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STANDARD HOMOGENEOUS EINSTEIN MANIFOLDS AND
DIOPHANTINE EQUATIONS

Yuril G. NIKONOROV AND EUGENE D. RobpioNov

ABSTRACT

Let ¢ and & be the Lie algebras of the compact connected Lie groups GG and H,
and let g be semisimple, ¢ = ¢1 & ... P g,, where g1, ..., g, are simple Lie algebras.
We put B(X,Y) = —tr(adXadY) for all X,V € g, and we define the standard
Riemannian metric pp on G/H as the metric obtained from B(X,Y’) under the
projection 7 : G — G/H.

We note that in [1]-[6] a classification was given of the simply connected com-
pact standard homogeneous Einstein manifolds (G/H, pp) either with a simple
transitive group of motions (G, or with a simple isotropy subgroup H.

Moreover, in the case of semisimple Lie groups G and H we have constructed
new examples of standard homogeneous Einstein manifolds in the following way
[5]

We consider the embedding

H=KXLCHx.xK)xLCKXx.xKxG =G,

where the first embedding is of the form diag x id (K is taken ¢ times) and the
second is of the form ¢d x ... x id x w, where 7 : K x L. C (G is some embedding; G,
K, L are compact connected simple Lie groups. Let gg, k, [ be the Lie algebras of
the Lie groups Gy, K, L correspondingly.

Theorem A ([5],[6]). Let (go, kB !) be a compact irreducible symmetric or com-
pact nonsymmetric strictly isotropically-irreducible pair. Then the space (G/H, pg)
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will be an Finstein manifold if and only if the Lie algebras go, k and | appear in
the list presented in Table 1, and also in the first two cases the embeddings

7 so(n) @ so(m) C so(n+m) ,
7 sp(n) @ sp(m) C sp(n +m)
must be the standard embeddings whereas in the last two they must be given by
7 sp(1) @ sp(n) C so(4n) ‘5 ® e—.—e=o0 (1 < n);

m:su(3)® ga Ces :(é—o@izo)@(o—g(@ozo).

We note that in the orthogonal and symplectic cases we have the following
nontrivial solutions of Einstein equations correspondingly [6]:

(s0) (n,m,t) = (t* =4t +6,t —2,t) (tE€N)
(sp) (n,m,t) = (25 — 1, s,25) (seN)
Table 1
Jo k l Einstein equations

so(n +m) | so(n) | so(m) | n? +({t —5)n+6—2t =
=m[m+ (n —2)(t — 1)]

sp(n+m) | sp(n) | sp(m) | 22+ (B —t)n+3 -1t =
=2m[(t—1)(n+ 1)+ m)]

so(4n) sp(n) | sp(1) The metric is Einstein
ifft=11and n =38

s g2 su(3) The metric i1s Einstein
ift =2

In this paper we find all solutions of the above Diophantine equations. Our
main result is the following one

Theorem B. Let (g0, k @ 1) be ether the pair (so(n + m), so(n) @ so(m)), or the
pair (sp(n + m), sp(n) @ sp(m)). Then the space (G/H, pp) will be an Einstein
manifold if and only if the triple (n,m,t) is contained in the list of Table 2.



Table 2

(g0, k@) Einstein equations (n,m,1)

(so(n +m), n?+({t—5n+6—2t= (#—1—2,%[;&2,5—1—1),
so(n) @ so(m)) | = m[m+ (n—2)(t—1)] where ¢ is a divisor

of 4s (s € N),
and a, b satisfy the

Diophantine equation:
b2 — (s +4)a® = ¢

sp(n) @ sp(m)) | =2m[m+ (n+ 1)(t — 1)] where ¢ is a divisor
of 2s (s € N),
and a, b satisfy the
Diophantine equation:
b2 — (s? +4)a? = —c¢

(sp(n + m), 2 +(5—t)n+3—t= (M—l,ws-l-l),

It is easy to see that every natural solution of equation b? — (s? + 4)a? = e
generates the triple (n,m,?) which consists of natural numbers. We also note that
the equation b? — (s? 4+ 4)a? = 4c have infinitely many solutions. So, for example,
if we put ¢ = 1 in the orthogonal case, we get the Pell equation b? — (s?+4)a® = 1,
which has infinitely many solutions for every s € N [7].

