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LIE ALGEBROIDS AND MECHANICS

PAULETTE LIBERMANN

ABSTRACT. We give a formulation of certain types of mechanical systems using the
structure of groupoid of the tangent and cotangent bundles to the configuration
manifold M ; the set of units is the zero section identified with the manifold M. We
study the Legendre transformation on Lie algebroids.

0. INTRODUCTION

The purpose of this paper is not to prove new results but to investigate certain
elementary tools utilized in Analytical Mechanics, mainly in C. Marle’s paper [M]
and in A. Weinstein’s paper [W]. Some ideas are suggested by the papers of P.
Dazord [D] and I. Vaisman [V].

The motion of a point in a Euclidian space can be described by the solution of
the Newton equation

dz

a0
where % represents the acceleration and F' the force; with suitable unities we
may suppose that m = 1.

When studying more general mechanical systems (especially constrained me-
chanical systems) it is more difficult to define the acceleration and the forces. All
authors (see for instance [A], [A.M], [G], [H], [S]) do not agree on the definitions.
For instance the constraint force is a vector field or a Pfaffian form; there 1s also
an ambiguity about the origin of vectors and covectors.

To unify the terminology we have used the groupoid structure of the bundles
TM and T*M. Each fiber is endowed with an affine structure. The set of units
is the zero section identified with the manifold M. The Lie algebroid of these
groupoids is the vertical bundle along the zero section. We distinguish vectors and
covectors whose origin lies in the zero section from elements whose origin lies in

the fibers (called lifted elements).
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We point out the importance of semi-basic forms, notion introduced by G. Reeb
and developed in [G] and [L.M]. On the cotangent bundle 7% M (or on any vector
bundle endowed with a symplectic structure such that the fibers are lagrangian
submanifolds, for instance the tangent bundle when there exists a Legendre trans-
formation TM — T*M), the symplectic duality carries the vertical vector fields
onto the semi-basic 1-forms. On the other side the difference of two vector fields
on T'M defining second order differential equations is a vertical vector field. We
remark that a section of the vector bundle T* M x5 T*M — T M can be inter-
preted either as a vertical vector field or as a semi-basic 1-form, which explains
the ambiguity defining the constraint force field.

Following [M], we make use of the Lagrange differential introduced by W. Tul-
czyjew [T] and generalized by many authors, in particular I. Kolaf [Ko].

We investigate the Legendre transformation for Lie algebroids as was initiated
by A. Weinstein [W]; we study in particular the Lie algebroid J T'M and the
Lie algebroid of a symplectic groupoid but we do not tackle the theory of Lie
bialgebroids.

All manifolds and mapping are supposed to be smooth i.e. C°°. For any manifold
W, the projections of the tangent bundle TW and cotangent bundle T*W onto
W are denoted respectively by p and q.

1. SOME FACTS ABOUT LIE ALGEBROIDS

A vector bundle 7 : A — M over a n-dimensional manifold M is a Lie algebroid
if it satisfies the following properties:

a) the vector bundle is equipped with a Lie algebra structure [, ] on its space
of sections.

b) there exists a bundle map ¢ : A — TM (called the anchor map) which induces
a Lie algebra homomorphism (also denoted g) from sections of A to vector fields
on M.

¢) for any smooth function f on M and any pair (£,7) of sections of A, the
following identity is satisfied

(1) [f&,n] = fI& n] — (e(n) f)E .

We consider adapted local coordinates (x ,..., 2" A ..., A7) on A, where the
z¥’s are local coordinates on M, the A’s are linear coordinates on the fibers,
associated with a basis & of sections of the Lie algebroid. Then the bracket and
anchor map may be expressed

o) (6,61 = ki
2
o&) = ai —ai]»

where the cf]» and a;; are smooth functions on M.
This notion is due to J. Pradines [P] who has proved that with any Lie groupoid

is attached a Lie algebroid as follows (see [L ]). Let =l be a Lie groupoid
g
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with base T' (the set of units). An infinitesimal displacement in the sense of C.
Ehresmann [E] is a vector tangent to a a-fiber, with origin at w € T' . The set of all
infinitesimal displacements is a vector bundle A(T'). According to J. Pradines [P],
any local section U C T' — A(T') extends to a vector field tangent to the a-fibers
and invariant under the right translations. It results that the sheaf of germs of
section of A(T') is a Lie algebra sheaf and hence the vector bundle A(T') — T s
a Lie algebroid with anchor map T3 : A(T') — TT . In our previous papers A(T')
was written dep{T". For more details see for instance [L ], [A.D], [W].

