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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 137 { 145LOCAL ISOMETRY CLASSES OF RIEMANNIAN3-MANIFOLDS WITH CONSTANT RICCIEIGENVALUES �1 = �2 6= �3 > 0Old�rich Kowalski and Masami SekizawaAbstract. We prove that the all local isometry classes as in the title canbe parametrized by two arbitrary functions of one variable. This result isextended also for a special case of nonconstant Ricci eigenvalues.1. IntroductionIn [3], the classi�cation of Riemannian 3-manifolds (M; g) with constant Riccieigenvalues �1 = �2 6= �3 6= 0 was done. For �3 < 0, Theorem 6.2 from [3] saysthat the local isometry classes of such Riemannian manifolds are parametrized bytwo arbitrary functions of one variable. In [4], the same result was extended tothe case when �1 = �2 is not constant on the whole (M; g) but only along thetrajectories of the one-dimensional eigenspaces of the Ricci eigenvalue �3 (whichare called \principal geodesics" in the sequel), and where the scalar curvature isprescribed as a function with the same property (see [4], Theorem 5.5).In the case �3 > 0 the situation is more complicated. In [3], Theorem 8.1,the author only proved the existence of a family of solutions whose local isometryclasses depend on two arbitrary functions of one variable. Recently, this result wasimproved by P.Bueken [1] who showed that, also for �3 > 0, the local isometryclasses of all solutions depend on two arbitrary functions of one variable. Theproof in [1] based on the concept of \shear tensor" is short and elegant; yet it doesnot seem to be completely rigorous. (In fact, P.Bueken is using the method fromthe article [5] by D.McManus devoted to the same topic, correcting at the sametime an essential error in this last paper.)The aim of this paper is to give a rigorous proof of this fact. Moreover, themethod of the shear tensor does not extend immediately to the case of a non-constant eigenvalue �1 = �2, whereas our method does.1991 Mathematics Subject Classi�cation: Primary 53C25, Secondary 53B20.Key words and phrases: Riemannian manifolds, principal Ricci curvatures, curvature homo-geneous spaces.Received April 3, 1996.This research was supported by the grant GA�CR 201/96/0227 .



138 O. KOWALSKI AND M. SEKIZAWA2. The general solution of the problemFirst of all, we summarize from [3] the basic information known about the\elliptic case" �1 = �2 6= �3 > 0.Let � be a positive constant, and let '1, '2, '3, '4 be arbitrary functions oftwo variables w and x. Then we de�ne functions a0, a1, a2, a3, b1, b2, b3, '0 andh by a1 = '2(�2 � ('4)2)� 2�'1'4�('0)2 ; a2 = '1(('4)2 � �2)� 2�'2'4�('0)2 ;(2.1) a3 = '3(�2 + ('4)2)�('0)2 ;(2.2) b1 = �'1 + '2'4�'0 ; b2 = �'2 � '1'4�'0 ; b3 = �'3'4�'0 ;(2.3) a0'0 = ��2 + ('4)2� ; '0 =p('3)2 � ('1)2 � ('2)2;(2.4) h = �2�'3'0 :(2.5)(Here the obvious condition '0 6= 0 must be satis�ed, which is the only lim-itation for the choice of the functions '1; : : : ; '4.) Further, let A, f