In this paper we also present other examples of standard homogeneous Einstein
manifolds with semisimple Lie groups G and H.

Let

H = 50(k) x SO(n) x SO(m) C SO(k) x [SO(n) x ... x SO(n)] x SO(m) C

C SOk +n) x [SO(n) x ... x SO(n)] x SO(n+m) =G,
where the first embedding is of the form id x diag x id (SO(n) is taken ¢ times)
and the second is of the form 7y x id x ... X id x w2 (SO(n) is taken (f —2) times);
71 SO(k) x SO(n) C SO(k+n), w2 : SO(n) x SO(m) C SO(n+m) are standard
embeddings.
We also consider the analogous constructions for the unitary and symplectic
cases:

H = SU(k)xSU(n)xSU(m) C SU(k+n)x[SU(n)x..xSU(n)|xSU(n+m) =G,

H = Sp(k) x Sp(n) x Sp(m) C Splk+n)x [Sp(n) x ... x Sp(n)] x Sp(n+m) = G .
Theorem C. Let (g, h) be either the pair

(so(k +n)® (t —2)-so(n) ® so(n+ m), so(k)® so(n) ® so(m)), or the pair
(su(k+n)® (t —2) - su(n) ® su(n +m), sulk) D su(n) ® su(m)), or the pair



(sp(k +n)® (t — 2) - sp(n) ® sp(n+ m), sp(k) ® sp(n) & sp(m)). Then the space
(G/H, pp) will be an Einstein manifold if and only if the triple (n, m,t) is contained
in the list of Table 3.

Table 3
cases Einstein equations (n,m,1)
orthogonal | (n —2m —1)(m+n —2) = (g;j’; + 2, % - %, s+ 1),
=(m-1Dn-2)(t-2), where (y, z) is natural
k=m solution of the Diophantine
equation:

Yy —(s2+8)z2 =8(s* = 1) (s € N)

unitary m(n? 4+ 1)(m+n) = There are no solutions
= (m? — D)n(2m + nt) , for every n,m,t € N
k=m

symplectic | (2n —4m+ 1)(m+n+1) = (y+35 -1, MS-I-l),

2(s7+8) T 8(s7+8)
=0@2m+n+1){t-2), where (y, z) is natural
k=m solution of the Diophantine
equation:

Yy —(s2+8)z2 =8(s* = 1) (s € N)

We note that every solution of the equation y* — (s? + 8)z% = 8(s? — 1) does
not generate natural solution of Einstein equations. So, for example, for s = 1 in
orthogonal case we have solutions n = 2m + 1, but in symplectic case we have no
solutions for s = 1. Below we show that Einstein equation in orthogonal case has
infinitely many solutions for every s > 1 and we find sufficient conditions which
imply the existence of infinite family of solutions for the symplectic case.

1. PRELIMINARIES

The proof of Theorems is based on a series of lemmas which will be formulated
under the assumptions of the theorems.

Let ¢ and & be the Lie algebras of the compact connected Lie groups GG and H,
and let g be semisimple, ¢ = ¢1 & ... P g,, where g1, ..., g, are simple Lie algebras.
We put B(X,Y) = —tr(adXadY) for all X|Y € g, where adX(7) = [X, Z], and
we consider the standard Riemannian metric pp on G/H. Tt is easy to see that
B, =By + ..+ By, and g = h@&p = h Lg p, where p is ad(h)-invariant (i.e.
[h,p] C p).



We introduce some more notation: y is the isotropy representation of the group
H on Te(G/H) = p; then p = pg & p1 & ... D ps, where x acts trivially on py and
irreducibly on pq, ..., ps.

Lemma 1 [4]. The space (G/H, pp) with H # e is an Einstein manifold if and
only if py = 0 and B, |5 (A, A + 28) = By (A;, A; + 26), where A; is the highest
weight of the representation x on p;, 26 is the sum of positive roots of the algebra
h, and B,y is the scalar product on h* induced by By|y.