When T is a Lie group, A(T) is its Lie algebra and we recover the usual notions.

The problem of integrating Lie algebroids i.e. of finding a Lie groupoid whose
Lie algebroid is given is not always possible.

2. EXAMPLES OF LIE ALGEBROIDS

1°) The tangent bundle p : TM — M is a Lie algebroid with ¢ = identity of
TM

2°) Any integrable subbundle of T'M is a Lie algebroid with the inclusion as
anchor map and the induced bracket

3°) Let P(M,G) be a G-principal bundle. C. Ehresmann has associated to P a
groupoid called now gauge groupoid ®; this groupoid is the quotient ® of P x P by
the diagonal action of G. We have proved in [L ], [, ], [L ] that A(®) is isomorphic
to TP/G, the vector bundle over M of all tangent vectors to P mod. the right
translations under the action of G. So TP/G is endowed with a Lie algebroid
structure whose anchor map is the projection TP/G — TM.

In particular when P is a group (so M = P/ is a homogeneous space), ®
is diffeomorphic to P x P/G and A(®) is diffecomorphic to the trivial bundle
T.P x P/G. We recover the “infinitesimal displacements” of the method of moving
frames. If P is the affine euclidian group, then T, P = SO(p) & RP; an infinitesimal
displacement is the sum of a translation and an infinitesimal rotation.

4°) When the principal bundle over M is the frame bundle H(M, GL(n, }R)), we
proved in [L ], [L ], [L ] that the vector bundle TH/GL(n,R) — M is isomorphic
to J TM — M, where J TM is the set of 1-jets of sections of the tangent bundle
TM — M. This isomorphism induces a Lie algebroid structure an J TM — M,
the anchor map being the natural projection J TM — TM.

This property extends to J,TM , isomorphic to TH?/L%, when we consider the
q-jets.

3. THE DUAL OF A LIE ALGEBROID

P. Dazord and D. Sondaz [D.S] have proved the following theorem: Given a
vector bundle A — M endowed with a Lie algebroid structure, its dual A* — M
is endowed with a homogeneous Poisson structure i.e. £L(Z)A = —A where 7 is
the dilations vector field on A* and A is the Poisson bivector field. Conversely if
A* is endowed with a homogeneous Poisson structure, then A is endowed with a
Lie algebroid structure.
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This theorem generalizes two situations: if M is a point, then A = g (Lie
algebra). We recover the Lie-Poisson structure on g*. If A = T M, we obtain the
natural symplectic structure of 7% M.

We shall explain the first part of the theorem following the paper by A. Wein-
stein [W]. As the differentials of the functions that are affine on each fiber span
the cotangent space at each points of A*, the Poisson bracket is known if we know
the Poisson bracket for any pair of affine functions on the fibers. The functions
constant on the fibers are the pullbacks of functions on M while the functions
linear on fibers are identified with sections of A. Hence if f and ¢ are functions on
M, &, n are sections of A, we get

Using local coordinates (# ,...,2", pu ,..., ") on A* corresponding to adapted
local coordinates (z ,...,2", A ,...,A") on A, as in section 1, we may write

(4) {0y =0 {p W= it {o W} =ay

In the case of an integrable subbundle of T'M, the dual A* is the cotangent
bundle along the leaves of the corresponding foliation. When A is the gauge Lie
algebroid identified to TP/, then A* is T* P/(; its Poisson structure is induced
by the symplectic structure on 7™ P.

We have to notice that J 7% M is not the dual of J T'M in a natural way.

4. THE LIE ALGEBROID OF A VECTOR BUNDLE

1°) Let # : E — M and # : E — M be vector bundles over the same
manifold M ; then the fiber product £ x 3 F is defined by

E xy E I{(l‘,l‘)EE x B ; ﬂ'(a:):ﬂ'(x)}.

This fiber product can be considered as a vector bundle in 3 different ways

a) this product is a vector bundle over the base M and EF xj3 F may be
written £ @ E .

b) the product is a vector bundle over E ; then £ x3r E' may be written #* F .

¢) the product is a vector bundle over E ; then E x 3y E may be written #* F .

Let # : B — M be a vector bundle and let p be the projection T'F — E. Then
there exists a surjective map ® : TE — E x3r T'M defined by

P(z) = (p(z), Tﬂ'(z))

This map ® may be considered as a morphism of vector bundles over the base F;
then its kernel is the vertical bundle VE = ker T'm

The set B(E) = {z € TE;p(z) = 0} is the restriction of T'E to the zero section
Op of E.

