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OSCILLATION AND NONOSCILLATION OF EMDEN-FOWLER
TYPE EQUATION OF SECOND ORDER

A. LOMTATIDZE

ABSTRACT. Oscillation and nonoscillation criteria are established for the equa-
tion
w4 p(t)|u|*|u'['~* sgnu = 0,

where o €]0,1], and p : [0, +oo[— [0, +00[ is a locally summable function.

1. STATEMENT OF MAIN RESULTS

Consider the differential equation
(1) u” 4 p(t)u|*|w |~ sgnu = 0,

where « €]0,1], and p : [0, +oo[— [0, 40o0[ is an integrable function. Under the
solution of equation (1) is understood a function u : [0, +00[—] — 00, 400 which
is locally absolutely continuous together with its first derivative and satisfying
equation (1) almost everywhere.

The solution u of equation (1) is said to be proper if there exists a > 0 such
that mes{t > a : «/(t) = 0} = 0. The nontrivial solution « of equation (1) is said
to be oscillatory if it has at least one zero in any neighborhood of +0c0, and it is
said to be nonoscillatory, otherwise. As it will be shown below (see Lemma 3),
equation (1) cannot have proper oscillatory and proper nonoscillatory solutions
simultaneously. This fact is justified by the following

Definition. Equation (1) is said to be nonoscillatory if it has at least one proper
nonoscillatory solution, and 1t is said to be oscillatory, otherwise.

In this paper we intend to concern ourselves with the problem of oscillation and
nonoscillation of equation (1). Analogous problem has been considered in [3] when
p was in general not of constant signs.

As we shall show below (see Lemma4), if for some A < o the integral f+oos>‘p(5)d5
diverges, then equation (1) is oscillatory (for a linear equation, i.e., when o = 1,
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this assertion goes back to W. B. Fite [1] and E. Hille [2]). Therefore we shall

assume that f+oo s*p(s)ds converges for A < a.
Introduce the notation:

+ oo + oo

pe(A) = altim_l_inft“_k/:;)‘p(s)ds, p*(\) = alimsupt®=* / s*p(s)ds for A < a,
—T0o0 t—4o00
i
¢ ¢
pe(A) = altim_l_infta_k/skp(s)ds, p*(\) = alimsupt®=* / s*p(s)ds for A > a.
—T0o0 t—4o00

1

Below new oscillation and nonoscillation criteria of equation (1) are given in terms
of the numbers p,(A) and p*(A). Analogous results for the linear equation (i.e.,
when « = 1) are contained in [4].

Theorem 1. Let either p.(0) > %H(%H)a or pila + 1) > (QL_H)aH, Then
equation (1) is oscillatory.

Thus it is natural to suppose that

o )Oz-l—l

@ 0 (55)" el e < (2

a+1\a+1

Note that in this case the equations

(3) 25 — x4 p.(0) =0,
(4) axQTﬂ—ax—i—p*(a—l—l):O

are solvable. Denote by A the least nonnegative root of equation (3) and by B the
largest root of equation (4).

Theorem 2. Let (2) be fulfilled and either

(5) p*(0) > B — A+ p.(0)
(6) pa+1)>B—A+p.(a+1).

Then equation (1) is oscillatory.

Theorem 3. Let (2) be fulfilled and either

1 A a+1
(A B
» v ()
for some A < « or
N 1 A a+1
(8) p(/\)>/\—a(oz—|—1) -4

for some A > a. Then equation (1) is oscillatory.
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Corollary 1. Let

a \otl
(9) lim o = Mp* () > (=)
Then equation (1) is oscillatory.
Corollary 2. Let for some A # «
a yotl
(10) o= Ap ) > (5)
Then equation (1) is oscillatory.
Corollary 3. Let
1 / «
(11) l;rilfipm s¥p(s)ds > (Oz-l-aw :
1
Then equation (1) is oscillatory.
Corollary 4. Let
e o
(12) li}\riilip(a - }) / s*p(s)ds > (Oz-l-aw :
1

Then equation (1) is oscillatory.

Remark 1. Inequalities (9)-(12) are exact and they cannot be weakened. Indeed,

let p(t) = %(%_H)aﬂt—a—l for ¢ > 1. Then |a — Alps(A) = |a — Alp*(A) =
= flt 5p(s)ds = a(a — A) 1+Oo s*p(s)ds = (QL_H)“‘H, and equation (1) has the
nonoscillatory proper solution u(t) = {547 for t > 1.