Given a simple Lie algebra k, we consider the scalar product Bj defined by
By = a; By, where ay, is the Casimir constant of the adjoint representation of the
algebra k [4].

If I, k are both simple Lie algebras and k& C [/, then the index of & in [ is the
constant [/ : k] so that Bf = [l : k] - Bj,. In [8] Dynkin showed that this constant is
an integer number.

Lemma 2 (corresponds to Theorem C).

(i) Let
H = 50(k)xS0O(n)xS0O(m) C SO(k+n)x[SO(n)x...xS0(n)]|xSO(n+m) = G,

with embeddings as in Theorem C. Then the standard metric on G/ H is Einstein
ifand only if (n —2m — 1)(m+n—2)=(m—1)(n — 2)(t — 2) and m = k.
(ii) Let

H = SU(k)xSU(n)xSU(m) C SU(k+n)x[SU(n)x...xSU(n)|xSU(n+m) = G,

with embeddings as in Theorem C. Then the standard metric on G/ H is Einstein
if and only if m(n? + 1)(m+ n) = (m? — 1)n(2m + nt) and m = k.

(iii) Let
H = Sp(k) x Sp(n) x Sp(m) C Sp(k+n)x [Sp(n) x...x Sp(n)] x Sp(n+m) = G,

with embeddings as in Theorem C. Then the standard metric on G/ H is Einstein
ifand only if 2n —4dm+ 1)(im+n+1)=2m+ 1)(n+ 1)(t —2) and m = k.

Proof. For (i), if we pass to the Lie algebras, we have x = x1 ® x2 ® x3, where
X1 = idO(BiZ adso(n)0id, X2 = (px@pn)s X3 = (Pa©pm); pn — a standard
representation, a,(n) = 2(n — 2),
Byln = 2(k+n—=2)- Bl +[2(k+n—2)+2(t=2)(n—2)+2(n+m—2)]- B}, +
+2(TL +m — Q)Bgo(m)
Then if we use the criteria that the standard homogeneous Riemannian manifold
is Einstein, we get a system of FEinstein equations

2n — 2) k-1

oA ktm—dt(n—2)(-2)] 20k+n-2)"

n—1

Tkt m—d+ (n—2)(f=2)]




_ n—1 m—1
Tt ktm—dt(n—2)(-2)]  2ntm=2)
or equivalently £ = m and 2n+2m—£—|—_(?1—2)(t—2) = m”j_;iz
From this we deduce (n—2m—1)(m+n—2) = (m—1)(n—2)(t —2) and k = m.
For (ii) we have x = y1 @ x2 P x3, where x1 = id®(@§;fadsu(n))®id, Y2 =

(e @pn), X3 = (n@pm); ftn — a standard representation, Qsu(n) = 20,

/

Byln =2(k+n) - By + 2020+ m+k+n(t =2)] - By + 20+ m)Blym)
and a system of Einstein equations

2n k-1 1 n?—1 1

ot ktman(i—2] &k 2k+n) n  2ntk+mtn(i—2)]
n? —1 1 m? —1 1

= . s

n 22n+ k+m+ n(t — 2)] m 2(n +m)

or equivalently k¥ = m and n[2n+2nn21-l-|jl(t—2)] = m’zﬁz_z), or m(n? + 1)(m +n) =

(m? — D)n(2m + nt) and k = m.
For (iii) we have similarly, x = x1 ® x2 B x3, x1 = id®(@§;fadsp(n))®id, Y2 =
(V21 ©Van), X3 = (V2n@Vam); van — a standard representation, sp(n) = 2(n + 1),

Bylh = 2(k+n+1)- B, +2[2n+k+m+(n+1)(t=2)] By, +2(n+m+1)B{
and a system of Einstein equations
2(n+1) _ k+1)2
2n+k+m+2+(n+1)(E-2)] 2k+n+1)
n n—+1/2 B
P2n4+k+m+2+(n+1)(t—2)]
B n+1/2 n m+1/2
S22+ k4+mA+24+(+DE-2)]  2(n+m+1)
ork=mand 2n—4m+ 1)(m+n+1)=2m+ )(n+ 1)(t —2). O

