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PIVOTING ALGORITHM IN CLASS OF ABS METHODS

GABRIELA KALNOVA

Summary: The paper deals with a pivoting modification of the algorithm in the
class of ABS methods. Numerical experiments compare this pivoting modification
with the fundamental version. A hybrid algorithm for the solution of the linear
system with the Hankel matrix is introduced.

1. Introduction

In a recent monograph Abaffy and Spedicato [2] have introduced a class of
direct methods for solution of the linear algebraic systems in the form:

(1) Ar =1
where the matrix A = (a1, . ..,am)T, the vectors ay,...,aym € R*, @ € R*)b €
R™ and m < n. The idea of the ABS methods consists in formation of the

finite sequence of vectors {x; Z”:'Iil with the property that the approximation ;1

obtained at the i-th cycle is a solution of the first ¢ equations of system (1). Then
Zmy1 solves the whole system (1). If a{ € R™ is the k-th row of the matrix 4 and
by, is the k-th component of the vector b, the system (1) is indicated component-
wise

(2) atx = by, k=1,..., m.

On the assumption that the vector #; € R™ (the solution of the first ¢ — 1 equations
of (2)) is known, it is possible to find the vector ;11 € R" so that it is the solution
of the first ¢ equations of (2).

Omitting the particular description of the theory about the ABS methods we
introduce the general version of the ABS algorithm. While the ABS methods are
able to solve underdetermined systems (m < n) we assume that m = n and A is
nonsingular. For more details see [1] and [2].
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ABS ALGORITHM

1) Let #; € R™ be an arbitrary vector. Let H; € R™" be an arbitrary
nonsingular matrix.
2) Cyclefori=1,...,n

a) Let z; € R™ be a vector arbitrary save for the condition:
(3) I Hia; £ 0.
Compute search vector p; :
(4) pi = HZTzZ
b) Compute step size «; :

afr; — b,
5 = L
(5) i Tan

which is well defined with regard to (3) and (4).

¢) Compute the new approximation of the solution using
(6) Tip1 = Ti — Qip;.

If ¢ = n stop; £,41 solves the system (1).
d) Let w; € R™ be a vector arbitrary save for the condition:

(7) wZ»THiai =1,
and to update the matrix H;:

(8) Hi+1 IHi—Hiain»THi.

There are three eligible parameters in the general version of the ABS algorithm:
matrix H; and two systems of vectors z; and w;. The new algorithms or a new
formulation of the classic algorithms can be created by a suitable choice of these
parameters.

Abaffy et al. have studied the above system for a variety of choices of z; and
w;, calculating the storage and arithmetic operations which are required to solve
the systems with various kinds of matrices.

Many papers have dealt with the ABS modification of the LU decomposition.
Numerical experiments with the ABS — LU algorithm have been made on special
systems of linear equations by Bodon in [3], [4], [5]. Other experiments are avail-
able in a paper by Deng and Vespucci [7]. Bodon and Spedicato [6] have dealt
with the LU, LQ and QU algorithms, and Phuan [9] has demonstrated that this
method exploits sparsity in a natural way.
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The purpose of this paper is to present one choice of the vectors z; and w;
which corresponds to the choice of these vectors for the ABS — LU algorithm but
does not require the strong nonsingularity of the matrix A. This choice of vectors
leads to the method of behaviour similar to the known pivoting process in Gauss
elimination. We will show one algorithm for solving the system (1) with Hankel or
Toeplitz matrices which can be also used in a combination with the ABS algorithm.

In the section 2 we briefly describe some fundamental properties of the ABS
methods and one simple choice of vectors z; and w;. Section 3 deals with the algo-
rithm that Rissanen [10] has introduced for solving the linear systems of equations
with Hankel (or Toeplitz) matrices, and the section 4 describes the relation of the
Rissanen algorithm to the ABS algorithms. The substance of the paper resides in
the section 5, where we deal with one modified parameter option in the ABS class.
In the section 6 we evaluate the numerical pretension of the algorithms.

