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ON PACKING OF SQUARES INTO A RECTANGLE

PAVEL NOVOTNY

ABSTRACT. It is proved in this paper that any system of squares with total
area 1 may be packed into a rectangle whose area is less then 1.53.

The following problem is formulated in [7]: Determine the smallest number S
such that any system of squares with total area 1 may be (parallelly) packed into
a rectangle of area S.

This problem was posed by L. Moser [4]. S > — 21207 follows from con-
sidering two squares of sides # and y, where z > y, # +y =1 and z(x + y) is
maximal. Novotny [8] proved that any system of three squares with total area 1
may be packed into a rectangle of area 1.227759 (this area is necessary for packing

of three squares with sides 0.7297177, 0.5588698 and 0.3939246). The four squares
with sides z = \/j r =z =x = \/ishow that S > 5 1244,

Moon and Moser [3] found first results for the upper bound. They proved that
(1) it is possible to pack any system of squares with sides z > 2 >z > ---

and with total area 1 into a square of side a = x + /1 —x .

A consequence of this is that any system of squares with total area 1 may be
packed into a square of area 2.
Meir and Moser [2] extended the result (1) and they proved that

(2) any system of squares with total area V' can be packed into a rectangle
ofsizea xa ifa >z ,a >z andz +(a —2 )a —x ) >V

Some further results for the upper bound were published by Kleitman and
Krieger [1]: Any system of squares with total area 1 can be packed into a rectangle

of size /2 x \/j; its area is \/i =1.633. It follows from this result that

(3) any system of squares with total area V' can be packed into a rectangle

with sides V2V and +/-X.
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The following theorem improves the upper estimate for S.

Theorem. Any system of squares with total area 1| may be packed into a rectangle
whose area is less than 1.53.

Proof. We denote the squares @ ,Q ,@ ,... and theirsidesz >z >ao > ...
We shall pack the squares in the dependence upon = ;= as it follows:

I Letz > \/j By (3) we can pack the squares @ ,@Q ,... into a rectangle

P with sides \/2(1 —x ), =% and the whole system can be packed into

a rectangle R with sides « and ¢ + /2(1 —z ) (Fig.1). The area of R is less
than 1.53.

Fig. 1 Fig. 2
IT. Let 0645 <z < \/j We pack the squares @ ,@ ,... as in I and all
squares can be packed into a rectangle R with sides 1/ ~%1 and z +v2(1—2)
(Fig.2). The area of R is less than 1.53 for every & € (0.645,/4/7).

III. Let # < 0.27. By (1) the squares can be packed into a square R of side
z ++/1l—=a ;itsarea 1 4+ 2z /1 — 2o < 1.53 for every x < 0.27.

It remains to investigate the domain

M={[x,2];027T<2z <0645, 0 <o <z }.

IV. By (3) we can pack the squares @ ,Q ,... into a rectangle P with sides

V2(1—2 —z ) and 4/ _TmTE A squares can be packed into a rectangle R
by Fig. 3ifz +2 > 2(1—2 —=x ),ie 32 +2z ¢ + 3z > 2, or by Fig. 4

ife +2 < /2(01—2 —x).

The area of R from Fig. 3 is

[l 2)=(x —|—x)<x +%m)

We have
g%: 3(1_193 _x)<2—4x -2 =2z 2 + (22 +2 )\/3(1—x —l‘))

If we denote u(z ,x ) =2—42 —2z —2z v + 2z +2 )/3(1—2 — = ), then

evidently 5’—;1 <0, 5’—;2 < 0in M (Fig. 11). Hence
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) > u(0.645,0.645) > 0,592t > 0, thus f (z ,# ) < f(0.645,2 ) for
€ M . We verify easily that f (0.645,2 ) < 1.53 for every # < 0.645.