The set A(F) = {z € TE;®(z) = (0,0)} is the restriction of VE to 0.
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2°) The zero section Ops of the vector bundle m : B — M may be identified
with M. Each fiber E; = 7~ () may be considered as an affine space with a
distinguished element 0, € 037. We remark that the tangent bundle TFE, is the
inverse image of E; by the projection VE — FE. In particular T _E, = VE| _ (the
set of all vertical tangent vectors to E with origin 0;).

For v € E,, the translation 7, is the map F, — FE, defined by v' — v’ + v;
in particular 7,(0;) = v and T'r, maps T _ F, onto T, Fy; so we get the bijection
Ay 1 By x T By — TE, defined by Ay (v, w) = T'r,(w); the inverse map (A;)~
TEy, — By xT _Ej is defined by y — (v, w) with

v=ply), w=T1_y(y).

We deduce the map
A Exy VE|Oy — VE

defined by A(v,w) =T, (w) forallz € M, v € Ey, w e VE| _.

We recover the map A introduced by C. Marle [M]. The vector A(v,w) is the
vertical lift of w with respect to v, in the terminology of Abraham-Marsden [A.M].

3°) The addition in the fibers of 7 : B — M defines a Lie groupoid structure
on F for which &« = § = 7 and the set of units is Opy. So the corresponding
Lie algebroid is the vector bundle V E|0p;. Tt is why this vector bundle has been
denoted by A(F) in the first part of the section.

We could identify A(FE) with E but in the case of the tangent bundle ' = T'M,
we shall have to distinguish the two vector bundles.

We remark that the anchor map from A(F) to TM is the zero map; so the
bracket of any pair of sections of A(F) vanishes and the Poisson tensor A on the

dual A*(E) is null.

5. THE CASE OF THE TANGENT BUNDLE T'M

Let T' M be the set of all 2-velocities on M 1.e. the set of 2-jets from R to M,
with source 0 € R.

We know that 7' M is a submanifold of TTM (see [L.M]); a tangent vector to
T'M which is a 2-velocity will be said to be holonomic.

The submanifold 7' M is defined by

(5) T M={v eTTM;Tp(v )=p(v)}.

So the projection @w : T' M — T'M which associated a 1-jet to any 2-jet 1s the
restriction to T M of both maps Tp and p. Thus @™ (0py) is the kernel of p and
Tp; according to the first part of section 4, it is the vector bundle VT M |0y i.e.
the Lie algebroid A(T'M). In [L.M], the bundle @™ (037) was denoted by & M.

Proposition. The Lie algebroid A(TM) is a vector bundle isomorphic to T M,
with the same transition functions but the action of R onto A(T'M) considered as
a subspace of T' M is different from the action of R on T'M .
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Proof. Let (z ,...,2"), (¢ ,...,u") be local coordinates associated with two
charts and F' = (F ..., F'™) be the change of coordinates. Then

du? or? dx]

e =2l

d ul o F da dx® OFtd xI

dt =2 e dwi Oxk dt e |f T2 5w :

da d ul ortd x]

gl =0, then T, _Zﬁxf st

Moreover by a change of parameter s = % (where @ # 0 is a constant), we obtain
d2ul —a d2 2
ds? s Tdiz

t

Corollary. The bundle w : T' M — T'M is an affine bundle whose associated
vector bundle is VT M = TM x 3 A(TM).

Proof. Let v and ¢’ be holonomic vectors tangent to TM at v; we may consider
their difference w = v —¢' . As p(v ) = p(v' ) we deduce Tp(v ) = Tp(v' );
hence v — v’ is vertical. Conversely given v holonomic and w vertical, v — w
is holonomic.

A second order differential equation is a vector field X : TM — TTM whose
values are holonomic. From the corollary we deduce that if two vector fields on
T'M define second order differential equations, their difference is a vertical vector
field.

Given a second order differential equation X : TM — T M, with every 2-
velocity v € T' M 1s associated the vertical vector w defined by the relation
w =v — Xw(v ); contrary to what is written in [L.M], w does not belong to
A(TM) = & M but the transform of w by the translation T7_, (where v =
w(v )) belongs to A(TM); this vector T7_,(w ) will be called the acceleration of
v . The vertical vector w could be called the lifted acceleration.

This notion of acceleration is not intrinsic; it depends upon the choice of the
second order differential equation X. So T'r_, (w ) could be called the acceleration
of v with respect of X.

For any differentiable curve v : I C R — M, its lift to T" M defines a curve
§: 1 — A(TM) called the field of accelerations. A solution of X is a curve with
zero acceleration. For instance if X is the spray attached with a linear connection,
its solutions are the geodesics of the connection.

