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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 181 { 193OSCILLATION AND NONOSCILLATION OF EMDEN-FOWLERTYPE EQUATION OF SECOND ORDERA. LomtatidzeAbstract. Oscillation and nonoscillationcriteria are establishedfor the equa-tion u00 + p(t)juj�ju0j1�� sgnu = 0;where � 2]0;1], and p : [0;+1[! [0;+1[ is a locally summable function.1. Statement of Main ResultsConsider the di�erential equationu00 + p(t)juj�ju0j1�� sgnu = 0;(1)where � 2]0; 1], and p : [0;+1[! [0;+1[ is an integrable function. Under thesolution of equation (1) is understood a function u : [0;+1[!]�1;+1[ whichis locally absolutely continuous together with its �rst derivative and satisfyingequation (1) almost everywhere.The solution u of equation (1) is said to be proper if there exists a > 0 suchthat mesft > a : u0(t) = 0g = 0. The nontrivial solution u of equation (1) is saidto be oscillatory if it has at least one zero in any neighborhood of +1, and it issaid to be nonoscillatory, otherwise. As it will be shown below (see Lemma 3),equation (1) cannot have proper oscillatory and proper nonoscillatory solutionssimultaneously. This fact is justi�ed by the followingDe�nition. Equation (1) is said to be nonoscillatory if it has at least one propernonoscillatory solution, and it is said to be oscillatory, otherwise.In this paper we intend to concern ourselves with the problem of oscillation andnonoscillation of equation (1). Analogous problem has been considered in [3] whenp was in general not of constant signs.As we shall show below (see Lemma4), if for some �<� the integral R +1s�p(s)dsdiverges, then equation (1) is oscillatory (for a linear equation, i.e., when � = 1,1991 Mathematics Subject Classi�cation : 34C15.Key words and phrases: Edmen-Fowler type equation of second order, oscillatory andnonoscillatory solutions, oscillatory and nonoscillatory equations.Received October 10, 1995.



182 A. LOMTATIDZEthis assertion goes back to W. B. Fite [1] and E. Hille [2]). Therefore we shallassume that R +1 s�p(s)ds converges for � < �.Introduce the notation:p�(�) = � lim inft!+1 t���+1Zt s�p(s)ds; p�(�) = � lim supt!+1 t��� +1Zt s�p(s)ds for � < �;p�(�) = � lim inft!+1 t��� tZ1 s�p(s)ds; p�(�) = � lim supt!+1 t��� tZ1 s�p(s)ds for � > �:Below new oscillation and nonoscillation criteria of equation (1) are given in termsof the numbers p�(�) and p�(�). Analogous results for the linear equation (i.e.,when � = 1) are contained in [4].Theorem 1. Let either p�(0) > 1�+1 ( ��+1 )� or p�(� + 1) > ( ��+1)�+1. Thenequation (1) is oscillatory.Thus it is natural to suppose thatp�(0) � 1�+ 1� ��+ 1�� and p�(�+ 1) � � ��+ 1��+1:(2)Note that in this case the equationsx�+1� � x+ p�(0) = 0;(3) �x�+1� � �x+ p�(�+ 1) = 0(4)are solvable. Denote by A the least nonnegative root of equation (3) and by B thelargest root of equation (4).Theorem 2. Let (2) be ful�lled and eitherp�(0) > B �A+ p�(0)(5)or p�(�+ 1) > B �A + p�(�+ 1):(6)Then equation (1) is oscillatory.Theorem 3. Let (2) be ful�lled and eitherp�(�) > 1�� �� ��+ 1��+1 +B(7)for some � < � or p�(�) > 1�� �� ��+ 1��+1 �A(8)for some � > �. Then equation (1) is oscillatory.