Theorem 4. Let either for some A < aa—:l or for some A > o + m

the equality

o )O(-I—l

(13) o= M) < (55

be fulfilled. Then equation (1) is nonoscillatory.

2. SOME AUXILIARY STATEMENTS

Lemma 1. Let u be the proper nonoscillatory solution of equation (1). Then
there exists ¢y > 0 such that

(14) u(t)u'(t) >0 for t>to.

Proof. For the sake of definiteness we assume that u(t) > 0 for ¢ > ¢;. Suppose
that «/(#2) < 0 for some t3 > t;. Since u/(t) # 0 for ¢ > t2 and «' does not
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increase, there exists t3 > t2 such that «/(¢3) < 0 and «/(t) < u/(t3) for t > ts.
Owing to this fact, we have

t

u(t) = u(ts) + /u/(s)ds < u(ts) + o' (t3)(t —t3) for t>ts.

ts

Let t4 = t35 — :,((Z)) + 1. Then from the latter inequality we obtain contradiction

that u(¢4) < 0. Thus the lemma is proved.

Lemma 2. Let equation (1) have a proper nonoscillatory solution. Then equations
(3) and (4) are solvable, and there exists ¢y > 0 such that the equation

(15) o+ ap(t) + ap™= =0

has the solution p : [tg, +00[—]0, +00[. Moreover,

(16) ltim_l_inftap(t) > A, ltim_l_inftap(t) < B,

where A is the least nonnegative root of equation (3) and B is the largest root of
equation (4).

Proof. Let u be the nonoscillatory proper solution of equation (1). By Lemma 1,

there exists g > 0 such that (14) is fulfilled. Let p(t) = (%)“ for t > tg. It is

easily seen that p is the solution of equation (15). From (15) we find that

pTER P () 2 1 for 1> 1o,

Q|

Integrating this inequality we obtain
(t—1t9)%(t) <1 for t>tg.
Hence

(17) limsupt®p(t) < 1.

t—+o0
Introduce the notation

r = liminft®p(t), R = limsupt®p(t).

t—4o00 t— 400

Assume that p.(0) # 0 and p,(a+ 1) # 0 (the solvability of (3) and (4) as well
of the estimate (16) is otherwise trivial). Because of (17) we easily find from (15)
that

+oo +oo

(18) t%p(t) = at” / p(s)ds + at® / paTJrl(s)ds for t > 1g

t t
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and

t

t(t) = m + %/ (spé(s))CY (a +1- aspi(s)) ds —

t
(19) ’

t

—%/5“+1p(5)d5 for tg <t,7< 400,

T

whence we have
r>p.(0) and R<1—pi(a+1).
Obviously, for any 0 < ¢ < min{r, 1 — R} there exist 7. > {¢ and ¢, > 7. such
that

+ oo
r—e <t¥p(t) < R+e, ata/p(s)d5>p*(0)—€ for ¢ > 7.,

t

t

%/5“+1p(5)d5 >p(a+1)—e for ¢t >t..

Te

Due to this fact we have from (18) and (19) that

p(t) > pu(0) — e+ (r — )
o Taa-l—lp(Tf) L
t%p(t) < f—I—(R—I—E)(Oz—i—l—a(R—I—E)a)—p*(oz—l—l) for t > t..

for t> 7.,

From this we find that

—— —7r+p.(0) <0 and aR%H aR+p(a+1)<0.
Consequently, equations (3) and (4) are solvable, and (16) are fulfilled. Thus the
lemma is proved.

Lemma 3. Let equation (1) have the proper oscillatory solution v. Then all the
proper solutions of equation (1) are oscillatory.

Proof. Assume the contrary. Let u be proper nonoscillatory solution of equation
(1). According to Lemma 1, there exists g > 0 such that (14) holds. Choose
t1 > tg and fo > 11 so that

v(t) >0, v (t) >0 for t; <t <ts, v(t1) =0, v'(t2) = 0.

Introduce the notation

p(t) = (v’(t))a’ o(t) = (U/(t))a for ¢ <t <ts.

