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A NOTE ON REGULAR POINTS FOR SOLUTIONS
OF NONLINEAR ELLIPTIC SYSTEMS

JOSEF DANECEK AND EUGEN VISZUs

ABSTRACT. It is shown in this paper that gradient of vector valued function u(z),
solution of a nonlinear elliptic system, cannot be too close to a straight line without
u(z) being regular.

0. - Introduction

In this paper we shall deal with points of regularity for weak solutions of non-
linear elliptic systems of the second order

(0.1)  —=Djal(x,u,Du)+a” (z,u,Du)==D; fl (&) + [ (2), r=1 N

goee ey 5

in an bounded open set & C R™, n > 3, with Lipschitz boundary 992. Here the
summation over repeated subscript is understood and # = (z1,...2,) € Q, u =
(u1,...un), N >2 D; =9/0x;, Du= (Duy,...,Duy). By a weak solution of
(0.1) we mean a function u € W12(Q, RY) (for informations see [4], [5]) such that

/(af(r, u, Du) D" + o (2, u, Du)gor)dx

02 °
= [ @D+ 17 @) i, o € O (@Q.RY),
Q
For the sake of simplification we denote by | - | and {.,.) the norm and scalar

product in R as well as in R and R™V . If x € R” and r is a positive real number,
we set B(z,r) = {yeR": |y—x|<r}, ie, the open ball in R", Q(z,r) =
B (z,7)N Q. The meaning of 2y €  is that the closure of Qy is contained in €,
1l.e. ﬁo C Q.

We will use the space C5°(Q2, RV), Holder spaces CO%(Q, RY), C%%(Q, RY)
and Sobolev spaces W#5P(Q, RY), Wk’p(Q, RNY, Wok’p(Q, RN (for detailed infor-

loc
mations see,e.g.[4]).
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Denote by
1
o R = T z)dz = z)dz
fon= Gy | fede= fro
B(zo,R) B(zo,R)

the mean value over the set B(zg, R) of the function f € L'(B(zo, R), RY).
About parameters of system (0.1) we suppose:

(0.3) ai, a” € CHQ x RN x R™Y).

[

For (z,&,p) € Q x RY x R™ with |¢| < L, L >0 is a constant

(0.4) |ai (z,&,p)l, la" (2, & p)| < CL(L)(1 + |p]),
daj(x,&,p)| |0a"(z,&,p)

‘6a§(x,€,p)" ‘M(M,p)" ‘W(M,P)"

3€k Jxy agk
(0.6)
da’(x,&,p)
T < cuwya+ 1.
(0.7) w — d;}(z,§), if |p| — oo, uniformly in Q x RN
pj
(0.8) @) e WhiQ), f(z) e Wh3(Q), ¢ > n,
(0.9) ZHfT ||1q—|—Z||fr z)|]1,4 < C5,C5 > 0is a constant,
6a: x’ 3 T8 n
%m ;> p(L)[n* for all p € R™Y,
(0.10) !

(z,6,p) € QxRN x R™W.

It is known that if v € WH2(Q, RY) solves (0.1) in weak sense and conditions
stated above are fulfiled then u € le 2(9 RY) (see e.g.[1]). Main result of this
paper 1s the following theorem:
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Theorem 0.11. Let M > 0 be a constant and u € WH2NC%P(Q, RM), (0 < 3 <
1) be a weak solution of system (0.1) with conditions (0.3) - (0.10). There exist con-
stantse; > 0, Ry > 0 such that if for some 2% € Q, R < min(Ry, dist(z°,0Q)), v €
SN-1 g e R™W, |n| < M we have

(0.12) ][|Du(x) — (Du) o | de < M?,

B(z%R)

(0.13) ][|Du(x) —(Du)yo g — 7T|dl‘ - ][|(Du(x) —(Du)yo g =, 1/)|dx < g1,

B(z%R) B(z°,R)
then u is regular in a neighorhoud of z° (there is § > 0 such that

u € CH(B(x°, 6),RN), a€(0,1-n/q)).

