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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 317 { 323VECTOR FORM BRACKETS IN LIE ALGEBROIDSAlbert NijenhuisTo Ivan Kol�a�r, on the occasion of his 60th birthday.Abstract. A brief exposition of Lie algebroids, followed by a discussion of vec-tor forms and their brackets in this context - and a formula for these brackets in\deformed" Lie algebroids.1. IntroductionThe sections in the tangent bundle of a (smooth) manifold can be de�ned as thederivations on the ring of (smooth) functions on the manifold, and thus are seento form a Lie algebra. A Lie algebroid [3] is a direct generalization: it consists ofa triple, say (A; [; ]A; a), where A is a vector bundle over a base manifold, say B,and [; ]A is a Lie algebra product on �(A), the (smooth) section in A. Further,a : A ! TB, the anchor, is a bundle map to the tangent bundle of B, whichestablishes a homomorphism between the Lie algebras �(A) and �(TB) :a([u; v]A) = [au; av]; u; v 2 �(A);and satis�es the product rule[u; fv]A = f [u; v]A + (a(u) � f)vwhere f 2 F (the ring of functions on B).Given a Lie algebroid A and its dual bundle A�, all tensor bundles can beconstructed as a straightforward generalization of the structures based on TB andT �B. This note shows some less obvious constructions.Part of the material in this note was included in a talk at the Paci�c NorthwestGeometry Seminar, Corvallis, OR, U.S.A., on November 9, 1996.2. A handy notation. [4] Denote by Sm;n the set of (m;n)-shu�es, that is,the permutations � = (i1; : : : ; im+n) of m + n symbols such that i1 < � � � < imand im+1 < � � � < im+n. (Any other selection from the cosets Sm+n=Sm � Sn1991 Mathematics Subject Classi�cation : 17B66, 17B70.Key words and phrases: vector valued form, Lie algebroid.



318 ALBERT NIJENHUISwill serve equally well.) Let � = (�1; �2), where �1 = (i1; : : : ; im) and �2 =(im+1; : : : ; im+n). Let V be a vector space, and �; � multilinear maps of V to V ,say � 2 Hom(Va V; V ) � 2 Hom(Vb V; V ), then de�ne � Z � 2 Hom(Va+b�1; V )by(2:1) (� Z �)(v1; : : : ; va+b�1) = X(�1;�2)2Sb;a�1 sgn(�1; �2)�(�(v�1 ); v�2):It is well known that, for 
 2 Hom(Vc V; V ) we have(2:2) (� Z �) Z 
 � � Z (� Z 
) = (�1)(b�1)(c�1)((� Z 
) Z � � � Z (
 Z �));while, if � 2 Hom(V; V ) then both sides of (2.2) vanish.Based on Z we de�ne a commutator bracket;(2:3) [�; �]Z = � Z � � (�1)(a�1)(b�1)� Z �:It is easy to show that [ ; ]Z de�nes a graded Lie algebra structure with reducedgrading:(2:4) Xcycl(�1)(c�1)(a�1)[[�; [�; 
]Z]Z = 0:Our application is to the case when V = �(A) � F ; i.e., when the entries in�; �, etc. are sections in a Lie algebroid A or functions on the base space, orformal sums of the two. In the latter case, the linearity permits a decompositionof �(v1; : : : ; va) into pure terms, in which each entry is either a section in A or afunction.Each A-(di�erential) form or A-vector form ! is identi�ed with an element ofHom(VV; V ), also denoted !, which takes the same values when evaluated on A-sections, and vanishes when any one entry is a function. As a result, all expressionsof the form L Z ! vanish when L is an A-form or a A-vector form and ! an A-form.The structure of Lie algebroid is incorporated in an element � 2 Hom(V2 V; V ),the multiplication map, as follows. (It is not a vector form!)�(u; v) = [u; v]A for u; v 2 �(A);�(u; f) = ��(f; u) = a(u) � f for u 2 �(A); f 2 F ;(2:5)where a is the anchor. Finally, �(f; g) = 0 for f; g 2 F .Lemma 1. If � is the multiplication map of a Lie algebroid, then [�; �]Z = 0and �(u; fv) = f�(u; v) + �(u; f)v. Conversely, if [ ; ]A is any alternating producton �(A), a : A ! TB any bundle map, � de�ned by (3.5) and [�; �]Z = 0, then(A; [ ; ]A; a) is a Lie algebroid with multiplication �.We may write (A; �) instead of (A; [ ; ]A; a).