2. Fundamental properties of ABS methods.

The vectors p;, #; and the matrix H; generated by the ABS algorithm dispose
of the interesting properties.

Theorem 1. Fori =2,...,n+1, Null(H;) is generated by the vectors ay, ..., a;_1
(the first i — 1 rows of the matrix A)e.q.

(9) Hia; =0, j=1,... i1

If m = n, Range(H;) is generated by the vectors H;a;, ..., Hiay, e.q.

(10) Hia; #£0, J=1i...,n.

Proof: [2], p.23, Theorem 3.1

Theorem 1 implies the validity of the following theorem which plays a funda-
mental role in the analysis of the ABS class.

Theorem 2. Let py,...,py be the search vectors generated by (4) and let P =
(p1,.-.,Pn). Then the matrix L, defined as

(11) L =AP,
is nonsingular and lower triangular.

Proof: [2], p.30, Theorem 3.12

Further we use the simplest and most obvious choice of z; and w; about which
Abafly, Broyden and Spedicato [1] had shown that it corresponds to an implicit
LU factorization of A. It is known that such factorization of the square matrix A
exists if and only if A is strongly nonsingular. If A is nonsingular but not strongly
nonsingular, there exists a suitable permutation of the rows or columns of A after
which the factorization A = LU exists.

From (11) in Theorem 2 it follows that here is only one question: how to choose
Hiy, 7z and w; to achieve that matrix P! (and also matrix P) is upper triangular.



170 GABRIELA KALNOVA

Theorem 3. The sufficient condition for matrix P to be upper triangular is the
following choice of the parameters:

a) vectors wy, ..., wy arbitrary save for the condition (7),

b) matrix HL W, where W = (w1, ..., wy) is upper triangular,

¢) zp =~ wi.

Proof: [2], p.71, Theorem 6.1

Definition 1. The implicit LU factorization is defined by the following choice of
the parameters:

€

12 H =1 ;= e; ;= .
( ) 1 3 25 €, Wy GZT HZ'ClZ'

Remark. This choice leads to the following formulas for the computation of the
search vector, the new approximation of the solution and update of the matrix:

(13) pi = Hle;,
aZ»Tl‘Z' — bl
(14) Tipq =T — W}%
Hia;p]
D; ag

The parameter option (12) induces the structure of H;, described by the fol-
lowing theorem.

Theorem 4. Let A € R™" be a strongly nonsingular matrix and w; be similar
to (12). Let HY and W be nonsingular upper triangular matrices. Consider the
sequence of matrices H; generated by (8). Then the following properties are true:

a) the first ¢ rows of H;y, are identically zero,
b) the last n — i columns of H;11 are equal to the last n — i columns of Hy,
1Le.,

o = (5 i)

Proof: [2] , p.73, Theorem 6.3

The following theorem shows that a row pivoting strategy always exists so that
the assumptions a), b) and ¢) of Theorem 3 are satisfied by some choices of H;
and vectors w;.

Theorem 5. Let A be square nonsingular and let HY and W = (wy, ..., w,),
where w; = H} w;, be nonsingular upper triangular matrices. Then it is possible
to choose for i = 1,...,n an index j with i < j < n and a scalar 3; # 0 such that
(Biw_i)THiCl_j = 1 where @ is the j-th row of the matrix ‘A obtained after some
permutation of the rows of A.

Proof: [2], p.72, Theorem 6.2
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3. Algorithm for systems with Hankel matrices.

The method for solving systems of linear equations described by Rissanen (1974)
is based on the transformation A as follows:
(17) SA=Q
where S is a lower triangular matrix with ones on the diagonal, and @ is

a) upper triangular when A is strongly nonsingular or
b) a matrix that can be made triangular by the row permutation.

Solving of the system (1) is equivalent after such a transformation to solving of
the system:
(18) Sb = Q.