We shall use also some well known facts about solutions of Diophantine equa-
tions such a Pell equation and its generalizations. The equation

(1) 2 —ay? =1,

where a is natural number different from perfect squared is called Pell equation. It
has infinitely many solutions into the class of natural numbers. If the pair (2o, yo)
is minimal solution of equation (1) (i.e. o+ +/ayo has minimal value among all
numbers of type z++/ay, where (z,y) — arbitrary natural solution of (1) different
from trivial (1,0)) then general solution of Pell equation consists of pairs (z,, ¥n),
where

Ty = %((1‘0 +Vay)" + (zo — \/Eyo)n) )

Yn = ﬁ ((l‘o + Vay)" — (zo — \/a_yo)”) :



More general equation
(2) 2 —ay? =c,

where ¢ — any integer number, has natural solution not for all value of ¢. Never-
theless, in the case when there is even one solution (Z, §) of (2) this equation has
infinitely many solutions of type = &, + afyn, Yy = LYn + Jn, Where (25, yn)
— a solution of Pell equation with the same value of a.

More precisely, it is known that all natural solutions of (2) are generated by this
way from some finite set of solutions. All this results one can find, for example, in

[7].

2. Proor oF THEOREM B

At first we consider orthogonal groups. In this case we have Diophantine equa-
tion which after change of variables ! = n+ 2, s = ¢ — 1 can be reduced to the
following one

(3) P—m?=sl(m—-1).

Consider any natural solution of (3) when s is fixed natural number. Obviously
2 — 1 is divided by m — 1, then {* — 1 = k(m — 1), where k — a natural number.
By substituting this expression into (3) we obtain equation

kim—1)—(m—-1(m+1)=sl(m-1),
which is equivalent (when m # 1) to the next one
k—m—-1=sl.
Note that numbers k& and 1 — m are precisely roots of quadratic equation
e —(sl+2)x+(1-1%)=0.
Really, k + (1 —m) = sl + 2 and k(1 —m) = 1 — {2, Since this quadratic equation
has integer roots, its discriminant D is perfect square of natural number, i.e.

D= l((s2 + )+ 4s) = 22

Let u be greatest common divisor of numbers [ and 4s, then 4s = cu, | = du for
some natural ¢ and d. Tt is necessary that z = z;u (z; € N) and

d((s* +4)d+¢c) = 2 .

Using that ¢ and d are relatively prime we get d = a? and (s? +4)d+ ¢ = b?, where
a and b — some natural numbers satisfying to the condition ab = z;. From last
two expressions we finally obtain

b — (s* +4)a® = ¢,

where ¢ is some divisor of 4s. If numbers a and b satisfy this equation, then m
and [ can be easily computed in reverse order by formulas: m = 2sa(b — as)/c



and [ = 4sa?/c. Tt is easy to show by direct calculation that deriving numbers are
solution of (3).

Proof of second part of theorem B we develope by the same scheme. After
change of variables | = n+ 1, s = t — 1 we obtain the following Diophantine
equation

(4) 20 — 2m* = sl(2m + 1) .

Consider any natural solution of (4) when s is fixed natural number. Tt is easy to
see that 41% — 1 is divided by 2m + 1, then 4> — 1 = k(2m + 1) for any natural k.
We substitute this expression into (4) and we obtain equation

k(2m4+1)— 2m—1)2m+1)=2sl2m+ 1) ,
which is equivalent to the next one
k—2m+41=2sl.
Obviously, numbers k and —(2m 4 1) are precisely roots of quadratic equation
2 — (2l —2)x + (1—4*) =0 .

In fact, k — (2m + 1) = 2sl — 2 and —k(2m + 1) = 1 — 4%, Since this quadratic
equation has integer roots, its discriminant D is perfect square of natural number,
le.

D = 1((4s* + 16)] — 8s) = 2% .
It is necessary that z is even number, i.e. z = 2z7. Let u be greatest common
divisor of numbers [ and 2s, then 2s = cu, | = du for some natural ¢ and d,
z1 = zou (22 € N) and

d((s* +4)d —¢) = 23 .