Remark. The condition that a weak solution u € W12(Q, RY) of system (0.1) is
in addition from the space C%?(Q, RY) be fulfiled for n = 3 by means of Sobolev
imbedding theorem (Wﬁ)’f(Q, RN) = COU2(Q,RN), see [4]). For a motivation to
this result we refer to [3]. The proof of theorem 0.11 is based on some considera-
tions of paper [2] and the fact that from (0.2) we obtain an equation in variation
which has the following form (for information see e.g. [5])

(0.14) /5k1[35f($,U)DjU§DWZ + B} (2, U)D;U ¢} ] de
Q
- / (G Digh + G of)de, ¢ € O (2, R™),

Q

where i, k,I=1,....n, r,s=1,...,N, U ={U} = {Dju, })= Y 6,— Kro-

shi=1,...,n
necker delta,
Z?“jS(x, U)= gz;s (z,u(x),U), B]Ts(x, U) = %(1‘, u(z),U),
dal  Oal Ou da”  Oa” Ou
rk — ro_ 271 2T s rk — r_ Y® YR Ubs
GiP(x) = Dy f] 9zy  OC, Dzy G (x) = Dy f 9er 26, Our

Because the system (0.14) is quasilinear elliptic system and U = Du, it is
sufficient to prove an assertion for quasilinear elliptic system analogous to theorem

0.11.
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1. - The quasilinear case

Let us consider a quasilinear elliptic system
(1.1) —D; (Afjs(x, u)Djus) + A;s(x, u)Dju® = —Dig; +4",

= (21,...,27) €Q, QCR", n
boundary 99, u = (u' Ny, N >

> 3 is a bounded open set with Lipschitz
..U 2,
We suppose

Lj=1,...,n, r,s=1,..., N.

bl

rs rs e} N
(1.2) Ars AT € C@x RY)

Y]
(1.3) Z |A7] |+ Z |A7*| < L on Q x RY, L > 0is a constant,

2,0,7,8 7,78

there is A > 0 such that A7 (z,&)nin; > M| for all n € R™Y

1.4 _

(1.4) (x,6) € A x RN

(1.5) Aii(2,8) — d;7 (x), as [¢] — oo, uniformly in Q,
(1.6) gr € LP(Q), g¢" € LP*(Q), p> n.

By a weak solution of system (1.1) we mean a function u € WH2(Q, RY) such
that

/ [A;f].s(x, u)Dju’ D" + A;s (z, u)Djusgor] dx
Q
(1.7) = [liDi 497 Nda, ¢ € CR@RY)
Q
It is matter of simple calculation to find that the type of system (0.14) is the same
as the one of system (1.7) with assumptions (1.2) - (1.6). Now we may state

Theorem 1.8. Let Q' &€ Q. For every M > 0 there exist a constants ¢, >
0, Ry > 0 such that ifu € WH2(Q, RY) is a weak solution of the system (1.1) with
conditions (1.2) - (1.6) and if for some z° € @', R < min(Ry, dist(z°,0Q)), v €
SN-1 7 e RN, || < M we have

(1.9) Flutw) = (0,0 5o < 0%
B(z°,R)
(1.10) ][|u(x)—(u)xuyR—7r|dx— ][|(u(x)—(u)xoyR—7r,1/)|dx<€1,
B(z%R) B(z%R)
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then u is regular in a neighorhoud of z° (there is 6 > 0 such that
ue COB,68),RN), a € (0,1-n/p)).

It is clear that if theorem 1.8 will be proved then theorem 0.11 will be proved
as well.

Remark. If we compare Theorem 1.8 with Theorem 3 in [3], we see the fol-
lowing: The assumption in Theorem 3 in [3] that for some #y € @ and R (small)
:FB(Q:D,R)|U|2dx < M is replaced by assumptions (1.5) and ZFB(ID)RJU_UN,RPdl’ <M
in Theorem 1.8. Taking into account the relation between the spaces BMO and
L®, Theorem 1.8 may be seen as some generalization of Theorem 3 in [3].

One can say that the structural assumption (1.5) probably imply the bounded-
ness of the solution of (1.1) and then our result is a corrolary of the result in [3].
As the following example shows, the above mentioned consideration is not true in
general.

Example. [6] Let 2 = {x € R™ : |x| < 1} and let us consider the system

-D; (A ? (e, u)Du):O,

where A7f(z,8) = 86,5 + n([€])Bir(x,€)Bjs(x,§), 6;; -Kronecker delta, n €
€ ([0,00)), suppn C[0,1+¢], e>0, 0<n <1, p=1in[0,1],
iy |2
Bir 5 = 62'7' b———— 5
(,8) C( + 1+ [€]2]z]20-2
n 2n a(n —a)(n —2)?
1, = b= 2= .
aE[’Q)’ n—2 ¢ (n—2a)*(n —1)?