Evidently,

1 1

(20)0'(t) = —ap(t) —ap™= (1), o'(t) = —ap(t) —ac ™= (1) for t; <t <ty
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It is not difficult to see that there exist t5 €]t1,12[ and ¢ €]0,15 — 3] such that
(21) pt) < o(t) for ts3 <t <tzs+e, p(ts)=o(ts).

Because of this fact we have from (20) that

1 1 1

plt) = plta) — o [ p(s)ds —a [ 0" (5)ds = alta) = o [ pls)ds -

ts ts t3

—a/aaTl(s)ds =o(t) for tz3<t<tz+e,

but this contradicts (21). Thus the lemma is proved.

Remark 2. In proving Lemma 3 we have in fact proved that the solutions v and
v of equation (1) do not exist which for some 0 < a < b < 400 could satisfy the
conditions
u(t) >0, «'(t)>0, v(t) >0, v(t) >0 for a<t<b,
u(a) >0, «'(b) >0, v(a) =0, v'(b)=0.

Lemma 4. Let for some A < « the integral f+oo s*p(s)ds be divergent. Then
equation (1) is oscillatory.

Proof. Assume the contrary. Let equation (1) have the proper nonoscillatory
solution u. By Lemma 1, there exists ¢y such that (14) is fulfilled. Similarly as in

proving Lemma 2 we can see that the function p(t) = (ZI((;)))“ for t > 1 satisfies

the relation (15) and the inequality (17). Multiplying the equality (15) by ¢* and
integrating from ¢y to ¢, we see that

1 1

[ ptsids = =250y + thptto) + 1 [ oty -

to to
3

—a/:;)‘p%(s)ds for t > tg.
to

By (17) the right-hand side of the above equality has a finite limit for ¢ — +oco.
Hence the integral f+oo s*p(s)ds converges, but this contradicts the condition of
the lemma. Thus the lemma is proved.

Lemma 5. Let there exist the function v : [tg, +00[—]0, +00[ which is locally ab-
solutely continuous together with its first derivative and satisfying the inequalities

(22) V(1) >0, () +p®)v () (V)T <0 for t >t

almost everywhere. Then equation (1) is nonoscillatory.
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Proof. Denote by ug a solution of equation (1) satisfying the initial conditions
ug(to) =0, wup(te) =1
and show that ug(t) > 0 for ¢ > t,.
Assume the contrary. Let there exist ¢y > #g such that
uw'(t) >0 for tg<t<ty, u(t1)=0.

Since the function w(t) = (t — to)% + v(to) satisfies the inequalities

W' (t) >0, w(t) + p(t)w () (W' ()™ >0 for t > 1,
equation (1) has the solution u; satisfying the conditions (cf., for example [5])
ui(t) >0, uj(t) >0 for to <t <ty, ui(to) =v(to), wi(ts) =v(t1),

which is according to Remark 2 impossible. Thus we have proved that ugy(¢) > 0
for t > tg. Consequently, ug is the proper nonoscillatory solution of equation (1).
Thus the lemma 1s proved.

Lemma 6. Let p*(A) < +oo for A # «. Then the mapping A — (o — A)p*(})
(A — (@ = A)p« (X)) does not increase (does not decrease) for A < & and does not
decrease (does not increase) for A > a.

Proof. We prove this lemma only in the case when A < «. For A > « the lemma
is proved in a similar way. Let ¢ > 0. Choose t. > 0 so that

+oo
pe(N) —e < at®™? / s*p(s)ds < p*(\) +¢ for t>t..

t
It is easy to see that whatever p < o might be,

+ oo + oo + oo + oo

o= / shp(s)ds =t~ / s*p(s)ds+(pu— Ao / SN—A—“</TAp(T)dT)ds.

t t t s
Hence if A < p, than

+o0
(pe(X) — 5)(1 n %) < ateh / shp(s)ds <

t

ﬂ_/\) for t > t..

<wM+a(i+ i

This implies that

(o = p)p"™ (1) < (= A)p*(A) and (o = p)pa(p) 2 (@ = A)p«(A).