Using that ¢ and d are relatively prime we get d = a? and (s? +4)d — ¢ = b? where
a and b — some natural numbers satisfying to the condition ab = z;. From last
two expressions we finally obtain

b — (s* +4)a® = —c

where ¢ is some divisor of 2s. If numbers a and b satisfy this equation then m
and ! can be easily computed in reverse order by formulas: m = as(b — as)/c and
[ = 2a%s/c. Tt is easy to show by direct calculation that deriving numbers are
solution of (4). The theorem is proved.

Remark 1. Note that equation (3) has infinitely many solutions for all natural
s. Really, we can choose ¢ = 1 and equation

b — (s* +4)a? =1,

being Pell equation, has infinitely many solutions.
Equation (4) has infinitely many solutions for all even s. In this case we can
choose ¢ = 4 and equation

b2 — (52 + 4)a2 =4



has one natural solution b = s, @ = 1 and as follows from the theory of such
equations 1t has infinitely many solutions.

The case when s is odd natural number require of special consideration. Let,
for example, be s = 1. Then ¢ is equal to 1 or to 2. The equation 4 — 5a? = —2
has no integer solutions, but the equation 6 — 5a> = —1 has the partial solution
b =2 and a = 1 and, as follows from the theory of such equations, 1t has infinitely
many natural solutions.

Remark 2. It is easy to see that solutions of equation b — (s> 4+ 4)a? = +e for
different value of ¢ can generate one and the same solution m, { of (3) or of (4).
Really, all solutions which are obtained for ¢ = ¢ consist in the set of solutions
which are obtained for ¢ = p?q.

3. EXAMPLES

Consider some examples of Theorem B when ¢ = 2 (s = 1). We note that these
examples appeared at first in paper of Mc Kenzie Y. Wang and Wolfgang Ziller
[4]. In that paper they obtained only Einstein equations of the pairs of Theorem
B without solutions of corresponding Diophantine equations.

(i) Let t = 2 and (go, k@ {) = (so(n + m), so(n) @ so(m)). Then we have s =1
and the Diophantine equation

B2 —ba’=c

bl

where ¢ is a divisor of 4. Using remark 2 from previous item, we can assume that
¢ =4 or ¢ = 2. It is easy to see, that the equation

b? —5a* =2
has not natural solutions, but the equation
b? —ba® =4

has partial solution b6 = 3, @ = 1, and it generates infinite family of solutions of
above Diophantine equation.

(ii)) Let t = 2 and (g0, k ®!) = (sp(n+ m), sp(n) & sp(m)). Then we have s = 1
and the Diophantine equation

b2 —5a’ =¢ |

where ¢ 1s equal to either 1 or 2. Obviously, the equation
b? — 5a”® = -2

has not natural solutions, but the equation

b2 —bha’ = —1

has partial solution b6 = 2, @ = 1, and it generates infinite family of solutions of
above Diophantine equation.
Hence, in both these cases we obtain two infinite families of Einstein manifolds.



4. PRrRooOF oF THEOREM C

For the proof of theorem C we use Lemma 2.

As above, at first we consider orthogonal groups. In this case we have Diophan-
tine equation, which after change of variablesl=n -2,k =m—1,s=¢—1 can
be reduced to the following one

(5) 2k* + skl +3k+1-1=0.

Fix natural number s and consider any natural solution of (5). It is easy to see,
that {2 — 1 is divided by &, then {? — 1 = kp, where p — a natural number.
By substituting this expression into (5) we obtain equation

2k+sl+3—p=0.
Note, that numbers p and —2k are precisely roots of quadratic equation
2l —(sl+3)r+(2-21%=0.

Since this quadratic equation has integer roots, its discriminant D is perfect square
of natural number, i.e.

D=5+ 6sl+ 148" =2:".
Natural number [ is the root of quadratic equation
(s*+8)P+6sl+1—22=0.