The coefficients of this system satisfy all assumptions (1.2)-(1.5). The function
u(z) = z/]z|* is a solution of this system and w is unbounded in origin (a¢ =

2,3,...[n/2]). One may see that u ¢ BMO(Q) too.

2. - The proof of Theorem 1.8
We will use the following results:

Lemma 2.1. (see [5]) Let ¢ € WH2(B(0,1)) be a solution of the equation

(2.2) | auDigbipds =0, ¢ e C(B0,1)
B(0,1)

in the unit ball B(0,1) of R"™, with bounded, measurable coefficients a;; satisfying

(2.3) Y laijl < L,
i
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(2.4) aij()&E > MEPP, € E€R™, e B(0,1).

Then there exist constants « and @ depending only on L, A such that g(x) is a—
Hélder continuous in B(0,1/2) and

lgllcoa(po,1/2) = sup |g(@)]
¢€B(0,1/2)

(2.5) n sup lg(=) — g()l

z,y€B(0,1/2), z2y |l‘ - y|oz = Q||g||L2(B(071)).

Using Lax-Milgram lemma we may prove

Lemma 2.6. Let u € WH2(QRY), 2% € Q and assumptions (1.2) - (1.4),(1.6)
for system (1.1) be satisfied. Then there exists 0 < Ro < dist(z% dQ) such that
for R € (0, Rg] the linear elliptic system

(2.7) —D; (Afjs(x, u)Djv}L) + A;s(x, u)Djvy = —Dig; +9",

has a unique solution in Wol’z(B(xO, R),RY). Moreover

(2.8) ][|vR(x) — (UR)xU,R|2dx < c3R2(1_”/p)a

B(z°,R)

where ¢z = c3(n, N, L, X, Ro, ||g7 ||p, 19" |Ip/2)-

If we put ' CC 2 then the above estimate will be uniform in €2’
The above lemma enables us to decompose the solution w of (1.1) as

(2.9) U = Vgo g + Wyo g iN B(x°, R).

If there will not be danger of misunderstanding, we will omit the subscripts z°, R.
By classical way we may obtain for w,o g Cacciopoli’s inequality:
For 2 € Q, 0 < p< R < Rg < dist(2°,09Q)

Cq

(2.10) /|DwxuyR(x)|2dx§m / |wpo r(x) = (wpo R )eo | de,

B(z°p) B(z° R)

where ¢4 = eq(n, N, L, A).
Now we present a fundamental result concerning the partial regularity of weak
solutions to the system (1.1) with assumptions (1.2)-(1.6).
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Proposition 2.11. (see [5], pp.147-149) Let Q' & §2. There exist constants ¢y >
0, Ro > 0 such that ifu € WH2(Q, RY) is a weak solution of the system (1.1) with
conditions (1.2) - (1.6) and if for some 2" € Q' and R < min(Ry, dist(z", 0Q))

(2.12) ][|wR(x) — (R0 | dz < €,

B(z° R)
then there exist § > 0, u € (0,1 — n/p), such that u € CO*(B(z°,6),RN).
Proof. The proof is easy modification those in [5], Lemma 6.2.12. Our condition
(1.5) substitute the condition that u € L*°(2, RYY), that is used in the relations
(6.2.16)", (6.2.17) in [5).

We remark that the constants ¢q, R depend on £ and the parameters of
system (1.1). Because using (2.8) it is matter of routine to find that

tim [ ffwn(e) = (wn),o 5 = 7lda

R—04+

B(+°,R)
_ ][|<wR(1‘) — (wn)y0 g — 7.0 |da]
(2.13) Bt 1
= lim | ffu(@) = (u),0  — 7|de
T

B J[ [(u(z) = ()0 = 7,v) |de]
B(z"R)

theorem 1.8 will be proved if we prove the following

Lemma 2.14. Let Q' & Q. For every M > 0 there exist a constants ¢y > 0, Ry >
0 such that if u € WH2(Q,RY) is a weak solution of the system (1.1) with con-
ditions (1.2) - (1.6) and if for some 2 € Q') R < min(Ry, dist(z°, 0Q)), v €
SN-1 7 e RN, || < M we have

(2.15) ][|u(x) — (W)y0 | de < M2,

B(z°,R)

(2.16) ][|w3(1‘) — (wR)xU,R — 7T|dl‘ — ][|(w3(1‘) — (wR)xU,R -, 1/)|dx < gy,
B(z%R) B(z°,R)

then there exist 6 > 0, u € (0,1 — n/p)) such that u € CO#(B(x°,6),R"N).