SECOND ORDER EMDEN-FOWLER EQUATION 183Corollary 1. Let lim�!� j�� �jp�(�) > � ��+ 1��+1:(9)Then equation (1) is oscillatory.Corollary 2. Let for some � 6= �j�� �jp�(�) > � ��+ 1��+1:(10)Then equation (1) is oscillatory.Corollary 3. Let lim supt!+1 1ln t tZ1 s�p(s)ds > ��(�+ 1)�+1 :(11)Then equation (1) is oscillatory.Corollary 4. Let lim sup�!�� (�� �) +1Z1 s�p(s)ds > ��(�+ 1)�+1 :(12)Then equation (1) is oscillatory.Remark 1. Inequalities (9){(12) are exact and they cannot be weakened. Indeed,let p(t) = 1�( ��+1 )�+1t���1 for t � 1. Then j� � �jp�(�) = j� � �jp�(�) =�ln t R t1 s�p(s)ds = �(� � �) R +11 s�p(s)ds = ( ��+1)�+1, and equation (1) has thenonoscillatory proper solution u(t) = t ��+1 for t � 1.Theorem 4. Let either for some � < �2�+1 or for some � > � + ��+1(�+1)[(�+1)����]the equality j�� �jp�(�) < � ��+ 1��+1(13)be ful�lled. Then equation (1) is nonoscillatory.2. Some Auxiliary StatementsLemma 1. Let u be the proper nonoscillatory solution of equation (1). Thenthere exists t0 > 0 such thatu(t)u0(t) > 0 for t � t0:(14)Proof. For the sake of de�niteness we assume that u(t) > 0 for t � t1. Supposethat u0(t2) � 0 for some t2 > t1. Since u0(t) 6� 0 for t > t2 and u0 does not



184 A. LOMTATIDZEincrease, there exists t3 > t2 such that u0(t3) < 0 and u0(t) � u0(t3) for t > t3.Owing to this fact, we haveu(t) = u(t3) + tZt3 u0(s)ds � u(t3) + u0(t3)(t � t3) for t > t3:Let t4 = t3 � u(t3)u0(t3) + 1. Then from the latter inequality we obtain contradictionthat u(t4) < 0. Thus the lemma is proved.Lemma 2. Let equation (1) have a proper nonoscillatory solution. Then equations(3) and (4) are solvable, and there exists t0 > 0 such that the equation�0 + �p(t) + ���+1� = 0(15)has the solution � : [t0;+1[!]0;+1[. Moreover,lim inft!+1 t��(t) � A; lim inft!+1 t��(t) � B;(16)where A is the least nonnegative root of equation (3) and B is the largest root ofequation (4).Proof. Let u be the nonoscillatory proper solution of equation (1). By Lemma 1,there exists t0 > 0 such that (14) is ful�lled. Let �(t) = (u0(t)u(t) )� for t � t0. It iseasily seen that � is the solution of equation (15). From (15) we �nd that� 1��� �+1� (t)�0(t) � 1 for t � t0:Integrating this inequality we obtain(t� t0)��(t) � 1 for t � t0:Hence lim supt!+1 t��(t) � 1:(17)Introduce the notationr = lim inft!+1 t��(t); R = lim supt!+1 t��(t):Assume that p�(0) 6= 0 and p�(�+ 1) 6= 0 (the solvability of (3) and (4) as wellof the estimate (16) is otherwise trivial). Because of (17) we easily �nd from (15)that t��(t) = �t� +1Zt p(s)ds + �t� +1Zt ��+1� (s)ds for t > t0(18)



SECOND ORDER EMDEN-FOWLER EQUATION 185and t��(t) = ��+1�(� )t + 1t tZ� �s� 1� (s)����+ 1� �s� 1� (s)�ds���t tZ� s�+1p(s)ds for t0 < t; � < +1;(19)whence we have r � p�(0) and R � 1� p�(�+ 1):Obviously, for any 0 < " < minfr; 1� Rg there exist �" > t0 and t" > �" suchthat r � " < t��(t) < R+ "; �t� +1Zt p(s)ds > p�(0)� " for t > �";�t tZ�" s�+1p(s)ds > p�(�+ 1)� " for t > t":Due to this fact we have from (18) and (19) thatt��(t) > p�(0) � " + (r � ")�+1� for t > �";t��(t) < ��+1" �(�")t + (R+ ")��+ 1� �(R+ ") 1� �� p�(�+ 1) for t > t":From this we �nd thatr �+1� � r + p�(0) � 0 and �R�+1� � �R+ p�(�+ 1) � 0:Consequently, equations (3) and (4) are solvable, and (16) are ful�lled. Thus thelemma is proved.Lemma 3. Let equation (1) have the proper oscillatory solution v. Then all theproper solutions of equation (1) are oscillatory.Proof. Assume the contrary. Let u be proper nonoscillatory solution of equation(1). According to Lemma 1, there exists t0 > 0 such that (14) holds. Chooset1 > t0 and t2 > t1 so thatv(t) > 0; v0(t) > 0 for t1 < t < t2; v(t1) = 0; v0(t2) = 0:Introduce the notation�(t) = �v0(t)v(t) ��; �(t) = �u0(t)u(t) �� for t1 < t < t2:Evidently,�0(t) = ��p(t) � ���+1� (t); �0(t) = ��p(t)� �� �+1� (t) for t1 < t < t2:(20)