Obviously, discriminant Dy of last equation must be perfect square of even natural
number

Dy = 365 — 4(s* +8)(1 — %) = (2y)* .

Finally we obtain the equation
(6) Y — (s 4+ 8)z2 =8(s* 1) .

Numbers £ and [ can be easily computed in reverse order by formulas:
Il=(y—3%)/(s?+8), k = (x —3—ls)/4, where (y, 2) is natural solution of the
last Diophantine equation.
Note, that arbitrary solution of (6) does not generate natural { and m, we must
choose only solution which satisfy to the following conditions
y = 3s(mod(s® + 8)), z = 3+ sl(mod4). A little below we discuss this problem.
Now we consider second part of the theorem. After change of variables [ = n+1,
s =t — 1 we obtain the following Diophantine equation

(7) 202 — s(2m+ 1) —4m* —m =10 .

Fix natural number s and consider any natural solution of (7). Obviously, 41% — 1
is divided by 2m + 1, i.e. 412 — 1 = (2m + 1)p, where p — a natural number. We
substitute this expression into (7) and we get the equation

p—22m—1)—1=2sl.



Note, that numbers p and —2(2m + 1) are precisely roots of quadratic equation
2 — (25l =)z + (2-81°) =0 .

Since this quadratic equation has integer roots, its discriminant D is perfect square
of natural number, i.e.

D =4s*1* —12sl — 1 + 321 = 2* .
Natural numbers [ are the roots of quadratic equation
(4 +32)7 — 125l +1— 22 =0 .

Obviously, discriminant Dy of last equation is perfect square of some natural num-

ber, which is divided by 4, i.e.
Dy = 1445 — 4(4s% 4+ 32)(1 — %) = (4y)* .
Finally we get the equation, which is the same with (6)
Y — (s 4+ 8)z2 =8(s* 1) .

Numbers £ and [ we compute in reverse order by formulas
I=(y+3s)/(2(s*+8)) , m = (+ — 1 — 2Is)/8, where y, z are natural solutions of
the last Diophantine equation.

Note, that we must choose solutions of (6), which satisfy to the following con-
ditions y = —3s(mod2(s? + 8)), z = 1 + 2sl(mod8).

It is interesting, that the equation (7) has no solutions for some value of s (for
example, for s=1, it follows from obvious fact that 4m + 2n + 1 # 0 for all natural
m and n) and has infinitely many solutions for some other value of s (below we
consider the case s = 4).

At last we consider the equation

(8) m(n2 +1)(m+n)= (m2 — Dn(2m +1tn) .

Let d be greatest common divisor of numbers m and n, then m = da, n = db, a
and b are relatively prime natural numbers. Equation (8) can be reduced to the
following one

a(d2b2 + D(a+0b) = (d2a2 — 1)b(2a 4+ tb) .

Obviously, a? is divided by &, but a and b are relatively prime, then necessarily
b = 1. We obtain the equation

a(d® + D(a+1) = (d*a* = 1)(2a + 1) ,

where a and d are natural numbers.
If @ > 3, then d?a? — 1 > d*a+a (a?> —a > a+1 and d*(a® —a) > a+1). Since
2a +1t > a4+ 1, in this case there is no solutions.
If @ = 1, then 4 is divided by d* — 1, but it is impossible for natural d.
If s = 2, then 10 = 10d? + (4d? — 1)t, but it is impossible for natural d and ¢.
Theorem 1s proved.



Now we find some sufficient conditions for the existence of infinite family of
solutions for Einstein equations (5) and (7).

Proposition 1. For all natural s > 1 the Pell equation
(9) g — (s +8)72 =1

has infinitely many natural solutions, which satisfy to the following conditions

§ = 1(mod8(s? + 8)), Z = 0(mod 8).

Proof. Let (y1,21) be arbitrary natural nontrivial solution of (9). Consider an-
other solution (ya, z2), which is obtained as follows

yo + V82 + 82 = (y1 + V52 +821)° .

Obviously, z2 = 0(mod8), ys and 8(s? + 8) are relatively prime.