and C befunctions of three variables w, x and y de�ned by8>>>>><>>>>>: A2 = a1 cos(2�y) + a2 sin(2�y) + a3;AC = b1 cos(2�y) + b2 sin(2�y) + b3;f2 +C2 = 1� ['1 sin(2�y) � '2 cos(2�y) + '3];Af = 1; f > 0;(2.6)and let H be a function of w and x such that H 0x = h (where H 0x indicates thepartial derivative of H with respect to the su�x x). One can check easily thatthe conditions (2.6) are compatible and determine A, f and C in a unique way.Finally, let g = (!1)2+(!2)2+(!3)2 be a Riemannian metric de�ned on a domainU in R3(w; x; y) by!1 = f dw; !2 = Adx+C dw; !3 = dy +H dw;(2.7)which is an orthonormal coframe. Then the Ricci tensor of the metric g hasconstant eigenvalues �1 = �2 6= �3 = 2�2 if and only if the following system of



LOCAL ISOMETRY CLASSES 139PDE is satis�ed: '01x � 2b1�2H + �a0 a01w � '4a0 a02w = 0;(2.8) '02x � 2b2�2H + '4a0 a01w + �a0 a02w = 0;(2.9) H 0x = �2�'3'0 ;(2.10) (A�)0w +R0x = ��1;(2.11)where R = ff 0x � C�+H�;(2.12) 8<: � = A0w � C0x �HA0y;� = 12(H0x +AC 0y � CA0y):(2.13)Moreover, all Riemannian metrics with the prescribed constant Ricci eigenvalues�1 = �2 6= �3 = 2�2 can be locally constructed in the previous way (see [3] formore details).Let us mention that the new variable y in (2.6) and (2.7) measures the arc-lengthalong the principal geodesics, and the principal geodesics satisfy the equation!1 = !2 = 0.Calculations using formulas (7.24){(7.26) in [3] for A� and for R, respectively,show that (2.11) evaluated at y = 0 takes on the form'003xx � '002xx = F ('i;H; '0iw; '0ix;H0w; '00iwx; '00iww);(2.14)where F is a real analytic function of its variables. The equation (2.14) is thenequivalent to (2.11) modulo (2.8) and (2.9).Using the same procedure as in [2], proof of Proposition 8.1, one can introducenew variables ~x = ~x(w; x), ~w = ~w(w; x) and ~y = y+ (w; x) such that all previousformulas are satis�ed in these new variables and, moreover, b1 = b2. The lastcondition implies, due to (2.3), (2.1) and (2.2),'4 = �('2 � '1)'1 + '2 ;(2.15) a1 = 2'1�
; a2 = �2'2�
; a3 = 2'3�
;(2.16)where 
 = ('1)2 + ('2)2('0)2('1 + '2)2 > 0(2.17)



140 O. KOWALSKI AND M. SEKIZAWAand b1 = b2 = ('1)2 + ('2)2'0('1 + '2) ; b3 = '3('1 � '2)'0('1 + '2) :(2.18)Now consider the PDE system formed by the equations (2.8){(2.10) and (2.14).We can apply to this system an easy modi�cation of the Cauchy-Kowalewski The-orem (see e.g. [2], Section 9). It follows that the general solution of the problem de-pends formally on �ve arbitrary functions of the variable w, namely on '1(w; x0),'2(w; x0), '3(w; x0), '03x(w; x0) and H(w; x0) around a point (w0; x0) 2 R2(w; x).