The author has described how such a transformation can be calculated in the case
when A 1s a Hankel matrix:

al a2 PR an

a2 as o Qpgd
(19) A=

Ap An41 o A2pn—1

Asin [2]let A(k),k =1,...,n denote the submatrices of the nonsingular Hankel
matrix consisting of the first k& rows of the matrix A. The rank of A(k)is k. Define

the set of natural numbers By = {i1,...,ix},k = 1,... nasfollows: i; is the index
of the first non—zero element of row A(1) and for ¢ = 2,..., k; 4; is the least natural
number so that é; # ¢1,...,4_1 and the ¢-th column of A(?) is not in the linear
span of the preceding columns. A simple example is the matrix:
1 1 1
A=11 1 2
1 2 3

with Fy = {1}, B2 = {1,3}, Es = {1,3,2}.
The proof of the main theorem in [10] includes a constructive basis for creation
of the algorithm for solution of the transformation (16) of the Hankel matrix.

Theorem 6. Let A € R™" be a nonsingular Hankel matrix with the set of indices
E, ={i1,...,1,}. Then lower triangular matrix S € R™" exists with ones on the
diagonal that:

SA=40Q

where () € R™" is a matrix with elements ¢; ; satisfying the conditions:
;=0 j<ip
R #0  j=1p
The algorithm described by Rissanen (1974) has two distinct stages which follow
from the properties of the elements 7; of index set F,,:

a) if ip — 1 € B} or i, = 1 then E} is a permutation of the integers 1,...,k,
b) if 7, > 1 and —1¢Ek then ik+1 =1, — 1.
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THE RISSANEN ALGORITHM

1) Initialization
s1=(1,0,...,0) (n components)
q=1(ay,...,an)
FEy = {i1}, where i; is the least number ¢, 1 <¢ < n such that a; # 0
Uy = {u1}, where u; = ay
2)Fork=1,...,n—1
a) sp41 = (0,851, .-, Sk k-1,1,0,...,0) (n components)
Qrr1 = (Qk,25 - 5 Qeons Tt 1,n)
where qrpp1,n = Sp1Gn41 + -+ Sk k—1Gn4k—1 + Antk
b) find the least number m, 1 < m < n such that gzy1,m # 0
¢) if m = 4,4 € By, then
d= qk+1ymul_1
Sk+1 = Sk+1 — dsg
Tet+1 = qet1 — dqi
return to b)
d) if m ¢ E} then
i1 =M Up+1 = Gk+1,m
Ery1 = Ep U {igg1} Upt1 = U U{upg1}
The output of this algorithm includes rows of S and @, index set E,, and the
set Un = (q1,4,,-,qn,i,) containing leading non—zero elements of the rows of Q.

4. Relation between ABS—LU and Rissanen’s algorithms.

In the case when A is a strongly nonsingular symmetric matrix, the equiva-
lence of transformations (11) and (17) is obvious because the following well-known
theorem is valid:

Theorem 7. Matrix A € R™" has a LU factorization if det(A**) # 0 for k =
1,...,n— 1. If the LU factorization exists and A is nonsingular then the LU
factorization is unique.

Proof: [8], p.96, Theorem 3.2.1

Corollary 1. Let A € R™" be a strongly nonsingular Hankel matrix. Then for
search vectors p; generated by the ABS modification of the LU decomposition and
vectors s; containing the rows of matrix S generated by Rissanen’s algorithm the
following relation is true:

(20) Pi

Proof: Because A is strongly nonsingular it follows that P = (p1, ..., pn) is upper
triangular in the decomposition (11). Lower triangular matrix L has the elements
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alp;,;i=1,...,n in the diagonal. Considering the following vector formulation of
(11):
al al'p, 0 e 0
al alpy alps ... 0
(Pl P2 ... Pn ) =
ay, appi ayps ... ahpa

one can obtain:

1 0 ... 0
af aj p1 1 0
a3 p1 P2 Pn afpy
(21) : ( G{Pl agpz - dlps ) - :
al alpi  alp, .