Thus the lemma 1s proved.
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Lemma 7. Let p*(A) < 400 for A # «. Then

lim (o —A)p.(A) = )\Egl_l_(A — a)ps(A)

(23) e
(im0 =) = lim (=)

Proof. Let A < «, pt > o and € > 0. Choose {. > 1 so that

+oo
pe(A) —e < at®” A/ Ap(s)ds < p*(A\) +¢ for t > 1.,
Pulpt) —e < at®” “/ (s)ds < p"(p) +¢ for t >1..
1
It is easily seen that
+ oo 1 + oo
tak/ p(s)ds = —t*~ “/5“()d5+(u /\)tak/ >‘“1</T“p dT)dS,
t 1 i 1
1 + oo + oo
t* “/ (s)ds = —t*=* / s p(s)ds + t° “/ Ap(s)ds +
1 1 1
1 + oo
(pp— A" “/ “_>‘_1</T p( )dr)ds
1 s

From these equalities we have

1 + oo

m(p*(ﬁ‘) —e) -t / shp(s)ds < 172 / s*p(s)ds <

1 t
A
< Ni(p*(u) +¢e) for t>t.,

+ oo 1

— " _(p(N) =)l —t*"M < ta_“/sup(s)ds <

t 1

/’L_A *
HZA for ¢ > 1.,
au—a(p()+€) or t >
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whence we find that

(1= X)pa(p) = (@ = A)p™ (1) < (@ = A)p«(A), (@ =A)p"(A) < (g = A)p"(p),
—(p = a)p"(A) + (1t = A)p(A) < (1 — a)pu(p),
+oo

(1= )" () < (0= N ) + =) [ 5 p(s)s,

1

Finally by Lemma 6 we obtain

Jim (0= p.(0) 2 (= a)pa(), | lim (o= Np () < (= a)p’ (1)
Jim (= )p.() 2 (@ = Vpa(A), - fim (= )" (1) < (0 = Np (1),

189

From the last four inequalities we can conclude that the equality (23) is valid.

Thus the lemma 1s proved.

Lemma 8. Let p*(A) < 400 for some A < « and p*(p) < 400 for some p > a.

Then

. t
(24) alimsup — [ s%p(s)ds < (o — A)p™(A)

t—too Int
1
and
+o0
(25) alimsup(a — / A s)ds < (e — a)p™(p).
A—a—

1

Proof. Let ¢ > 0. Choose t. > 1 so that for ¢ > ¢,

+ oo 1

o> / s*p(s)ds < p*(A) +e, at*H / stp(s)ds < p™(p) +e.

1 1
We can easily see that

1 + oo 1 + oo

L [sontonts = =5 [ saonts + 52 [t ([ 2piryar)d
— s s)as = — s T T)aTr s
Int P Int Int P ’

1 1 1 s
+ oo + oo s

/ s p(s)ds = (p — ) / simn=t (/T“p(r)dr)ds for 6 < a.

1 1 1
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From these inequalities we have

li/ s)ds < (a — A)(p*(\) +¢) for ¢ > 1.,
1

(o — 8)

+ oo
s)ds < (p—28)(p*(p)+¢) for ¢ >t..
1

Hence the inequalities (24) and (25) are fulfilled. Thus the lemma is proved.

3. PROOF oF THE MAIN RESULTS

Proof of Theorem 1. Assume the contrary. Let equation (1) have the proper
nonoscillatory solution. Then according to Lemma 2, equations (3) and (4) are
solvable. To this end it is necessary that the inequalities (2) be fulfilled. But this
contradicts the conditions of the theorem. Thus the theorem is proved.

Proof of Theorem 2. Assume the contrary. Let equation (1) have the proper
nonoscillatory solution. Then according to Lemma 2, there exists £g > 0 such that
equation (15) has the solution p : [tg, +00[—]0, +oo[ satisfying the conditions (16).
From (15) we easily obtain that (18) and (19) are fulfilled. Assume p.(a+1) #0
(ps(a+1)=01i.e., B=1). Clearly, for any 0 < ¢ < 1 — B (0 < ¢ < 1) there exist
t. such that

t%p(t) < B+e, t%()>A—¢ for t>t.,

t*p(t)(+1— oztp%(t)) < c(e) for t>t.,
where ¢(e) = (B4 e)(a+ 1 —a(B+¢)) (¢(e) = 1). Owing to this fact we find
from (18) and (19) that

+o00
O‘ta/P(S)d5<(B+E)QT+1—A—|—E for t>t.
t

and
t

toz-l—l tE
%/5“+1p(5)d5 < %p() +e(e)—A4¢e for t>1..
te

Consequently,
p*(0) <p(0)+ B—A and p(a+1)<p.a+1)+B—A,
which contradicts (5) and (6). Thus the theorem is proved.