(We notice here that '4 is given in terms of '1 and '2 by (2.15) and that weassume the generic case '1 + '2 6= 0.)Remark. In Proposition 7.1 of [3], the formulas corresponding to (2.1) contain amisprint (missing �'s).3. The geometric existence theorem for the elliptic caseWe give in this section the complete solution of the isometry problem in theelliptic case.Theorem 1. The local isometry classes of all Riemannian 3-manifolds with con-stant Ricci eigenvalues �1 = �2 6= �3 > 0 are parametrized by two arbitraryfunctions of one variable.Proof. Suppose that (M; g) and ( �M; �g) are two Riemannian manifolds withthe same constant Ricci eigenvalues �1 = �2 6= �3 = 2�2, and let the local expres-sion for (M; g) be given by (2.7), (2.6) and (2.16){(2.18). Suppose that the localexpression for ( �M; �g) is given by the analogous formulas. The only basic functionsare 'i, H and �'i, �H, respectively, i = 1; 2; 3.Let F : U �! �U be a local isometry between (M; g) and ( �M; �g) with thecoordinate expression�w = �w(w; x; y); �x = �x(w; x; y); �y = �y(w; x; y):(3.1)In the same way as in [3], using the geometrical meaning of the orthonormalcoframe (2.7), we obtain (denoting the induced forms F ��!i simply by �!i, i =1; 2; 3) 8><>: �!1 = cos'!1 + " sin'!2;�!2 = � sin'!1 + " cos'!2;�!3 = "0 !3; ("; "0 = �1);(3.2)i.e., (�!1)2 + (�!2)2 = (!1)2 + (!2)2; �!3 = "0 !3:(3.3)We can assume "0 = 1, the opposite case is treated similarly. We obtain from (3.2)and (2:7)3 �w = �w(w; x); �x = �x(w; x);(3.4)



LOCAL ISOMETRY CLASSES 141�y = y + �(w; x); d� = � �Hd �w +Hdw:(3.5)We shall now substitute into the �rst equation of (3.3). We get �rst(!1)2 + (!2)2 = 1� ['1 sin(2�y) � '2 cos(2�y) + '3]dw2+ 2[b1 cos(2�y) + b2 sin(2�y) + b3]dwdx(3.6) + [a1 cos(2�y) + a2 sin(2�y) + a3]dx2;(�!1)2 + (�!2)2 = 1� [ �'1 sin(2��y) � �'2 cos(2��y) + �'3]d �w2+ 2[�b1 cos(2��y) + �b2 sin(2��y) + �b3]d �wd�x(3.7) + [�a1 cos(2��y) + �a2 sin(2��y) + �a3]d�x2:In (3.6) we put y = �y � � and use the standard trigonometric formulas for devel-oping the sine and cosine of a di�erence of arguments; in (3.7) we substituted �w = �w0wdw + �w0xdx; d�x = �x0wdw + �x0xdx:(3.8)Then the equality of the right-hand sides of (3.6) and (3.7) means the equalitiesbetween three pairs of quadratic forms in dw and dx which are coe�cients of 1,sin(2��y) and cos(2��y), respectively. For each pair of quadratic forms we comparethe coe�cients of dx2, dxdw and dw2, respectively. As a result, we obtain thefollowing system of nine PDE for the functions �x = �x(w; x) and �w = �w(w; x):8>>>>><>>>>>: �a3P 2 + 2�b3PR+ 1� �'3R2 = a3;�a3Q2 + 2�b3QS + 1� �'3S2 = 1�'3;�a3PQ+ �b3(PS +QR) + 1� �'3RS = b3;(3.9) 8>>>>><>>>>>: �a2P 2 + 2�b2PR+ 1� �'1R2 = a1 sin(2��) + a2 cos(2��);�a2Q2 + 2�b2QS + 1� �'1S2 = 1� ['1 cos(2��)� '2 sin(2��)];�a2PQ+ �b2(PS + QR) + 1� �'1RS = b1 sin(2��) + b2 cos(2��);(3.10) 8>>>>><>>>>>: �a1P 2 + 2�b1PR� 1� �'2R2 = a1 cos(2��)� a2 sin(2��);�a1Q2 + 2�b1QS � 1� �'2S2 = � 1� ['1 sin(2��) + '2 cos(2��)];�a1PQ+ �b1(PS + QR)� 1� �'2RS = b1 cos(2��)� b2 sin(2��);(3.11)