G?Pl agpz
Because A is symmetric (4 = AT) we can transpose (17) into the form
(22) AST = @7

where ST = (sy,...,5s,) is upper triangular and Q7 lower triangular. One can
consider the vector formulation of (22) as

1 0 ... 0
T
“ asi 0
T
as $1 S9 Sy, aj S1
93 ( — o —) =
(23) : als;  alsy al's, :
T T
al a,S1 QS 1

0?51 0552
which is analogical to the vector formulation (21).

It follows from the theorem 7 that the decompositions (21) and (23) are equiv-
alent and relation (20) is true. O

Corollary 2. The sequence {x;}'F! generated from (14) in the ABS — LU algo-
rithm is equivalent to the sequence of vectors which can be generated using the
vectors s; as the search vectors in the ABS algorithm.

Proof: We can proceed by induction, using (14) and (20). O

It has been a trivial matter to show the equivalence of (11) and (17) in the
case when A is a strongly nonsingular matrix. The application of the Rissanen
algorithm in the case when A is not strongly nonsingular appears more interesting.
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We explain our intention on the example of a matrix with n = 3 and index set
Fs=(1,3,2). In the following vector formulation:

al al'sy 0 0
T _ T T
ay | (s1 s2 s3)= | azs: 0 as s3
T T T T
as az 51 a3 52 a3 53

matrix ST = (s, 52, s3) is upper triangular. After the column permutation of ST
given by Fs we get:

al al'sy 0 0
T _ T T
az | (s1 sz s2)= | azs1 a3ss 0
T T T T
as az 51 a3 83 a3 853
or:
1 0 0
al al sy
T 51 53 S9 T 1 0
a =1 ais
2 (aT51 alss  als, ) 121
1 2 3
T T T
asz a3 51 a3 53

0{51 0553

These formulations have the structure described in Theorem 2. Therefore, we
can expect that it is possible to use vectors s;,7 = 1,...,n in the order given by
E, as search vectors p; in the ABS algorithm, and to form a hybrid algorithm.

The values al sg, ,which are in the denominator of (14), are contained in U,
generated using the Rissanen algorithm.

5. One parameter option in ABS algorithm.

We will discuss a simple modification of the parameter choise (12) in the ABS
class. Rissanen’s algorithm and Phuan (1988) inspire us to consider the next
option of parameters.

Definition 2. The pivoting LU factorization is defined using the following choice
of parameters:

2

24 Hi=1 Zi = €; e; — max |ef H;a; w; = .
( ) 3 7 79 J 1Sk§”| k 7 Z|a 2 6]THZ'CEZ'

Remark. The choice changes (13) into p; = Hl'e;. The relations (14) and (15)
are not changed.

We show that parameter z; in (24) is well defined and it is determined by a
permutation of columns of A. We also show how this permutation affects the
structure of Hy.
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Theorem 8. Let A € R™" be a square nonsingular matrix. Then it is possible
to choose for t = 1,...,n an index j; with 1 < j; < n that:

6]'T,Hiai 75 0.

Index set 1S, = {j1,...,Jn} Is a permutation of elements 1,... n.

Proof: We can proceed by induction. For ¢ = 1,v; = Hyay = a3 # (0,...,0)
because of nonsingularity of A. Let j; be the index for which:

e]»T Hia; = max |elTHZ'aZ'|,
t 1<i<n

and IS; = {j1}. Then p; = H{e;, = ¢;,, and:

T arel
Hy=H — S — 1 1
P1 a1 €501
where alejT1 is matrix with the elements (ai1,...,a1,) in column j;. Then the
Ji-th row of new matrix H> is zero because hj, ;;, =1 — a1 ;, /a1 j; = 0. The other
elements of the ji-th column are h; ;, = —a; ;, and H> has the form:
10 ... Ay, ... 0
01 ... hay, ... 0
25 Hy =
(25) *“loo ... 0 0
00 ... hpj, ... O

Then vy = Hoas is a vector with vs ;, = 0. It follows that index js for which:

e]»T Hyas = max |e{H2a2|,
2 1<k<n

fulfills the condition j» # ji1. Because of nonsingularity of A, element vy ;, # 0
exists in the vector vy. The index set ISy = {j1, 2} is created.