Proof. Let M > 0 and ' CC Q. We shall reduce to Proposition 2.11. For that
let £g > 0, Rg > 0 be the constants in Proposition 2.11.
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Let 7 = min{1/2, (¢o/4V 14QMwn)1/“}, where «, @ are the constant in Lemma
2.1, w, = meas(B(0,1)). We shall prove that for M > 0 there exist constants ¢;
and Ry < Ry such that if « is a solution of (1.1) satisfying all conditions in Lemma
2.14, then

(2.17) ][|wTR(a:) — (wr )0 g | de < €2,
B(z%7R)

from which the conclusion follows using Proposition 2.11. Let us suppose that our
assertion is false. Then it would exist
() sequences {a#)5° C @, {m)i C RV, |ml < M, {m}s € SV,
(il)  two infinitesimal sequences {e;}5°, {R;}7°,
(i) a sequence {u*}° (uf = wf, + v in B(z*, Ry)) of solutions
of the system (1.1) such that

(2.17) ][|uk(x)— (uk)xkyRszngz,

B(z* Ry)
(2.18) ][|w%k(1‘) — (w%k)xkﬂk — 7Tk|dl‘

B(z* ,Ry)

_ ][|(w%k(1‘)— (w%k)xkﬂk —ﬂ'k,yk)|dx§€k,
B(z* ,Ry)
but
(2.19) Lﬂwm@y4wmhwmfn>£.
B(z*,7R)

Put r = 2* + Ry, y € B(0,1) and hi(y): = u* (¥ + Rpy), te(y): = w%k(l‘k—l—
Rry), mp(y): = v%k (z* + Rpy). Clearly hi(y) = tr(y) + mi(y). Using Lemma
2.6 we obtain from (1.1)

AL w(y, hi () Djts (y) D" (y)dy
B(0,1)

+ 1 / ey, () Dt ()" (y)dy = 0,
B(0,1)

(2.20)

p € C5°(B(0,1),RY),
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where k = 1,2,..., A7 (y, hx(y)) = Af]»s(xk + Riy, hi(y)), A7 (y, hi(y) =
A;s(l‘k + Riy, hi(y)). Using the transformation from above the inequalities (2.18)
and (2.19) will obtain the following forms

(221) ][|tk tk —7Tk|dy— ][| tk —7Tk,1/k>|dy§€k,
B(0,1) B(0,1)

where (t1)o1 = tr(y)dy and
B(0,1)

(222) 7[|tk7'(y) - (tk7)0,7|2dy > Ega
B(0,7)

where

trr(y) = wfp%(l‘k + Ryy),  (ter)or = ftkr(y)dy
B(0,7)

Let now k — oo. Passing possibly to a subsequence we may suppose that 2% —
20 € Q/, vp — v € SVt 1 — 7w, |7| < M. Because we have (2.17), using
Lemma 2.6 we obtain

|tk(y) - (tk)0,1|2dy =R." / |w%k(x) - (w%k)xkﬂk |2dl’

B(0,1) B(z* ,Ry)
<2R;"| / Wk (2) = (") g, e + / [ (1) = (v, )er ]
B(z* Ry) B(«* ,Ry)

<wn(2M? + C5Ri(1_n/p)), (p>n).
From above estimate 1t follows that
2
(2.23) / |tr(y) — (tr)o1| dy < My
B(0,1)
and we may suppose that My < 3w, M?. The estimate (2.23) implies that (passing

possibly to a subsequence) (ty — (tx)o,1) — t weakly in L?(B(0,1),RY). From
Cacciopoli’s inequality (2.10) we see that

¢
(2.24) / |Dtk(y)|2dy < ﬁ / |tr(y) — (tk)071|2dy, 0<p<l
B(0,p) B(0,1)
From the last inequality it follows that

(tr — (tx)o,1) — t weakly in W, 2(B(0, 1), RY),
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(ty — (tg)o,1) — t strongly in L,ZOC(B(O, 1),RN).
Passing possibly to a subsequence we may suppose that
(te(y) = (tk)o,1) — t(y) ae. in B(0,p), (0<p<1).