2

. . . 2,1
In local coordinates (z°,#*), the components of the acceleration are —ddﬁ —

> F]k ddxt] d;: . The acceleration is the covariant derivative of the velocity.

6. THE CASE OF THE COTANGENT BUNDLE 1™ M

We recall (see [L.M]) that given a vector bundle 7 : & — M a semi-basic form
on F is a differential 1 — form 1 on E satisfying one of the equivalent properties
a) n(X) = 0 for any vertical vector field X on F
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b) there exists a unique morphism f : E'— T* M such that for any y € F, then
ny = Tyw(f(y))

¢) 1 is a section of the vector bundle F xp T*M — E.
We have proved that n = f*8, where 8 1s the Liouville form on T* M. Conversely
for any morphism ¢ : & — T* M, the form ¢*f is semi-basic.

As the restriction of 7 to the zero section 037 is the identity map, for any
y € Oar, we obtain 1, = f(y)i.e. the restriction of  to O is a form on M.

By means of adapted local coordinates on E, the semi-basic form n may be

written
n

n:Zai(l‘ oo xy YR det
i

If 6 is written locally
0= pide’,

the morphism f is expressed by
Dbi Iai(l‘ a"'a$nay a"'ayk)'

Along Opr, 7 is written 9|0y = >°F  a;(z ,...,2",0...0)dz".

If we consider the bundle ¢ : T"M — M, the form 6 is semi-basic, i1ts associ-
ated morphism is the identity map of 7" M. In [L.M], # was defined utilizing this
property.

As the vertical fibration is lagrangian, for any pair (X,Y") of vertical tangent
vector fields on 7% M, the relation df(X,Y) = 0 holds. Using property (a) of the
semi-basic forms, we deduce

Proposition. On T*M, the symplectic duality X — —i(X)df induces a bijec-
tion between vertical vector fields and semi-basic forms; in particular this duality
transforms elements of A(T* M) into elements of T* M . This natural isomorphism
permits to identity A(T* M) and T*M.

Corollary. A section of the bundle T* M Xz T*M — T* M may be interpreted
either as a vertical vector field or as a semi-basic form.

In local coordinates (x ,...,2",p ,...,py) such a section can be written
ToXi2-or 7 X;da', where each X; is a function of (z ,...,2",p ,...,pn).
7 ap 7

Remarks. 1) Using local coordinates we can show that 7*M is the dual of
A(TM). Let v : T CR — M and g : U C M — R (where U is an open sub-

L. 2 2,1
set containing y(1I)). If %‘t =0, then 43(go7) . %dd% .

D Letm : F — Mand 7 : E — M be vector bundles and F' : F — F
be a (non necessarly linear) morphism i.e. F' is a map such that # = 7 o F.
If n is a semi-basic form on £ | then = F*n is semi-basic; moreover at the
points y and y = F(y ), the forms  and 5 are the pullbacks of the same form
w €T*M.Indeed let f : E — T*M such that n = f*6 and f = f o F. Then

n =F*n =f0.Fory €eF weget f(y)=FfFy)=¢.
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7. THE LEGENDRE TRANSFORMATION AND THE LAGRANGIAN DIFFERENTIAL

Let L : TM — R be a smooth function (the Lagrangian). The Legendre mor-
phism £ : TM — T*M associated with L can be defined as a morphism whose
restriction L, to each fiber T, M is the differential dL, of the restriction L, of L
to Ty M. When £ is a diffeomorphism (then £ is called Legendre transformation
and L is said to be hyperregular ), the tangent bundle 7'M is endowed with a sym-
plectic form @ = L£*df (where 6 is the Liouville form on T*M); the fibers of TM
are Lagrangian submanifolds of TM. As was proved in section 6 for the cotangent
bundle, the symplectic duality induces a bijection between vertical vector fields
and semi-basic forms.

Let £ : TM — R be the energy i.e. the function &€ : i(Z)dL — L, where 7 is
the Liouville vector field. It is known that the hamiltonian vector field X¢ (i.e.
such that i(X¢)Q2 = —d€) is a second order differential equation. So for any other
second order differential equation X, the vector field X — X¢ is vertical and the
form ¢ = i(X — X¢)2 is semi-basic; this form ¢ induces a morphism f from TM
to T* M such that, for every v € TM, we have p(y) = T;ﬂ'(f(y)) The form ¢ has
been called force field by C. Godbillon [G].