If it is assumed that the argument is true for ¢ = &, index set 1.5, = {j1,...,jr}
can also be created. Index ji41, for which:

T _ T
(26) €y Het10p41 = max le; Hiasl,

may be found. Matrix Hjp4 is given by:

T
Vi Py

27 Hypy = Hy — ,
( ) k+1 k pgak
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where Hj is a matrix with jq,...,jz_1 zero rows and vy, = Hyay 1s a vector with
zero elements in the same positions. Search vector p; = HkTejk is the jgp-th row of
H;, and:

Pk.jr = L,
szzo Z#]laa]k

It follows that update (27) does not change the elements of Hq which lie in rows
Jis-++yJk—1 or in columns IS, — {j1, ..., jr}-

We take an interest in the change of the ji-th row of Hpiq. Using (27) we
obtain: o

T Py kPy
(Hes1)j = D6 — —5 -

Py @k
One can see that the ji-th row of Hp 1 was zeroed. Vector vpy1 = Hpq1ak41 has
zero elements in positions ji, ..., jk, and index jz4+1 holds the condition:

jk+17£ji Zzl,,k’

From the nonsingularity of A it follows that there exists an element vy11 ;,,, # 0

in vector vi41. Then vector ej, , satisfying the condition (26) can be chosen.
Now we have ISk41 = {j1,...,Jk+1}. After n steps of the process set of indices

1S, ={ji,...,jn} is obtained. It is a permutation of the elements 1,...,n. O

Corollary 3. The structure of the matrices Hyy1,k = 1,...,n generated using
the pivoting algorithm is, after interchanges of its rows and columns by the index
set 1Sy, the same as the structure described in the Theorem 4.

Proof: We can proceed by induction again. For ¢ = 1, as we can see from (25),
the statement is true . If the validity of the statement is assumed up to the index
k — 1 then the jp-th row is zeroed and new elements arise in the jz-th column
except for the row positions j1,..., 5k in Hpy1. If jp —th row and jip — th column
move to the k-th position in Hj 41, respectively, the known structure is obtained.Od

Remark. The numerical pretension of the pivoting algorithm is the same as in
the ABS - LU algorithm. Authors in [1] and [2] and more exactly in [9] proved
that n3/34O(n?) multiplications and the same number of additions are needed to
solve the system (1) by the ABS — LU algorithm, and that it is the same pretension
as in the classic LU algorithm.

Remark. It is not very difficult to verify that the last n—i+1 rows of AH} contain
the same elements as the rows of A after (i — 1) steps of the Gauss elimination
with the column pivotization.

6. Numerical pretension of algorithms.

The Rissanen algorithm for the solution of transformation (17) in the case when
A is the Hankel matrix in the section 3 has been introduced. Rissanen in [10] has
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proved that matrices S and @ can be determined by the order of n? arithmetic
operations. His estimate of the operations is:

Z (2k — 1) +2n Z (ip41 — ip + 2),

keEK, keK2

where K is a set of the row-indices k for which iy 41 < ip, and K2 1s a set of the
remaining ones. There are no more than 3n(n — 1) multiplications and the same
amount of additions.

The calculation of Sb in (18) takes n(n + 1)/2 multiplications and n(n — 1)/2
additions. The same amount of operations is needed for the solution of (18). Using
the vectors s;,4 = 1,...,n as search vectors in the ABS algorithm (as it has been
described in the section 4) and the formula (14) solution of system (1) with the
Hankel matrix takes n? multiplications, n(n + 1)/2 additions and n divisions.