VECTOR FORM BRACKETS IN LIE ALGEBROIDS 319Proof. There are three cases to be considered for the �rst formula, dependingon how many of the variables in [�; �]Z(:::) are A-sections and how many arefunctions. Note that [�; �]Z = 2� Z �.(� Z �)(u; v; w) =Xcycl �(�(u; v); w) =Xcycl[[u; v]A; w]A = 0;(� Z �)(u; v; f) = �(�(u; v); f) + �(�(v; f); u) + �(�(f; u); v)= �([u; v]A; f) + �(a(v) � f; u) + �(�a(u) � f; v)= a([u; v]A) � f � a(u) � a(v) � f + a(v) � a(u) � f= a([u; v]A) � f � [a(u); a(v)] � f = 0;Finally, � Z �(:::) is easily seen to vanish when two or more of the variables arefunctions.The second formula is just a re-write of the product rule in a Lie algebroid. �Consider an A-form ! 2 �(VpA�), then for its A-exterior derivative we �nd(dA!)(u0; : : : ; up) = pXi=0(�1)ia(ui) � !(u0; : : : ; î; : : : ; up)+Xi<j (�1)i+j!([ui; uj]A; u0; : : : ; î; : : : ; hatj; : : : ; up)= pXi=0(�1)i�(ui; !(u0; : : : ; î; : : : ; up)+Xi<j (�1)i+j!(�(ui; uj); u0; : : : ; î; : : : ; ĵ; : : : ; up)= (�1)p+1(� Z !)(u0; : : : ; up)� (! Z �)(u0; : : : ; up)= �[!; �]Z(u0; : : : ; up):We have just shownLemma 2. dA! = �[!; �]Z.The Jacobi indentity (2.4) easily implies that (dA)2 = 0.3. Derivations on di�erential forms. The classical theory of derivationson the graded ring of di�erential forms (i.e., the case of the standard tangent Liealgebroid), see [1], states that every derivation is uniquely a sum of one of type i�and one of type d�. A derivation is of type i� if it vanishes on functions, and is ofthe form ! 7! iL! = ! Z L, where L is a vector form, L 2 �(TB 
VT �B), andit is of type d� if it commutes with the exterior derivative d; in this case it is ofthe form ! 7! dL! = [iL; d] = (iLd+ (�1)qdiL)!, where L 2 �(TB 
Vq T �B).



320 ALBERT NIJENHUISIn a general Lie algebroid A the A-forms also admit derivations of types iA� (thesame as i� above), and dA� (in obvious generalization of the above), but these neednot span all derivations.For example, consider the Lie algebroid A with bundle space TB but trivialbracket and anchor. Then the classical d is a derivation, but is not a sum ofderivations of types iA� and dA� , because the �rst vanish on functions, and thesecond are trivial (zero).The commutator relations for derivations of types i� and d� for the standardtangent Lie algebroid are (see [1])(3:1) [iL; iM ] = i[M;L]Z ;(3:2) [iL; dM ] = dM Z L + (�1)mi[L;M ];(3:3) [dL; dM] = d[L;M ]:We generalize these formulas to Lie algebroids, as follows. (3.1) is \the same" (seeabove); (3.2) is seen as a de�nition of [L;M ], and requires a proof that [il; iM ]�dM Z L is indeed of type iA� . Then (3.3) easily follows from (3.2) as a consequenceof the Jacobi identity for derivations.In what follows, the A for Lie algebroids has been suppressed in the formulas.{ De�ne �(L;M ) by(3:4) �(L;M )(u1; : : : ; uq+m) = X(�1;�2)2Sq;m sgn(�1; �2)�(L(u�1 );M (u�2)):Note that �(L;M ), though not an A-vector form, vanishes if any one entry is afunction; in particular, �(L;M ) Z ! = 0 for A-forms !.Lemma 3. We have the following(3:5) �(L;M ) = (�1)q(m�1)((� Z L) Z M � � Z (L Z M ));(3:6) dL! = (�1)q+1! Z [L; �]Z + (�1)pq+q(� Z L) Z !;(3:7) [M Z L; �]Z = M Z [L; �]Z � (�1)q [M;�]Z Z L + (�1)q+1�(L;M );(3:8) [! Z L; �]Z = ! Z [L; �]Z � (�1)q [!; �]Z Z L + (�1)qp+1(� Z L) Z !:Proof. For (3.5) see page 104 of [4]. (Note that the proof of (2.2) in [1] containstwo canceling errors, and would give an incorrect sign in (3.5).) The other formulasrequire simple calculations using the de�nitions and (2.2). �



VECTOR FORM BRACKETS IN LIE ALGEBROIDS 321Theorem 1. The derivations of types i� and d� in a Lie algebroid satisfy (3.1-3).The bracket [L;M ] is given by(3:9) [L;M ] = �(L;M ) + (�1)m(q�1)L Z [M;�]Z + (�1)q+1M Z [L; �]Z:Proof. In the following calculations, the Z on [ ; ]Z will be suppressed. UseLemma 3.(�1)m[iL; dM ]! � (�1)mdL Z M!= (�1)m(dM!) Z L � (�1)qmdM (! Z L) � (�1)mdM Z L!= (�1)m((�1)m+1! Z [M;�] + (�1)m(p�1)(� Z M ) Z !) Z L)� (�1)qm((�1)m+1(! Z L) Z [M;�] + (�1)(p+q)m(� Z M ) Z (! Z L))� (�1)m((�1)q+m! Z [M Z L; �] + (�1)(p�1)(q+m�1)(� Z (M Z L)) Z !):We �rst combine the �rst terms in each line.� (! Z [M;�]) Z L� (�1)qm+p+q (! Z L) Z [M;�]� (�1)q! Z [M Z L; �]= �(! Z [M;�]) Z L+ ((�1)(q�1)m(! Z (L Z [M;�] + (! Z [M;�]) Z L � ! Z ([M;�] Z L))� (�1)q! Z (M Z [L; �]� (�1)q [M;�] Z L+ (�1)q+1�(L;M ))= ! Z ((�1)(q�1)mL Z [M;�] + (�1)q+1M Z [L; �] + �(L;M )):This proves (3.9), after we show the vanishing of the remaining terms:(�1)pm(((� Z M ) Z !) Z L � (� Z M ) Z (! Z L)+ (�1)(p�1)(q�1)(� Z (M Z L)) Z !)= (�1)pm(�(� Z M ) Z (L Z !) + (�1)(p�1)(q�1)(((� Z M ) Z L) Z !� (� Z (M Z L)) Z !))) = 0 + (�1)pm+(p+m�1)(q�1)�(M;L) Z ! = 0: �4. The \deformed" Lie algebroid. [2] The operator iL, so far de�ned asacting on �(VA�), is extended to act on Hom(VV; V ) (V as de�ned in section 2)in the case when L is an A-vector 1-form. In that case we prefer the notation h,k, etc. over L, etc., and set(4:1) ih� = � Z h� h Z �:According to (2.2) and the line following, ih satis�es a product rule with respectto Z : ih(� Z �) = (ih�) Z � + � Z ih�:



322 ALBERT NIJENHUISIf A is a Lie algebroid with multiplicatiom �, and h an A-vector 1-form, a new,deformed multiplication �h is given by�h(u; v) = �(hu; v) + �(u; hv)� h�(u; v);i.e., by �h = ih�. (This implies (see (2.5)) that a deformed anchor map ah is givenby ah(u) = a(hu).) In general, �h does not de�ne a Lie algebroid structure on thebundle space A.Lemma 4. If [h; h] = 0 then �h de�nes a Lie algebroid structure (A; �h), and his a homomorphism to (A; �).Proof. The product rule �h(u; fv) = � � � follows by a simple calculation, usingjust the F -linearity of h and the fact that h acts trivially on functions.Again, we suppress the Z on [; ]Z below. The formula (3.9) with L = M = h,and the observation that �(h; h)(u; v) = 2�(hu; hv), yields�(hu; hv) = �h Z [h; �](u; v) = h�h(u; v);so h gives the homomorphism of �h to �.Formulas (3.7) and (3.9), with L = M = h, using [h; �] = �ih� = ��h give riseto [h2; �] = �h Z �h � �h Z h + �(h; h); 0 = �(h; h)� 2h Z �h:Elimination of �(h; h) by subtraction yields [h2; �] = �[h; �h]. Bracketing with �,combined with the product rule for ih yields[�; [h2; �]] = �[�; ih�h] = �ih[�; �h] + [ih�; �h] = ih[�; [h; �]]+ [�h; �h]:Now, [�; [�; k]] = �12 [k; [�; �]] = 0 for any vector 1-form k (Jacobi identity), so we�nd [�h; �h] = 0. Hence, �h satis�es the Jacobi identity. �Given a Lie algebroid (A; �) and a deformed Lie algebroid (A; �h), we de�ne[L;M ]h, the A-vector form bracket with respect to �h by replacing in (3.9) all � by�h. (Formulas (3.1-3) will then be valid, after the same substitution, see Lemma2.)Theorem 2. Let [L;M ]h denote the vector form bracket in a deformed Lie alge-broid (A; �h), then(4:2) [L;M ]h = ih[L;M ]� [ihL;M ]� [L; ihM ]:Proof. Let P (X;Y; : : : ) be a polynomial, linear in each of X;Y; : : : , withX;Y; : : : 2 Hom(VV; V ), and with the (non-commutative, non-assocative) prod-uct Z , with respect to which ih is a derivation, thenihP (X;Y; : : :) = P (ihX;Y; : : : ) + P (X; ihY; : : : ) + : : : :Apply this to P (L;M; �) = [L;M ] (see (3.9)), and observe that[L;M ]h = P (L;M; ih�) :The result follows immediately. �



VECTOR FORM BRACKETS IN LIE ALGEBROIDS 323ReferencesThe following articles contain suitable introductions to the relevant topics, as well as referencesto further information.[1] Fr�olicher, A., Nijenhuis, A., Theory of vector-valued di�erential forms, Part I., Kon. Nederl.Akad. Wetensch. Proc. A 59 (= Indag. Math. 18), 338-359 (1956).[2] Kosmann-Schwarzbach,Y., Magri, F., Poisson-Nijenhuis structures, l Ann. Inst. Henri Poincar�e53, 35-81 (1990).[3] Mackenzie, K., Ping Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73, 415-452(1994).[4] Nijenhuis, A., Richardson, R.W., Deformations of Lie algebra structures, J. Math. Mech. 17,89-105 (1967).Department of MathematicsUniversity of WashingtonSeattle WA 98195, U.S.A.E-mail : nijenhuis@math.washington.edu
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