Let ¢ be Euler function (¢(q) is the cardinality of natural numbers, which are
less than ¢ and relatively prime with them) and ¢(8(s? + 8)) = «, then by Euler
theorem y$ = 1(mod8(s? + 8)). We consider one more solution (ys, z3) of (9):

ys + V5?2 +8z3 = (y2 + V2 4+ 822)7 .

Simple calculation shows, that y3 = 1(mod8(s* + 8)), 23 = 0(mod8). Now we
define a family of solutions of (9):

Y+ VP82 =(ys+ Vs* +8z:)"

where m is any natural number. All this solutions satisfy to the conditions

§ = 1(mod8(s? + 8)), Z = 0(mod8). O

Proposition 2. For every s > 1 the FEinstein equation, in orthogonal case, has
infinitely many natural solutions.

Proof. For s = 1 we have solutions n = 2m + 1. Consider other cases. For all
value of s we have partial solution of (6) yo = 3s, zo = —1. Using Proposition 1 we
construct the family (y, #) of solutions of (6): y = Jyo+(s2+8)Zz0 = 3s§—(s?+8)z,
z = §zo + Zyo = —§ + 3sZ. Obviously, such solution of (6) generate an integer
solution of (5).

Really, y = 35§ — (s + 8)Z = 3s(mod4(s? +8)), I = (y — 35)/(s* + 8) is integer
and | = 0(mod4), z = —§ + 3sZ = 3(mod4), m is integer too.

Now we show that obtained solutions (y, z) of (6) are natural. Since for s > 1,
3s > Vs?+8and §y—vs?+ 82 =1/(§+Vs?+8%) > 0 then
35y — (s +8)Z > 0, we proved that y > 0.

Obviously, that for s > 1, § # 3sZ and 9s? > s? +8. Then (3sZ — §)(3s7 4+ g) =
95272 — g2 > (52 +8)22 — g = —land 352 — g > 0, i.e. z > 0.

It is sufficient to show that triples (n, m,t) which obtained from the solutions
of (6) as above (see Table 3) consists of natural numbers. Since (y — 3s)(y+ 3s) =
y? — 952 = (s +8)(22 — 1) > 0, then y — 3s > 0 and n > 2. Now suppose that



z+1 < s(y—3s)/(s> +8) then z — 1 < s(y + 3s)/(s> + 8) and multiplying last
two inequalities we have
52(y2 _ 952) - y2 _ 952
(s? + 8)2 s24+8

and we obtain the contradiction with the equation (6). Therefore,
z4+ 1> s(y—3s)/(s*+8) and m >0

Since t = s+ 1 > 2, then we really found infinitely many solutions of Einstein
equation in orthogonal case. O

-1«

Proposition 3. If the equation (6) has the natural solution (yo, z¢), which satisfies
to the condition yo = —3s(mod8(s? + 8)), z0 = 1(mod8), then the equation (7)
has infinitely many natural solutions.

Proof. Using Proposition 1 we construct the family (y,z) of solutions of (6):
y = §yo + (s? +8)Zz0, z = §zo + Zyo. Obviously, such solution of (6) generates the
solution of (7). Really, y = gyo + (s? + 8)Zzg = —3s(mod8(s? + 8)),
z = Jzo + Zyo = 1(mod8). Tt is easy to see that every such solution generates the
solution of (7) and corresponding triple (n,m,t) from Table 3 consists of natural
numbers.

When s is even or moreover s = 0(mod4) obvious changes into the proof show
that sufficiently to find one partial solution of (6) with property
Yo = —3s(moda(s? + 8)), zo0 = 1(mod8) or yo = 3s(mod2(s? + 8)), zo0 = 1(mod8)
correspondingly, and then (7) has infinitely many solutions.

For example, consider the case s = 4, then s? + 8 = 24 and (6) has the form

y? — 2427 =120 .

This equation has partial solution (yo,z0) = (84,17), yo = —12(mod48), zx =
1(mod8). Then the equation (7) has infinitely many natural solutions for s = 4.

Note that for s = 0(mod4) from Proposition 3 it follows that the existence of
one natural solution of (7) implies the existence of family of natural solutions for
the corresponding equation.
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