By means of local coordinates (z ,...,2" & ,...,&") on TM, the integral
curves of X¢ are locally solutions of the Lagrange equations

=0, (t=1,...,n)

d(@L)_% ’

6 — ==
(6) dt \ Qz*
so if ¢ is written Y X;(2?, 27) dz®, the integral curves of X are locally solutions of
the equations

d ;0L oL CL
Bl _ — X (g 3
™ dt (81‘2) Dt Xil!, &)
(see [G]). In terms of local coordinates (z ,...,2",p ,...,py) on T*M, the mor-

phism f: TM — T*M can be written
pi = Xi(2?, &) (i=1,...,n)

These properties can be formulated as follows: the Lagrangian I and hence the
vector field X¢ being given, we associate with any 2-velocity its acceleration, as
indicated in section 5; this acceleration belongs to A(TM). When L is hyperreg-
ular, TM is endowed with a symplectic form and the symplectic duality maps
A(TM) onto T* M. We deduce a morphism from 7' M to T*M, which is called
the Lagrangian differential and denoted A(L) (see [M]). The notion of Lagrangian
differential was introduced by W. Tulczyjew [T].

8. ON CONSTRAINED MECHANICAL SYSTEMS.
LAGRANGIAN POINT OF VIEW

We shall use Marle’s definition for such a system. A constrained mechanical
system is a triple (M, L, C') where M is a manifold, I a hyperregular Lagrangian
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on T'M, and C' a submanifold of the tangent bundle TM, with the following
regularity condition: there exists a submanifold M of M such that C'is contained
in TM and the restriction p|C to C of the projection p : TM — M is a submersion
of C' onto M . The submanifold C' is called the constraint submanifold. Moreover
we assume that p|C is not a diffeomorphism.

Under these assumptions, for any # € M , Cp, = CNT,M = (p|C)” (x)is a
submanifold of T, M and hence of T, M. For any v € C}, the tangent space T,,Cy,
is the vector space ker T, (p|C). This vector space is called space of “admissible
infinitesimal virtual displacements” in [M]; in accordance with our terminology,
we shall call 1t the space of “lifted admissible infinitesimal virtual displacements”.
Then the set of all these displacements is the vertical bundle VC' = ker T(p|C);
this bundle V'C'is a vector subbundle of VT M (vertical tangent bundle to TM
restricted to C') and of T¢T'M | and also of VeT'M and TeT M.

As p|C is a surjective submersion, the vector bundle (Tep)~ (T'M ) is the (non
direct) sum

(8) (Tep)™ (TM )=TC + VeTM .

As the Lagrangian L is hyperregular, for any « € M and any v € T, M, the
second order differential D L;(v) is a symmetric non degenerate bilinear form act-
ing on T, T, M x T, T, M and inducing an isomorphism from 7, T;; M onto 1T, M.
According to [M], we shall say that L is normal on C' if moreover the quadratic
form associated with D L,(v) is positive for any v € Cy with « € M . In this
case we obtain a scalar product on VeT'M (restriction to C' of the vertical bundle
VTM).

For any v € (', we obtain
(9) T,ToM = T,Cy, & (T,C)*

where (7T, C’x)J‘ is the orthogonal of T, C, with respect of this scalar product. We
deduce the splittings

(10) VeTM =VC @ (VO)*
and
(11) (Tep)™ (TM ) =TC & (VO)*

If we consider the restriction Xg|C of the hamiltonian vector field Xg to C| this
vector field belongs to (Tep)~ (T'M ); indeed for any v € C', we have Tp(Xe(v)) =
pXe(v) = v, as X¢ defines a second order differential equation. So we get the
splitting

(12) Xg|C:XC + X’
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where X¢ is a vector field tangent to C' and X' is vertical. We deduce that X¢ is
a holonomic vector field tangent to C'.

A motion of the mechanical system is a smooth curve v : I C R — M whose
lift v inTM (ie.y (1) = Ccll—z ,) is an integral curve of the vector field Xc¢.

In terms of local coordinates (7, 27) on TM, we deduce from section 7 that
1s a solution of the second order differential system
d 0L oL -
ai5) ~ 7 = X,
where the X;’s are defined by ¢ = i(X")Q = > X; d='.

Let v = 7 (t) and 7_, the translation acting on Ty M (with z = p(v)) (see
section 4). The tangent space T, is mapped by T'r_, onto a vector subspace
Fy of A(TM)|z, which may be called in our terminology the space of “admissible
infinitesimal virtual displacements” at time 7. We get the splitting

A(TM)|. = Fy & (F,)*

where (F, )t is the transform of (T,C, )t by T'r—,.