186 A. LOMTATIDZEIt is not di�cult to see that there exist t3 2]t1; t2[ and " 2]0; t2� t3[ such that�(t) < �(t) for t3 < t < t3 + "; �(t3) = �(t3):(21)Because of this fact we have from (20) that�(t) = �(t3)� � tZt3 p(s)ds � � tZt3 ��+1� (s)ds � �(t3) � � tZt3 p(s)ds ��� tZt3 � �+1� (s)ds = �(t) for t3 < t < t3 + ";but this contradicts (21). Thus the lemma is proved.Remark 2. In proving Lemma 3 we have in fact proved that the solutions u andv of equation (1) do not exist which for some 0 < a < b < +1 could satisfy theconditions u(t) > 0; u0(t) > 0; v(t) > 0; v0(t) > 0 for a < t < b;u(a) � 0; u0(b) > 0; v(a) = 0; v0(b) = 0:Lemma 4. Let for some � < � the integral R +1 s�p(s)ds be divergent. Thenequation (1) is oscillatory.Proof. Assume the contrary. Let equation (1) have the proper nonoscillatorysolution u. By Lemma 1, there exists t0 such that (14) is ful�lled. Similarly as inproving Lemma 2 we can see that the function �(t) = (u0(t)u(t) )� for t � t0 satis�esthe relation (15) and the inequality (17). Multiplying the equality (15) by t� andintegrating from t0 to t, we see thattZt0 s�p(s)ds = �t��(t) + t�0�(t0) + � tZt0 s��1�(s)ds ��� tZt0 s���+1� (s)ds for t > t0:By (17) the right-hand side of the above equality has a �nite limit for t ! +1.Hence the integral R +1 s�p(s)ds converges, but this contradicts the condition ofthe lemma. Thus the lemma is proved.Lemma 5. Let there exist the function v : [t0;+1[!]0;+1[ which is locally ab-solutely continuous together with its �rst derivative and satisfying the inequalitiesv0(t) > 0; v00(t) + p(t)v�(t)(v0(t))1�� � 0 for t > t0(22)almost everywhere. Then equation (1) is nonoscillatory.



SECOND ORDER EMDEN-FOWLER EQUATION 187Proof. Denote by u0 a solution of equation (1) satisfying the initial conditionsu0(t0) = 0; u00(t0) = 1and show that u00(t) > 0 for t > t0.Assume the contrary. Let there exist t1 > t0 such thatu0(t) > 0 for t0 < t < t1; u0(t1) = 0:Since the function w(t) = (t� t0)v(t1)�v(t0)t1�t0 + v(t0) satis�es the inequalitiesw0(t) > 0; w00(t) + p(t)w�(t)(w0(t))1�� � 0 for t > t0;equation (1) has the solution u1 satisfying the conditions (cf., for example [5])u1(t) > 0; u01(t) > 0 for t0 � t � t1; u1(t0) = v(t0); u1(t1) = v(t1);which is according to Remark 2 impossible. Thus we have proved that u00(t) > 0for t > t0. Consequently, u0 is the proper nonoscillatory solution of equation (1).Thus the lemma is proved.Lemma 6. Let p�(�) < +1 for � 6= �. Then the mapping � 7�! (� � �)p�(�)(� 7�! (���)p�(�)) does not increase (does not decrease) for � < � and does notdecrease (does not increase) for � > �.Proof. We prove this lemma only in the case when � < �. For � > � the lemmais proved in a similar way. Let " > 0. Choose t" > 0 so thatp�(�) � " < �t��� +1Zt s�p(s)ds < p�(�) + " for t > t":It is easy to see that whatever � < � might be,t��� +1Zt s�p(s)ds = t��� +1Zt s�p(s)ds+(���)t��� +1Zt s������ +1Zs ��p(� )d��ds:Hence if � < �, than(p�(�) � ")�1 + � � ��� �� < �t��� +1Zt s�p(s)ds << (p�(�) + ")�1 + � � ��� �� for t > t":This implies that(�� �)p�(�) � (�� �)p�(�) and (� � �)p�(�) � (�� �)p�(�):Thus the lemma is proved.