142 O. KOWALSKI AND M. SEKIZAWAwhere we use the notationP = �x0x; Q = �x0w; R = �w0x; S = �w0w:(3.12)A lengthy but routine calculation shows that, under a necessary and su�cientcondition � �'3�'0�2 = �'3'0�2 ;(3.13)the square of each last equation of (3.9), (3.10) and (3.11) is equivalent to theproduct of the �rst two equations. Hence, all the last equations (3:9)3, (3:10)3 and(3:11)3 are, up to the sign, consequences of the remaining equations, and of thecondition (3.13), which can be also written in the form( �'1)2 + ( �'2)2( �'0)2 = ('1)2 + ('2)2('0)2 :(3.14)(Let us mention that (3.13) together with (2.5) means that h2 is a Riemannianinvariant, which can be seen more directly from [3] or [4].)In what follows, we can assume, without the loss of generality,'0; �'0; '3; �'3 > 0:(3.15)Now, the remaining equations (3:9)1;2, (3:10)1;2 and (3:11)1;2 can be solved withrespect to the unknowns P 2, R2 and PR; or Q2, S2 and QS, respectively, by theCramer's rule. The determinant of each system is (due to (3.13) and (3.14))D = ������������a3 2�b3 1� �'3�a2 2�b2 1� �'1�a1 2�b1 � 1� �'2����������� = �4(('1)2 + ('2)2)'3('0)3(3.16)and hence D depends only on '1, '2, '3 and is strictly negative. Further, we get8>>>>>>><>>>>>>>: P 2 = 2� �'0(�D) [(( �'1)2 + ( �'2)2)a3 + �'3( �'2L2 � �'1L1)];R2 = 4��
�'0(�D) [(( �'1)2 + ( �'2)2)a3 + �'3( �'2L1 � �'1L2)];PR = 2�
( �'1 + �'2)�D [( �'2 � �'1)a3 + �'3(L1 + L2)];(3.17)where ( L1 = a1 sin(2��) + a2 cos(2��);L2 = a1 cos(2��)� a2 sin(2��):(3.18)A routine computation using (3.13) or (3.14) implies that the equalities (3.17) arecompatible in the sense that the product of the right-hand sides of (3:17)1 and



LOCAL ISOMETRY CLASSES 143(3:17)2 is equal to the square of the right-hand side of (3:17)3. We also want toshow that the right-hand sides of (3:17)1 and (3:17)2 are always non-negative. Forthe �rst equation, the computation proceeds as follows:(( �'1)2 + ( �'2)2)a3 + �'3( �'2L2 � �'1L1)= (( �'1)2 + ( �'2)2)a3 � �'3( �'2a2 � �'1a1) sin(2��) + �'3( �'2a1 � �'1a2) cos(2��)= (2�
)[(( �'1)2 + ( �'2)2)'3 + �'3( �'2'2 � �'1'1) sin(2��)+ �'3( �'2'1 + �'1'2) cos(2��)]:Now, it can be seen easily that the function p(t) = A cos t+ B sin t with constantA, B and variable t satis�es jp(t)j � pA2 + B2. Hence we getj �'3( �'2'2 � �'1'1) sin(2��) + �'3( �'2'1 + �'1'2) cos(2��)j� �'3p(('1)2 + ('2)2)(( �'1)2 + ( �'2)2)and, on the other hand, using the identity (( �'1)2 + ( �'2)2)('3)2 = (('1)2 +('2)2))( �'3)2, we get�'3p(('1)2 + ('2)2)(( �'1)2 + ( �'2)2) = (( �'1)2 + ( �'2)2)'3:Hence it follows that the right-hand side of (3:17)1 is non-negative. The calculationfor (3:17)2 is similar.Further, we get by the Cramer's rule8>>>>>>><>>>>>>>: Q2 = 2�2 �'0(�D) �(( �'1)2 + ( �'2)2)'3 � �'3( �'1R1 + �'2R2)� ;S2 = 4�
�'0(�D) �(( �'1)2 + ( �'2)2)'3 + �'3( �'2R1 + �'1R2)� ;QS = 2�
( �'1 + �'2)�(�D) [( �'2 � �'1)'3 + �'3(R1 � R2)] ;(3.19)where ( R1 = '1 cos(2��)� '2 sin(2��);R2 = '1 sin(2��) + '2 cos(2��):(3.20)The equalities (3.19) are again compatible and the right-hand sides of (3:19)1 and(3:19)2 are always non-negative.Now, in the generic case, we can assume that the right-hand sides of (3:17)1and (3:19)2 are strictly positive. Then we can de�ne P and S as the correspondingpositive square roots and calculate R and Q from (3:17)3 and (3:19)3, respectively.