According to formula (12) the vertical vector X'(v) is mapped by T'7—, onto
the acceleration (in the sense of section 5) of the 2-velocity j,y with respect of
the vector field Xg. Thus we obtain the following property which expresses the
principle of d’Alembert-Lagrange: for any ¢, the acceleration of j, ywith respect
of the vector field Xg¢ is orthogonal to all the admissible infinitesimal virtual
displacements at time t.

The constraint is said to be perfect.

The semi-basic form ¢ = i(X')Q on TM induces a morphism f: TM — T*M
such that ¢ = f*@ (as seen in section 6) and the Lagrangian differential A(L) of
Jiv (in the sense of section 7) is an element f(¢) of T* M, called the constraint
force at time ¢.

Thus the relation between the acceleration and the constraint force (which
generalizes Newton equation) is given by the symplectic duality.

9. ON CONSTRAINED MECHANICAL SYSTEMS.
HAMILTONIAN POINT OF VIEW

We consider the constrained mechanical system (M, L, C) where L is hyper-
regular on T'M and normal on C'. Let D be the image of C' by the correspond-
ing Legendre transformation £. The linear isomorphism 7L maps VI'M onto
VT*M and VT M onto VpT™* M; in particular VC' is mapped onto VD. We set

w=TL((Ve)).

We deduce from section 8 the splittings
(14) VpI"M =VDa& W
(15) (Tpq)~ (TM )=TDo&W
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We shall show that TV is the “projection bundle” of [M]; thus we recover C. Marle’s
results. For this purpose we shall study the links between the bilinear form D L, (v)
(with v € C, z = p(v)) and TL|T, T, M.

By the translation 7_, along the fiber T, M, the form D L,(v) is transformed
into a bilinear form ®, on A(TM)|, x A(TM)|, inducing an isomorphism ®°
of A(TM)|; onto its dual T; M. The vector subspace F, of A(TM)|; (image of
T,Cy by T1_,) is mapped by ® onto a vector subspace F, of T:M and (F,)* is
mapped onto the annihilator (F,)° of Fy, into Tj; M.

Now let us consider the translation 7, , along the fiber 7y M. The image by

Tty , of E is TL(T, Cy); the image of (F,)® is TL ((Tvi)J‘) =W, .

This property of W corresponds to the definition of W in [M], according to the
second part of section 4. Remark that W can be defined when L is not normal;
W » is the image of (Fy)° by Tz ., .

The transform by £ of the vector field X¢|C' is the restriction Yg|D of the
hamiltonian vector field, where H =& - L~ . As X¢|C belongs to (Tep)™ (TM ),
the vector field Y |D belongs to (Tpq)~ (TM ).

From formula (15), we deduce the splitting

Yu|D =Yp + Yw,

where Yp is tangent to D and Yw is a section of W; Yy is the vertical vector
field, transform of X’ by L.

The semi-basic form ¥ = (Y ) df is the form (L~ )*¢.

According to remark 2 of section 6, at the points v and £(v) the forms ¢ and
1 are the pullbacks of the same element of T;F M.

This explains why the constrained Lagrange equations (7) and the constrained
Hamilton’s equations

dat OH dp; OH

Eak PR FRR RO

are equivalent. Here we have identified Yy and V.

10. THE LEGENDRE TRANSFORMATION ON LIE ALGEBROIDS

1°) Let # : E — M be a vector bundle. Every vector field ¥ on F induces a
map ¢ = T'n-Y from E to TM.

For any z € M and any y € 7~ (), the vector Y (y) which belongs to T, E is
mapped by T, 7 onto a vector v belonging to 7T, M; hence pog = 7w and g is a
morphism.

Consider now the map Tg : TE — TTM; the linear map T,g carries Y (y)
onto w € T,TM; so p(Tyg o Y)(y) = v. On the other side Tp(Tyg o Y)(y) =
Ty(pog)Y(y) =T,m(Y(y)) = v. So Tg(Y(y)) belongs to T M. We deduce

Proposition. Let 7 : E — M be a vector bundle and Y be a vector field on
E. Then the mapping ¢ = Twn -Y is a morphism from FE to T'M such that, for
any y € I, the image of Y(y) by Tg is a holonomic tangent vector to TM i.e. a
2-velocity.



158 PAULETTE LIBERMANN

Corollary. If moreover there exists on g(F) a vector field X such that the pair
(X,Y) is g-related ie. T, (Y (y)) = X(g(y)) for any y € E, then the vector field
X defines a second order differential equation.

Definition. If there is given a morphism p : E — T'M , any vector field Y on F
such that ¢ = T'w - Y coincides with p, will be called admissible.

