iszjl, divyivgrrd =L miig=0orl
and Y g = 1,...,¢ = dimG’;i;, = 0 or 1 are the coordinates of X and
Y respectively, then this means that Xgl i,o=0aswell as ;¥ ; o =0.The
coordinates K7\ . . +1,a:1,...,q:d1mG Js = 0,1,... mof(n*C’)(x,g’)E

J;‘H(M, G)g,g = <I>G( "), are obtained from those of n and C as follows:

If the coordinates of C(z,¢') € JY(M,G) are C¥ a = 1,...,¢;i = 0,1,...,m
and those of n : M x G — JE(M, G), are the functions Hf, ; a=1,...,¢=
dimG;js =0,1,...,m then

(3.21)
[(]ql,...jr,O = H]ql,...jT,O(xag)a and for jT-I-l ;é 0
Kﬁ,...jm]’TH = Djr+1(u = Hﬁ,...jr(ua C(u))

q
= (D} )@, 9)CF, + Dy, 1Y )@, g).
y=1

Note that because of (7 o n)(u, a) = a, ie. HF o(u,a) = a, we have

(3.22)  DyHF o=2067and DjHF q=0fory=1,...,¢;andj=1,... ,m,
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We can now apply Lemma 1.1 to the coordinate version of the relation in (3.20) to
obtain

q
(3.23) Z[ 000 0K i = 2 (DY@ (@, g )Y
y=1

Substituting from (3.21) and observing (3.22) we get
(324) Kg,...,o,j,o,...,o = H&...,o,j,o,...,o(%g) and Kg,...,o,j = Cja'

Consequently, (3.23) says

m q
(325) Y HE oo 0@ OX] i, = D (D)@ g WY
P y=1

ifiy =...=4, =0 and only 4,41 # 0, or
q
(326) ZCale, Ay g1 Z D <I)G )}/i’r,...,imir_;_l
y=1

otherwise. It follows from (1.4) that Hg
(7T71“_>j ono®)(x,¢') and so (3.25) implies Xg
because 71'71“_’]' ono® were assumed Cartan. Similarly (3.26) implies XZ]1 mingy

=0 and }/i’1/7~~~ir7ir+1 = 0 because C' was assumed Cartan. This completes the proof.

o(#, g) are the coordinates of

=0

ey

= 0 as well as Y7

7"'07ir+1 OyiT+1

Proposition 3.9. Let C be a first order ®-connection, ¢, ... &, first order con-
nections in P’ and 11, ... ,n first order connections in P. If ny o ®,... ;1,0 ® and
C' are all Cartan connections then the Cartan order of the r-th order ®-connection

(3.5) F=mrs-sxmeC & *- %,

isb+1.

Proof. Proposition 3.8 guarantees that the Cartan order of the (b 4 1)-st order
®-connection 7y, o' =ny - #m+ C'is b+ 1. By Corollary 3.4a the Cartan order
of I is thus at least b4+ 1. If @ > 0 then Proposition 3.7 says that the Cartan order
of mp g0 l'=m* - #mp* C+& is less than b + 2 and so by Proposition 3.5 also
the Cartan order of I is less than b 4 2.

More generally,

Proposition 3.10. Let &1,... ,&4;m, ... ,m and C = np41 o  be first order con-
nections as above. Let 0 < s < b+ 1 be such that the sequence gy o ®,... n,0®
consists of Cartan connections but ns41 o ® is not Cartan. Then the Cartan order
of the r-th order ®-connection (3.5) is exactly s.

Proof. Proposition 3.9 guarantees that the Cartan order of 7 o' = 1% .. .xn,0P
is s and Corollary 3.4a that that of I" is at least s. Since 7541 o ® 1s not Cartan it
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follows from Proposition 3.7a that 75, o' = n1 * ... %1541 o ® has Cartan order
less than s+ 1. So by Proposition 3.5 also the Cartan order of I is less than s+ 1,
hence equals s as required.

A special case is that of a ' = 5 * ... * o ®, (n repeated r-times), where
no®: P’ — J'P is a single Cartan connection. Proposition 3.9 guarantees that
this T' 1s an r-th order Cartan ®-connection. In case of the Cartan :-connection
C' = nou cannonically associated with the homogeneous space G/G’, with ¢+ : G' —
(i the inclusion map, (see REMARK after Propostion 2.1) the corresponding r-th
prolongation T =n#...xnos: G — J(G/G" x G) can easily be seen to be given
by T'(g) = (4%, 7%[g]), where = gG’, which is self-evidently Cartan of order r as
expected.
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