0, 0,

0 e

Fig. 3 Fig. 4
The area of R from Fig. 4 is

f(x,x)=<x —I—%\/l—x —x)\/Q(l_x — )

of v2 (1 9 i /) )<0
— e |1-22 -z - — —r —x
dx -2 —x \/§

for [# ,# ] € M (Fig.11). Evidently g—iz < 0, too, and since f (Z;) < 1.53 for
i€41,2,3,4,5}, we have f (z ,2 )< 1.53 for every [x ,2 ]€ M .

V. We pack the squares ¢ ,@ ,... as in IV. All squares can be packed into a
rectangle R by Fig. 5 if
41—z —
r +zx > %, le. Te +6zx x +7x >4,
or by Fig. 6 if
AMl—2 —2x)
r 4+ <

The area of R from Fig. 5 is
flz,e)=(» —|—l‘)<l‘ +4/2(1 — = —x))

Since 32 > 0,32 > 0in M (Fig. 11) and f (%) < 1.53 for i € {6,7,8,9},

xr

f (2,2 )< 1.53is fulfilled for every [z ;2 € M .

0, 0,

Fig. b Fig. 6



78 PAVEL NOVOTNY
The area of R from Fig. 6 is
2
z,x)=|lx ++/2(l—2 —= —/1l—z —x .
Py = (o4 )5

Since 52 < 0,282 < 0in M (Fig. 11) and f (Z;) < 1.53 for i € {10,11,..., 14},

we have f (» ,x3<1.53forevery [ ;2 ]e M .

VI. Let 22 < z . By (2) we can pack the squares @ ,Q ,... into a rectangle
P with sides a and x + = if r +e—z)o v —x)=1—-20 —2 —x
(>1—2 —a —x).Ttis valid for

l—2 —2 -3z +2x 2 +2 x

a =
r +x —=x

All squares can be packed into a rectangle R by Fig. 7. Its area is

(x +2)l—2 =32 422 +2 )
r +xr —=x '

f e 2 )=k +z )z +a)=

We have

%_(1‘ +2)1+2z 2 +3x —6x 2 —6x x )
dx (z +2 —=z) .

If we denote v = 1+ 2z ¢ 4+ 3z — 6z x — 6z z , then % < 0, thus
ve o o ) >v(e e 0 )=1—4zxx —3z >0for [z, 2] € M (Fig. 11).
H afs

ence 6“>0and

(x +2)1 -3z 42 2)

fle e 2 )<f(ev,z,2)= =gz ,z ).
T
Since 5
_g:x(x + 3z _1)<OinM,
Ox T
g(x,x)§g(2x,x):@<l.5,

we have f (z ;2 ;2 ) <g(x ,z )< 1l5forevery [ ,2 |]e M,z <z .
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VII. Let 22 >z . We pack @ ;@ ,... as in VI. All squares can be packed
into a rectangle R by Fig. 8. The area of R is
fle,z,2)=(x +2)2¢ 4+a)=
(x +2)l—2 42 =3¢ vz 2 +20 2 —x x)

r +xr —=x ’

%_(1‘ +2)(142z 2 +3¢ —6z x —6xx)>

or (z +2 —=z) -
>(x +z)1+22 2 + 32 —6xx—6x)>0
- (x +2 —x)

for [t ,# ] € M (Fig. 11), 2 <z . Hence f (z ,z ,2 )< f(x ,z ,2 ). Denot-

ing
hiz jx)=f(z = ,x):($ +z )(l-z =3 +3l‘x)’

X

we have

h -1 h 1-

Oh gy gy 420 =D g Oh 19
Ox z Ox z

in M . It follows from this that h is maximal in M at some from the points

Z ,Z But h(Z )<153,h(Z )< 153

>0

VIII. By (2) we can pack Q ,Q , ... into a rectangle P with sides # +z and
aife +(a—x )z +2¢ —2 )=1—2 —2x —2 , ie

_1—x —x —3r +xx +2¢v =z
- r +2x —=x '

a

All squares can be packed into a rectangle R by Fig. 9. Its area is

(x +22)1l—2 =32 +2x ¢ 422z )

f(x,x,x): r +2x —=x

Since
of  (xr +2¢ )(14+42 x +3¢r +3x —62 x —12xx)>
dx (x +2¢x —x) -

>(x +2z )(1—22¢ &z — 6z )
- (x +2¢ —2)
for [ ,# ] € M (Fig. 11),2 <z ,wehave f (z ;2 ,2 )< f (¢ ,2 ,2 ). If we
denote