The notion of admissible vector field has been introduced by A.Weistein [W] but,
contrary to this author, we keep the notion of second order differential equation
for holonomic vector fields on T'M .

In the special case of the Legendre transformation £ : TM — T M induced by
a hyperregular Lagrangian function L : TM — R, we have proved in [L.M], that
the hamiltonian vector filed Yz on T*M is admissible for the mapping £~ and
the image of Y by £~ is the holonomic vector field X¢, where £ = i(Z)dL — L
is the energy and H =& o L™ .

2°) As for the tangent bundle, a smooth function L on the Lie algebroid = :
A — M defines a morphism £ : A — A* (see [L.M]); the restriction £, of £ to
the fiber A, = #~ (#) is defined by the differential of L, (restriction of L to Ay).
If £ is a diffeomorphism, then the Poisson structure on A* is carried by £~ onto
a Poisson structure on A called the Lagrange Poisson structure by A. Weinstein

With the notation of section 3, the Legendre transformation may be written

Hence the brackets relations for the Lagrange Poisson structure are

: oL oL 0L :
=0 g v = N e 1e ’am}_“ﬂ'

Weinstein’s result may be formulated as follows: the hamiltonian vector field X¢
associated with the energy & = i(Z)dL — L by means of the Lagrange Poisson
structure is admissible with respect of the anchor map p : A — T'M i.e. the map
Tw o X¢ is the anchor map. The vector field X 4 is called the lagrangian vector
field.

Using a trivialization U x FE of #= (U) (where U is an open set of M and
E a vector space), we write & = YN gfj — L and Xg = > oy 6‘2, + > 5 6‘2],
then Tr(X¢) = Z% 507 with oy = X¢ cxt = {2 &) Follovvmg Weinstein’s
computations, we obtain {z!, £} = S {z*, a)\]}/\] + S {2t MY 2E — {2f L}, As
{2, 2%} =0, we get {2, &} =S {2, a)\]}/\] Stajiiri = p(>o N &) -2t

From this property, it can be deduced that the projection onto M of any integral
curve of X¢ lies in a leaf of the foliation of M determined by the image of p in
TM.

Remark. The hamiltonian vector field Yz on A* (with H = £oL™ ) is admissible
for the map p’ = po L~ from A* to T'M. Indeed let 7 be the projection A* — M;
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then 7 o £L = 7. As Yy is the transform of Xg by L, it can be checked that
TroYy =Tno Xe.

The integral curves of Xg and Yy have the same projection on M. So these
projections lie in the projections of the symplectic leaves of the Poisson structure

on A*.

Examples a) If A is a completely integrable subbundle of TM, we are in the
case of a mechanical system with holonomic constraints. In this case the motion
t — v(t) of the system is determined by the restriction of the Lagrangian L to the
subbundle A. Then H is constant on the lift of v to A4*. We recover a result of

b) Let P be a principal G-bundle. The pullback to TP of a Lagrangian L on
the gauge Lie algebroid TP/G is a G-invariant function. The corresponding vector
field on T'P is projectable onto a vector field on TP/G which is the vector field
obtained by the above procedure.

11. THE CASE OF THE ALGEBROID J T'M

Consider a vector bundle 7 : E — M and the bundle 7 : J F — M. For any
local section s : U C M — E (where U 3 #), the jet j s can be identified with
Ty » W where W = s(U); it can be deduced that (J E),, set of all 1-jets of sections
of E with target y € I can be identified with the set of all vector subspaces of T, F/
which are complementary to the vertical subspace V, E. Consequently 8 : J £ — E
is an affine bundle. A linear connection C on E i.e. a linear lifting C : ¥ — J F
induces a splitting TE = VE @ HE, where H,E = C(y).

Consider now the tangent bundle p : TM — M. A hyperregular Lagrangian
L on T'M induces a Legendre transformation £ : TM — T*M which can be
prolongated to a diffecomorphism £ :J TM — J T*M . Indeed any local section
s : U — TM is transformed into a section £ o s of T*M; passing to the jets we
obtain £ . From what we have remarked just above, £  1is the restriction of T'L
to the vectors tangent to T'M which are transverse to the vertical bundle VT'M.
By means of £ | the structure of Lie algebroid is carried on J 7% M with the
anchor map fo (L )™ .

On the other side, we have shown in [L.M] that J T*M is endowed with a
2-form n = [*df — ©, where 6 is the Liouville 1-form on T* M, © the pullback
of the Liouville 2-form on A T*M by the projection J T*M — A T*M. The
characteristic property of 5 is the following; a local section ¢ : U — J T* M is the
jet j w of a Pfaffian form w on M if and only if ¢*n = 0. The form (£ )*n has a
similar property on J TM.