144 O. KOWALSKI AND M. SEKIZAWANotice that (3.13) and (3.14) imply (together with (2.4))8>>>>><>>>>>: �'3 =s( �'1)2 + ( �'2)2('1)2 + ('2)2 '3;�'0 =s( �'1)2 + ( �'2)2('1)2 + ('2)2 q('3)2 � ('1)2 � ('2)2;(3.21)that is, �'3 and �'0 can be expressed through �'1, �'2 and '1, '2, '3. Hence P , Q,R and S can be expressed, in a unique way, as real analytic functions of �'1, �'2,�, '1, '2 and '3. (These functions will be denoted later by the same letters.)Now, if we substitute these functions for P , Q, R and S into the last equations(3:9)3, (3:10)3 and (3:11)3, these equations will be satis�ed up to sign. But if '1,'2 and '3 are \generic", and if we put �w = w, �x = x and �'i = 'i for i = 1; 2; 3,we get P = S = 1 and Q = R = 0. Thus, if some of the equations (3:9)3-(3:11)3is, after our general substitution, satis�ed with the opposite sign, we come to acontradiction with this special case.We conclude that all equations (3.9), (3.10) and (3.11) are, in general, conse-quence of our functional expressions for P , Q, R and S. Now, due to the meaningof these quantities in (3.12), we still have to satisfy the integrability conditionsP 0w = Q0x; R0w = S0x:(3.22)We see easily that these two conditions can be written down in the form resolvedwith respect to �'01x and �'02x, respectively. We add the last partial di�erentialequation �0x = (�0w �H)RS ;(3.23)which is enforced by the second equality of (3.5).For '1, '2, '3 and H given, we obtain a system of three PDE of �rst order forthe unknown functions �'1, �'2 and � in the form where the Cauchy-Kowalewskitheorem can be applied. The general solution depends on three arbitrary functionsof the variable w. Taking any particular solution ( �'1; �'2; �), the functions �w =�w(w; x) and �x = �x(w; x) are determined by the given P , Q, R and S up toan additive constant, and �y = y + �(w; x) is also determined. Now, denoting~H = ��0xR , we get from (3.23) that ~H = H � �0wS . Hence we obtain�0x = � ~H �w0x; �0w = H � ~H �w0w;(3.24)which is equivalent to d� = � ~Hd �w+Hdw:(3.25)According to (3.5), we see ~H = �H. This shows that �A, �f , �C and �H can be deter-mined from A, f , C and H using three arbitrary functions of the variable w. In



LOCAL ISOMETRY CLASSES 145other words, each local isometry class of our family of metrics depends (geometri-cally) on three arbitrary functions of one variable w, say �'1(w; x0), �'2(w; x0) and�H(w; x0). Combining this with the existence result (�ve arbitrary functions of w!)in the previous section we have proved Theorem 1.Further, if we combine the above technique with the computations in [4], weobtain the following improvements of Theorem 7.2 and Theorem 7.3 from [4]: letus denote byM the class of all 3-dimensional Riemannian manifolds (M; g) whoseRicci eigenvalues �1, �2 and �3 satisfy the following conditions:a) �3 > 0 is a prescribed constant,b) �1 = �2 ( 6= �3) is a function which is constant along each principalgeodesics (and so is the scalar curvature of (M; g)).We haveTheorem 2. The local isometry classes of M are parametrized by one arbitraryfunction of two variables modulo one arbitrary function of one variable.Theorem 3. The local isometry classes of all (M; g) 2M with prescribed scalarcurvature are parametrized by two arbitrary functions of one variable.Obviously, if the scalar curvature is prescribed as a constant, we obtain Theo-rem 1 as a special case. References[1] P.Bueken, Three-dimensional Riemannian manifolds with constant principal Ricci curva-tures �1 = �2 6= �3, preprint, 1995, to appear in J.Math.Phys.[2] O.Kowalski, An explicit classi�cation of 3-dimensional Riemannian spaces satisfyingR(X;Y ) � R = 0, preprint, 1991, to appear in Czech Math.J.[3] O.Kowalski, A classi�cation of Riemannian 3-manifolds with constant principal Ricci cur-vatures �1 = �2 6= �3, Nagoya Math.J. 132(1993), 1-36.[4] O.Kowalski and M.Sekizawa, Riemannian 3-manifolds with c-conullity two, preprint, 1995,to appear in Bolletino U.M.I., 1996.[5] D.McManus, Riemannian three-metrics with degenerate Ricci tensor, J.Math.Phys.36(1995), 362-369.Old�rich KowalskiFaculty of Mathematics and PhysicsCharles UniversitySokolovsk�a 83186 00 Praha 8, CZECH REPUBLICe-mail: mu@karlin.mff.cuni.czMasami SekizawaTokyo Gakugei UniversityKoganei-shi Nukuikita-machi 4-1-1,Tokyo 184, JAPANe-mail: sekizawa@u-gakugei.ac.jp
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