>0

k(z o )= [ (z ,x,x):(l‘ + 2z )561111» +2$x)’

then the system
Ok x (6 +4z xr +2 —1)_0
ox (x +2) -
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ok x +2x +4x 2 — 10z z — 8z
ox (z +z)
has no solution in the interior of M . Therefore the function & has a maximum on

the boundary of M . An easy calculation shows that this maximumis at the point

Z (Fig. 11) and k(Z )< 1.53.

=0

Further
6f_2xa: +8 x —4dexxax +8x —3xx —2vx —v —|—3J:>
x (x +2¢ —2) -
Or —
> r —=x 50
(x +2¢ —2)
for[z ,# | e M (Fig. 11), x §x Itmeansthatf(x z, e )< f(042,2 ,2).
If we denote (2 ,2 )= f (0.42,2 ,x ), then
do (0424 22 )(1—1—1681‘ +32 +32 —252x — 12z »)

“) O (042422 —z )

For w(z ,x )=1+1.68z +3x +32 —2.52¢ — 12z # and for # > 0.35 we
have w(z ,# ) < w(zx ,0.35) =3z — 252z +0.4855 < 0 for all z € (0.34,0.39).
Similarly, if # < 0.34, then w(z ,2 ) > w(z ,0.34) = 3z — 2.4z 4049 >0
for « € (0.34,0.39). In consequence of this the function ¢ has a maximum
for # € (0.34,0.35). We shall estimate maxy ¢(z ,z ) for T = (0.34,0.39) x
% (0.34,0,35). Tt follows from 2% < 0, 2% < 0 that —0.041 = w(0.39,0.35) <
<w(z ,z ) <w(0.34,0.34) = 0.0208. Since

0.42 4+ 2« < 0.42+0.78
(042422 —xz ) — (0.42+0.33)

< 2.2

bl

we have in regard of (4) |22 ~| < 0.1in 7. Further

3@_(

X

0.148176 + 1.0584x +0.84x x — 084z — 8z +

+lde ¢ — 8z +6x —2x)/(0424+22 —x ) .

Since the function
t(x ,x ) =0.148176+1.0584x +0.842 » —0.84x —8x +14x x —8x = +6x —2x

satisfies 66—;2 0, aaxt < 0, we have —0.01885 = #(0.34,0.35) < t(x ,z ) <
< t(0.39,0.34) = 0.019828 and because of 1/(0.424+ 2z — 2z ) < 1.8 we get
2o | <0.04in 7.

it C T 1s a square with side of length 0.01, then for Y | Y &€ U the inequality
(5) lp(Y) —(Y")] < 0.0014

|5

is satisfied. Since the function ¢ gets values less than 1.527 at the points [z ,0.34]
for € {0.34,0.35,0.36,0.37,0.38}, (5) yields ¢(x ,2 ) < 1.53in T.
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P
P
[
[ 0,0,
0,
QI Qz Q3 Qz Q3
Fig. 9 Fig. 10

IX. Let [ ,2 ] € M ={0.42,0.50) x (0.29,0.37), # +2 >z . By (2) we can
pack @ ,Q ,... into a rectangle P with sides ¢ and ¢ 4+ 2 + =z if

zt +a—z )z v 42 —2 )=1l—2 —2 —2x —2v —x,
le
l—2 —¢ —2 —2 =3¢ +2(x +2 +2)
r +r +xr —«x ’
All squares can be packed into a rectangle R (Fig. 10) with sides  + 2 + 2 |
r +x +a Ttsareais f(z ,z 2,2 2 )=(x +2 +2)|x +2 )z +2 +