Now if we consider a linear connection C : T'— J T, it induces a linear connec-
tion C : T* — J T* and splittings

TTM =VITM$HTM, TT"M =VT*M & HT*M .

A hyperregular Lagrangian L on T'M inducing a Legendre transformation £ :
TM — T*M could be called adapted to C if the image of HT'M by T'Lis HI*M.
It would be interesting to study the following problems.
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a) C being given, find conditions to the existence of an adapted L

b) C being given, find a hyperregular function L such that the geodesics of
the connection are the projection on M of the integral curves of the lagrangian
vector field X¢. This problem is a particular case of one studied by I. Vaisman
[V]: given a vector field X on TM defining a second order differential equation,
study the existence and generality of the Poisson structures on T'M for which X
is a lagrangian vector field.

¢) find relations between problem a) and problem b).

It is to notice that the connection C : T — J T induces a linear lifting T" —
THI|GL(n,R), hence a principal connection on H (see [E]).

12. THE CASE OF THE LIE ALGEBROID OF A SYMPLECTIC GROUPOID

A. Weinstein [W] has put the question whether the formulation due to J. Klein
[K]] (see also [G]) which produces the lagrangian vector field on the tangent bundle
without using the cotangent bundle can be extended to general Lie algebroids.

We recall that J. Klein has introduced an endomorphism v on TT M, whose
image is VI'M and such that v = 0. With v is associated a differential d, such
that dy f = 5 % dz?, for any function for 7M. This endomorphism v may be
defined as v = w o J (see [L.M]) where w@ is the projection TTM — TTM/VTM
and J the isomorphism TTM/VTM — VTM. Then given a Lagrangian L on
T M, the 2-form dd, L is equal to the form £* df defined in section 7.

In general the isomorphism .J does not exist for an algebroid A; so these methods
do no work for general Lie algebroids when the dimension of the fibers is different
from the dimension of the base.

We shall investigate the case of the Lie algebroid A(T'), where T' is a symplec-
tic groupoid which may be defined as follows when the a-fibers and G-fibers are

connected (see [ ]). A symplectic groupoid F%F is a groupoid endowed with a

8
symplectic from such that  1°) the base T' is a lagrangian submanifold of ' 2°)
the a-foliation and the g-foliation are symplectically orthogonal.

Then the fibers and the base have the same dimension and the base ' is
endowed with a Poisson structure.

It is remarked in [A.D] that the symplectic duality  defines an isomorphism
from A"(T') onto 7T inducing a homogeneous Poisson structure on 7T and a
Lie algebroid structure on 7*I" . The authors have proved that this Lie algebroid
structure on T*T coincides with that defined by the bracket [df,dg] = d{f, g},
where { } is the Poisson bracket on T' . The anchor map p' : T*T — TT is the
map defined by the Poisson bivector field A on T' . This map p’ is also the map
pofl where pis the anchor map A(T') — TT .

Given a hyperregular Lagrangian L on A(T) (with Legendre transformation
L AT) — A*(T'), as in section 10) we obtain a lagrangian vector field X¢g on
& which is admissible with respect of p. By the isomorphism 7 : A(T) — 7T
(with T =2 o L), we get a hyperregular Lagrangian L=LoZ~ onTl and
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a lagrangian vector field Xz on TT | transform of X¢ by Z, associated with the
Poisson structure on 7T .

On the other side the function I defines a symplectic form ddvf on TT and
hence a vector field Yz such that i(Yg)ddvf = —dE.

In general the Poisson structure on 7T which was defined above and the sym-
plectic structure do not coincide. So even in this case, it is not possible to use
directly J. Klein’s formalism. When I' = M x M with M a symplectic manifold,
then A(T) is the tangent bundle along the diagonal of M x M and it can be
identified with T'M .

The Lie algebroid of a symplectic groupoid i1s an example of Lie bialgebroid.
We shall not tackle this theory which was initiated by K. Mackenzie and P. Xu
[M.X]. See also the papers by Z.L.Liu, A. Weinstein, P. Xu [L.W.X] and by Y.
Kosmann-Schwarzbach [K ], [K ].

A Lie bialgebroid A satisfying, among others, the property that both 4 and A*
have a Lie algebroid structure, the following question arises: under which condi-
tions a Legendre transformation £ on a Lie algebroid A induces a Lie bialgebroid
structure on A.
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