188 A. LOMTATIDZELemma 7. Let p�(�) < +1 for � 6= �. Thenlim�!��(�� �)p�(�) = lim�!�+(� � �)p�(�)� lim�!��(� � �)p�(�) = lim�!�+(� � �)p�(�)�:(23)Proof. Let � < �, � > � and " > 0. Choose t" > 1 so thatp�(�)� " < �t��� +1Zt s�p(s)ds < p�(�) + " for t > t";p�(�) � " < �t��� tZ1 s�p(s)ds < p�(�) + " for t > t":It is easily seen thatt��� +1Zt s�p(s)ds = �t��� tZ1 s�p(s)ds + (�� �)t��� +1Zt s����1� sZ1 ��p(� )d��ds;t��� tZ1 s�p(s)ds = �t��� +1Zt s�p(s)ds + t��� +1Z1 s�p(s)ds ++(� � �)t��� tZ1 s����1� +1Zs ��p(� )d��ds:From these equalities we have�� ��(�� �) (p�(�) � ")� t��� tZ1 s�p(s)ds < t��� +1Zt s�p(s)ds << �� ��(�� �) (p�(�) + ") for t > t";�t��� +1Zt s�p(s)ds + �� ��(�� �) (p�(�)� ")(1 � t���) < t��� tZ1 s�p(s)ds << +1Z1 s�p(s)ds + � � ��(�� �) (p�(�) + ") for t > t";



SECOND ORDER EMDEN-FOWLER EQUATION 189whence we �nd that(�� �)p�(�) � (�� �)p�(�) < (�� �)p�(�); (�� �)p�(�) < (� � �)p�(�);�(�� �)p�(�) + (�� �)p�(�) < (�� �)p�(�);(�� �)p�(�) < (�� �)p�(�) + �(� � �) +1Z1 s�p(s)ds:Finally by Lemma 6 we obtainlim�!��(� � �)p�(�) � (� � �)p�(�); lim�!��(�� �)p�(�) � (�� �)p�(�);lim�!�+(�� �)p�(�) � (�� �)p�(�); lim�!�+(�� �)p�(�) � (�� �)p�(�):From the last four inequalities we can conclude that the equality (23) is valid.Thus the lemma is proved.Lemma 8. Let p�(�) < +1 for some � < � and p�(�) < +1 for some � > �.Then � lim supt!+1 1ln t tZ1 s�p(s)ds � (�� �)p�(�)(24)and � lim sup�!�� (� � �) +1Z1 s�p(s)ds � (�� �)p�(�):(25)Proof. Let " > 0. Choose t" > 1 so that for t > t"�t��� +1Zt s�p(s)ds < p�(�) + "; �t��� tZ1 s�p(s)ds < p�(�) + ":We can easily see that1ln t tZ1 s�p(s)ds = � t���ln t +1Zt s�p(s)ds + �� �ln t tZ1 s����1� +1Zs ��p(� )d��ds;+1Z1 s�p(s)ds = (�� �) +1Z1 s����1� sZ1 ��p(� )d��ds for � < �:



190 A. LOMTATIDZEFrom these inequalities we have�ln t tZ1 s�p(s)ds < (�� �)(p�(�) + ") for t > t";(�� �) +1Z1 s�p(s)ds < (�� �)(p�(�) + ") for t > t":Hence the inequalities (24) and (25) are ful�lled. Thus the lemma is proved.3. Proof of the Main ResultsProof of Theorem 1. Assume the contrary. Let equation (1) have the propernonoscillatory solution. Then according to Lemma 2, equations (3) and (4) aresolvable. To this end it is necessary that the inequalities (2) be ful�lled. But thiscontradicts the conditions of the theorem. Thus the theorem is proved.Proof of Theorem 2. Assume the contrary. Let equation (1) have the propernonoscillatory solution. Then according to Lemma 2, there exists t0 > 0 such thatequation (15) has the solution � : [t0;+1[!]0;+1[ satisfying the conditions (16).From (15) we easily obtain that (18) and (19) are ful�lled. Assume p�(�+ 1) 6= 0(p�(�+ 1) = 0 i.e., B = 1). Clearly, for any 0 < " < 1�B (0 < " < 1) there existt" such that t��(t) < B + "; t��(t) > A� " for t > t";t��(t)��+ 1� �t� 1� (t)� < c(") for t > t";where c(") = (B + ")(� + 1 � �(B + ") 1� ) (c(") = 1). Owing to this fact we �ndfrom (18) and (19) that�t� +1Zt p(s)ds < (B + ")�+1� � A+ " for t > t"and �t tZt" s�+1p(s)ds < t�+1" �(t")t + c(") �A+ " for t > t":Consequently,p�(0) � p�(0) + B � A and p�(�+ 1) � p�(�+ 1) + B �A;which contradicts (5) and (6). Thus the theorem is proved.Proof of Theorem 3. Assume the contrary. Let equation (1) have the propernonoscillatory solution. Then according to Lemma 2, there exists t0 > 0 such that