From estimate (2.8) it follows that ||mg||z2(B(0,1),rv) — 0 as k — oo and we may
suppose (as above) my(y) — 0 a.e. in B(0, 1).
In our consideration we must take into account two cases
(a) the sequence {(t1)0,1}5° is bounded in RY or
(b) |(tr)o,1] — 0 as k — oo.

(a) In this case passing possibly to a subsequence we may suppose that (¢5)01 —
b€ RYN. Then (1.2) and the above properties imply

A7 (g, hie () = AT (2" + Ry, te(y) — (te)o + (tr)o,1 + mae(y))
— Af]»s(xo,t(y) + b)a.e. in B(0,p) as k — .
Arguing as in [5] (chapt.6) we conclude that ¢ satisfies
Q) [ A WD )y =0, ¢ € CF(BO1,RY)
B(0,1)
(b) In this case because (1.5) we have
Af]»syk(y, hi(y)) — df]»s(xo)as k— oo.
By the same argumentation as in the case (a) we find that ¢ satisfies
) [ EDEWD Wy =0, e e CEBOD.RY),
B(0,1)
By trivial calculation we have
2
Flterw) = (6o Pt
B(0,7)
= Flte(v) + mely) = mir (1) = (o, = (Mo + (mar)o,r | dy

B(0,7)

_ 7[ 16 (9) = (te)o.r "y +2 7[<tk<y> — (t)o,m mi(y) — (mi)o.»)dy

B(0,7) B(0,7)

sy 7[<tk<y> — (t0)o.rs mir(y) — (i o) dy
B(0,7)

sy 7[<mk<y> (o s (5) — (mies )o.s)dy

B(0,7)

+ ][|mk(y) - (mk)0,7'|2dy+ ][|m;”(y) - (mk7)077|2d1‘/

B(0,7) B(0,7)
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and
7[|tk( (tx)o T| dy = 7[| te(y) — (te)oa) — (te(y) — (tk)0,1)077_|2dy
B(0,7) B(0,7)
7[|t(y) - (t)077|2dy as k — oo.
B(0,7)

This fact and estimations analogous to (2.8) imply
7[|tk7'( tkT OT| dy_> 7[|t OT| dya as k — oco.
B(0,7) B(0,7)

From the last information and (2.22) we have

2
(2.27) 7[|t(y) — (t)o,r| dy > €3,

B(0,7)

On the other hand we have for every 0 < p < 1 (using (2.21))

0< 7[[|tk(y) — (tr)o — me| = [t (y) = (te)o,1 — 7k, I/k>|] dy

B(0,p)

<p 7/[|tk(y) —(te)o1 — 7Tk| - |<tk(y) — (tk)o, — 7k, Vk>|]dy
B(0,1)

<p e — 0, as k — co.
and therefore
(2.28) 7[[|t(y)—7r|— |(t(y)—7r,1/)|]dy:0, 0<p<l,
B(0,p)
so that ¢(y) lies on a straight line
(2.29) ty) = m +g(y)v,

where 7, = 7 — (7, v)v, |m1|* < 4M? and g¢(y) = {t(y),v). Introducing (2.29) in
(2.25), we conclude that g is a solution of the elliptic equation

aij(y)DjgDipdy = 0, ¢ € C5°(B(0,1)),
B(0,1)
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where a;;(y) = Af]»s(xo,b + 7 + g(y)v)v"v® are bounded measurable coefficient
satisfying (2.3) and (2.4). Introducing (2.29) in (2.26), we conclude that ¢ is a
solution of the elliptic equation

aijDjgDipdy =0, ¢ € C5(B(0,1)),
B(0,1)

where a;; = df]»s(xo)y’"ys are bounded constant coefficients with the same qualities
as in previous situation.

In both cases (a) and (b) it follows from Lemma 2.1 that ¢ is Holder continuous
in B(0,1/2) and we have inequality (2.5). In particular

][|t(y) — (t)or|'dy = ][|7n +vg(y) — 71— v(9)o| dy

B(0,7) B(0,7)
2
= floto) = @y < QAP < T

B(0,7)

which contradicts (2.27).
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