Proof of Theorem 3. Assume the contrary. Let equation (1) have the proper
nonoscillatory solution. Then according to Lemma 2, there exists £g > 0 such that
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equation (15) has the solution p : [tg, +00[—]0, +o0] satisfying the estimates (16).
Clearly, for any € > 0 there exists . >y such that
t%p(t) < B+e, t%(t) > A—¢e for ¢t >t..
From (15) we easily find that

+ oo + oo

at® / s*p(s)ds = t%p(t) + 1% / S0 (spa(5)) (A — aspa (s)) ds
i i
for t>1., A<aq,
4 t
a—=X [ A _ s« taAp(ta) a2 | r—a—1 1 oy 1
at /5 p(s)ds = —t%p(t) + — +1 /5 (sp=(s))" (A — asp=(s))ds
fe te

for t>t., A>a.

Since max{x“(/\ —az) 0 <2< —I—OO} = (25)*+ from the last two

. S atl
inequalities we have
' D SRS
atoz—l/SAP(S)dS<B+E+m(a+1) fOI't>t€, A<

t

and

¢
t2p(t. 1 PGS
ata_l/:;)‘p(s)ds< apt( )—1— ( ) —A+4e for t >4, A>a.

A—ala+1
te
Consequently,
1 A a+1
* <
p(/\)_oz—A(oz—l—l) + B for A<a,
N 1 A a+1
p(/\)gx\—a(a—l—l) —A for A>a

but this contradicts (7) and (8). Thus the theorem is proved.

Proof of Corollary 1. We shall assume that p*(A) < +oo (according to Theorem
3, the equation is otherwise oscillatory). Then by Lemma 7, the limit in the right-
hand side of the inequality (9) exists. Obviously,

A
a+1

This implies that (7) is fulfilled for some A < «. Therefore by Theorem 3 equation
(1) is oscillatory. Thus the corollary is proved.

lim [l = A0 - ( )QH ~(a—NB| >o.

A—

Proof of Corollary 2. If for some A # «, p*()) = +oo, then according to
Theorem 3, equation (1) is oscillatory. We shall assume that p*(A) < +oo for



192 A. LOMTATIDZE

A # a. By Lemma 6, if (10) holds for some A # «, then the condition (9) is also
fulfilled. Hence according to Corollary 1, equation (1) is oscillatory.

To convince ourselves that Corollary 3 (Corollary 4) is valid, it should be noted
that according to Lemma 8, it follows from (11) ((12)) that (9) is fulfilled. Hence
by Corollary 1, equation (1) is oscillatory.

Proof of Theorem 4. Introduce the notation
+oo
/ Mp(s)ds for 151, A< —-
1) = __
f)=a [ Ppls)ds Tor 151, A<

t
1

ft) = —a/sAp(s)ds for t>1, A>a+
1

aa+1

(o + D[(a+ 1)* — 2]’

k= (aj—l)a_ai/\(aj—l)a-l—l'

From (13) for some #5 > 1 we have

2

0§k+t“"\f(t)<(%+1) for > to, A<ail,
« @ a—A
(26) (—a+1) <k OTN() < k
aa+1

for t>ty, A>a+

(a+ D+ 1) —a*]’
We can easily see that if A < oza_:l and 0<z <(337)% or A> oz-l-m
and oza_:l <z <k, then
axaTJrl—/\x—l—k(/\—a)gO,

whence according to (26), we have
ol
alk+t*72 ) = = ME+t7 () + k(A —a) <0 for t > tg.
The latter inequality is equivalent to

a1

(p(1) + [ (1)) — t%(p(t) + L)) for ¢ > to,

o

p(t) <

| >

where p(t) = kt*~. Then the function

o(t) = exp [/ (W)%ds] for ¢ >t

satisfies the inequality (22). Hence by Lemma 5, equation (1) is nonoscillatory.
Thus the theorem is proved.
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