+r —z)+1l—2 —2x —x —x =3z vz (x +z +2)]/(x +2 +2 —2x ).
Evidently g—ij > 0, hence

a =

fle,oe,c,2,2)<f(zx,x,z,2,c)=mx o 0,0 )=

(2 ) e 4202 +rx +1l-2 —2 -3z +x )
r +x tr —x
Becauseofg—?l:[x (2 +2 422 422 +2x 2 —143x —20 2 —2 x —
—zz)+(x +x =2z )z +2 +2 )z +2 +2 —z)]/(x +2 +2 —2x ) <
< (2-05 +3-037 +037—1+32 —1.742 )—0.1-0.71
- (x +2 +2 —2)

_ 3x —1.74x +0.2807x — 0.05041 <
B (x +2 +2 —2)
for = < 0.37, m has a maximum in M for = 0.42. Similarly,
g—;’z =z +2 4z )z 422 )z +2 +2 —x )—z (x  +2z ¢ +2x ¢ +1—-2 —
—x =3¢ 4z a)]f(x +2 +2 —x ) > [(0.71 4+ 2 )(0.42 + 22 ) - 0.71—
—x (0.50-0.374+0.74z +0.50x +1-0.42 —x 4050z )]/(z +2 +2 —2x ) =
~0.2117224-0.2978x —0.32z + =
B (x +2 +2 —2)

0

>0,
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and hence m has a maximum for x = 0.37.
Further, on the assumptions « = 0.42,2 = 0.37, using &z >z ,

om S 0.723956 — 0.3318x — 1582z — 09792 —1.16x ¢ +2 z +3x — 0.42«

dr = (z +2 +z —z2)
Since the function s(x ,z ) = 0.723956 — 0.33182» — 1.582 — 0.979z —
—1.162 ¢ +a « + 3z — 0.422 satisfies 66—;’ <0, 66—;5 < 0, we have s(x ,z ) >
> 5(0.37,0.37) > 0, i.e. g—;’z > 0 and hence m has a maximum for « = 0.37. We
find easily that m is maximal if ¥ = —=¥——— and that the maximal value of
f inM is
3.48 — /6.8349
f (0.42,0.37,0.37,0.37,f) < 1.53.

0.645

2 2 =
3x1 +2xe2 +3x2 =2

2 . 2 _
7x[ + 6x,Xy+ 7xy =4

0.27

0.28

7 =[047,047] 7 =[0.51,0.42]

Z =1[055,035] Z =1[0.59,0.31]

7 =[0.62,0.28) 7 =][0.51,0.47]

Z =1[055,042] Z =1[0.59,0.35]

Z =[062,031] Z =[0.39,0.39

7 =1[042,037] Z =][0.50,0.32

7 =1[054,031] Z =][0.56,0.28

) 7 =1[042,034 Z =][0.46,0.29
0.27 0.645

Fig. 11

X.Let [ ,a ]€ M ,z +2 <& .Asin VIII, the squares can be packed into
a rectangle R with area

(x +22)1l—2 =32 +2x ¢ 422z )
r +2z —=x '

fe, o, 0)=

Since
of >2xx 44z x +3z —=x

dx ~ (x +22 —x)

>0,

]
]
]
]
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%Z(r +2e)[l+4z 2 +3x +3(x —2z ) —6x (x —x )—
(x +22¢)(1—3x + 182 —8zx x)
(x +2¢ —2)
for[¢ ;& ]€ M, f ismaximalforz = 05,2 =0.5—a . It is easy to show that
F 05,2 ,05—2)<f(05,0.29,021)< 1.5for z € (0.29,0.37).

Since the domains M ..., M cover M, the proof is completed.

122 (¢ —2z)]/(x +22 —2 ) = >0
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