SECOND ORDER EMDEN-FOWLER EQUATION 191equation (15) has the solution � : [t0;+1[!]0;+1[ satisfying the estimates (16).Clearly, for any " > 0 there exists t" > t0 such thatt��(t) < B + "; t��(t) > A� " for t > t":From (15) we easily �nd that�t��� +1Zt s�p(s)ds = t��(t) + t��� +1Zt s����1�s� 1� (s)����� �s� 1� (s)�dsfor t > t"; � < �;�t��� tZt" s�p(s)ds = �t��(t) + t"��(t")t + t��� tZt" s����1�s� 1� (s)����� �s� 1� (s)�dsfor t > t"; � > �:Since max�x�(� � �x) : 0 � x < +1	 = ( ��+1 )�+1, from the last twoinequalities we have�t��1 +1Zt s�p(s)ds < B + " + 1�� �� ��+ 1��+1 for t > t"; � < �and�t��1 tZt" s�p(s)ds < t�"�(t")t + 1� � �� ��+ 1��+1 �A + " for t > t"; � > �:Consequently, p�(�) � 1�� �� ��+ 1��+1 +B for � < �;p�(�) � 1� � �� ��+ 1��+1 �A for � > �;but this contradicts (7) and (8). Thus the theorem is proved.Proof of Corollary 1. We shall assume that p�(�) < +1 (according to Theorem3, the equation is otherwise oscillatory). Then by Lemma 7, the limit in the right-hand side of the inequality (9) exists. Obviously,lim�!�� hj�� �jp�(�) � � ��+ 1��+1 � (�� �)Bi > 0:This implies that (7) is ful�lled for some � < �. Therefore by Theorem 3 equation(1) is oscillatory. Thus the corollary is proved.Proof of Corollary 2. If for some � 6= �, p�(�) = +1, then according toTheorem 3, equation (1) is oscillatory. We shall assume that p�(�) < +1 for



192 A. LOMTATIDZE� 6= �. By Lemma 6, if (10) holds for some � 6= �, then the condition (9) is alsoful�lled. Hence according to Corollary 1, equation (1) is oscillatory.To convince ourselves that Corollary 3 (Corollary 4) is valid, it should be notedthat according to Lemma 8, it follows from (11) ((12)) that (9) is ful�lled. Henceby Corollary 1, equation (1) is oscillatory.Proof of Theorem 4. Introduce the notationf(t) = � +1Zt s�p(s)ds for t > 1; � < �2�+ 1 ;f(t) = �� tZ1 s�p(s)ds for t > 1; � > �+ ��+1(�+ 1)[(�+ 1)� � ��] ;k = � ��+ 1�� � 1�� �� ��+ 1��+1:From (13) for some t0 > 1 we have0 � k + t���f(t) < � ��+ 1�� for t > t0; � < �2�+ 1 ;� ��+ 1�� < k + t���f(t) � kfor t > t0; � > �+ ��+1(�+ 1)[(�+ 1)� � ��] :(26)We can easily see that if � < �2�+1 and 0�x < ( ��+1 )� or �> �+ ��+1(�+1)[(�+1)����]and �2�+1 < x � k, then �x�+1� � �x + k(� � �) � 0;whence according to (26), we have��k + t���f(t)� �+1� � ��k + t���f(t)� + k(�� �) � 0 for t > t0:The latter inequality is equivalent to�0(t) � �t (�(t) + f(t)) � �t �� (�(t) + f(t))�+1� for t > t0;where �(t) = kt���. Then the functionv(t) = exp � tZt0 ��(s) + f(s)s� � 1� ds� for t > t0satis�es the inequality (22). Hence by Lemma 5, equation (1) is nonoscillatory.Thus the theorem is proved.
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