Table 1 compares the number of operations of the single algorithms with the
hybrid algorithm described above. The numerical tests have been performed using
the Hankel system with a strongly nonsingular matrix. It is the most difficult case
for the Rissanen algorithm from the numerical point of view.

TaBLE 1
ABS - LU Rissanen Hybrid
additions n3/3 4n? 7/2n?
multiplications-divisions n3/3 4n? 4n?

In section b the modified choice of parameters has been introduced. This option
has some pivoting quality and does not require the principal minors of A to be
non-zero except detA.

Series of systems (1) with strongly nonsingular matrices have been solved via
the ABS — LU algorithm [with the parameter option (12)] and via the pivoting
algorithm [with the parameter option (24)] in order to obtain comparable results.
The elements of A are randomly defined integers in the interval [—100, 100] and
the elements of the exact solution 1 are randomly defined integers in the interval
[-50,50]. The right-hand side b is defined by computing Azt. Results in the
next table are obtained testing 1000 systems of dimension between n = 10 and
n = 1000. Minimum values of the relative error:

P
¥ ]

contain the table:



178 GABRIELA KALNOVA

TABLE 2

dimension  ABS - LU  pivoting dimension  ABS - LU  pivoting

10 .1003E-14  .5310E-15 100 A4966E-13  .3457E-13
20 4748E-14  4442F-14 200 9379E-13  .8862E-13
30 .1085E-13  .5886E-14 300 AB78E-12  1295E-12
40 A110E-13  .1175E-13 400 A639E-12 1919E-12
50 1644E-13  .1626E-13 500 2366E-12  .2217E-12
60 2198E-13  .1866E-13 600 2079E-12  .2550E-12
70 2440E-13  .1790E-13 700 J713E-12 .2800E-12
80 2496E-13  .2958E-13 800 4095E-12  .3341E-12
90 S889E-13  .2138E-13 900 A4078E-12  .4339E-12

1000 4601E-12  .4404E-12

We solve series of the systems (1) with ill-conditioned randomly defined A
(warning from DLSARG in fortran library IMSL, condition numbers 1.E+15 —
1.E420). Minimum values of the relative error of test process are displayed in

Table 3:

TABLE 3
dimension ABS - LU pivoting ABS — LU
10 AT8E-11 264E-11
20 .366E-09 206E-11
30 129E-09 .256E-11
40 H41E-09 H64E-11
50 .260E-09 436E-11
60 .103E-08 B4TE-11
70 .648E-08 201E-10
80 .T91E-09 906E-11
90 .873E-09 J149E-10
100 .304E-08 116E-10
120 426 E-08 441E-10
140 .Hb8TE-08 242E-10

Finally linear systems with matrices A,, € R™" of the form

1 0 01
-1 1 01
Ada= 0 1
1 -1 =1 1

have been solved. The growth factor i1s value which considerable affects on precision
of the result of (1) with such matrix.
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TABLE 4
dimension ABS - LU pivoting ABS — LU
50 0 0
55 .1348E+00 4334E-15
60 .2480E+00 .2237E-15
70 A396E+00 .3278E-15
80 DATTE+00 .3696E-15
90 .6021E+00 4412E-15
100 .6472E+00 4537E-15
200 .8388E+00 .9909E-15
7. Conclusion.

The hybrid algorithm does not afford more accurate results than the ABS —

LU or the Rissanen algorithms. However, this algorithm has two advantages in
comparison with these two algorithms: 1) it uses smaller amount of numerical

operations and ii) it does not require the strong nonsingularity of A.

From the results in Table 3 and Table 4 we can conclude that the pivoting

algorithm demonstrates an improvement of the accuracy of the solution. There is

the next possibility to modify this algorithm. Its combination with a row pivoting
process can lead to the complete pivotization which is well-known in the Gauss
elimination.
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