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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 75 { 83ON PACKING OF SQUARES INTO A RECTANGLEPAVEL NOVOTN�YAbstract. It is proved in this paper that any system of squares with totalarea 1 may be packed into a rectangle whose area is less then 1:53:The following problem is formulated in [7]: Determine the smallest number Ssuch that any system of squares with total area 1 may be (parallelly) packed intoa rectangle of area S:This problem was posed by L. Moser [4]. S � 1+

p
2

2

_=1:207 follows from con-sidering two squares of sides x and y, where x > y; x2 + y 2 = 1 and x(x + y) ismaximal. Novotn�y [8] proved that any system of three squares with total area 1may be packed into a rectangle of area 1:227759 (this area is necessary for packingof three squares with sides 0:7297177; 0:5588698 and 0:3939246). The four squareswith sides x
1

=q 1

2

, x
2

= x
3

= x
4

=q 1

6

show that S � 2+

p
3

3

> 1:244:Moon and Moser [3] found �rst results for the upper bound. They proved that(1) it is possible to pack any system of squares with sides x
1

� x
2

� x
3

� � � �and with total area 1 into a square of side a = x
1

+p1� x2

1

:A consequence of this is that any system of squares with total area 1 may bepacked into a square of area 2.Meir and Moser [2] extended the result (1) and they proved that(2) any system of squares with total area V can be packed into a rectangleof size a
1

� a
2

if a
1

> x
1

; a
2

> x
1

and x2

1

+ (a
1

� x
1

)(a
2

� x
1

) � V:Some further results for the upper bound were published by Kleitman andKrieger [1]: Any system of squares with total area 1 can be packed into a rectangleof size p2�q 4

3

; its area is q 8

3

_=1:633: It follows from this result that(3) any system of squares with total area V can be packed into a rectanglewith sides p2V and q 4 V
3

:1991 Mathematics Subject Classi�cation : 52C15.Key words and phrases: packing of squares.Received February 22, 1995.



76 PAVEL NOVOTN�YThe following theorem improves the upper estimate for S:Theorem. Any system of squares with total area 1may be packed into a rectanglewhose area is less than 1:53:Proof. We denote the squares Q
1

; Q
2

; Q
3

; : : : and their sides x
1

� x
2

� x
3

� � � � :We shall pack the squares in the dependence upon x
1

; x
2

as it follows:I. Let x
1

� q 4

7

: By (3) we can pack the squares Q
2

; Q
3

; : : : into a rectangleP with sides p2(1� x2

1

);q 4(1 �x21 )

3

and the whole system can be packed intoa rectangle R with sides x
1

and x
1

+p2(1� x2

1

) (Fig.1). The area of R is lessthan 1:53: Fig. 1 Fig. 2II. Let 0:645 � x
1

� q 4

7

: We pack the squares Q
2

; Q
3

; : : : as in I and allsquares can be packed into a rectangle R with sidesq 4(1 �x21 )

3

and x
1

+p2(1� x2

1

)(Fig.2). The area of R is less than 1:53 for every x
1

2 h0:645;p4=7i:III. Let x
1

� 0:27: By (1) the squares can be packed into a square R of sidex
1

+p1� x2

1

; its area 1 + 2x
1

p1� x2

1

< 1:53 for every x
1

� 0:27:It remains to investigate the domainM = f[x
1

; x
2

]; 0:27 � x
1

� 0:645; 0 < x
2

� x
1

g:IV. By (3) we can pack the squares Q
3

; Q
4

; : : : into a rectangle P with sidesp2(1� x2

1

� x2

2

) and q 4(1 �x21�x22 )

3

: All squares can be packed into a rectangle Rby Fig. 3 if x
1

+ x
2

� p2(1� x2

1

� x2

2

); i.e. 3x2

1

+ 2x
1

x
2

+ 3x2

2

� 2, or by Fig. 4if x
1

+ x
2

�p2(1� x2

1

� x2

2

):The area of R from Fig. 3 isf
1

(x
1

; x
2

) = (x
1

+ x
2

)�x
1

+ 2p3q1� x2

1

� x2

2

� :We have@f
1@x

1

= 1p3(1� x2

1

� x2

2

) �2� 4x2

1

� 2x2

2

� 2x
1

x
2

+ (2x
1

+ x
2

)q3(1� x2

1

� x2

2

)� :If we denote u(x
1

; x
2

) = 2� 4x2

1

� 2x2

2

� 2x
1

x
2

+ (2x
1

+x
2

)p3(1� x2

1

� x2

2

); thenevidently @u@x1 < 0; @u@x2 < 0 in M
1

(Fig. 11). Hence



ON PACKING OF SQUARES INTO A RECTANGLE 77u(x
1

; x
2

) � u(0:645; 0:645) > 0; @f1@x1 > 0; thus f
1

(x
1

; x
2

) � f
1

(0:645; x
2

) for[x
1

; x
2

] 2M
1

: We verify easily that f
1

(0:645; x
2

) < 1:53 for every x
2

� 0:645:Fig. 3 Fig. 4The area of R from Fig. 4 isf
2

(x
1

; x
2

) = �x
1

+ 2p3q1� x2

1

� x2

2

�q2(1� x2

1

� x2

2

);@f
2@x

1

= p2p1� x2

1

� x2

2

�1� 2x2

1

� x2

2

� 4x
1p3q1� x2

1

� x2

2

� < 0for [x
1

; x
2

] 2 M
2

(Fig.11). Evidently @f2@x2 < 0, too, and since f
2

(Zi) < 1:53 fori 2 f1; 2; 3; 4; 5g; we have f
2

(x
1

; x
2

) < 1:53 for every [x
1

; x
2

] 2M
2

:V. We pack the squares Q
3

; Q
4

; : : : as in IV. All squares can be packed into arectangle R by Fig. 5 ifx
1

+ x
2

�r4(1� x2

1

� x2

2

)3 ; i.e. 7x2

1

+ 6x
1

x
2

+ 7x2

2

� 4;or by Fig. 6 if x
1

+ x
2

�r4(1� x2

1

� x2

2

)3 :The area of R from Fig. 5 isf
3

(x
1

; x
2

) = (x
1

+ x
2

)�x
1

+q2(1� x2

1

� x2

2

)� :Since @f3@x1 > 0; @f3@x2 > 0 in M
3

(Fig. 11) and f
3

(Zi) < 1:53 for i 2 f6; 7; 8; 9g;f
3

(x
1

; x
2

) < 1:53 is ful�lled for every [x
1

; x
2

] 2M
3

:Fig. 5 Fig. 6



78 PAVEL NOVOTN�YThe area of R from Fig. 6 isf
4

(x
1

; x
2

) = �x
1

+q2(1� x2

1

� x2

2

)� 2p3q1� x2

1

� x2

2

:Since @f4@x1 < 0; @f4@x2 < 0 in M
4

(Fig. 11) and f
4

(Zi) < 1:53 for i 2 f10; 11; : : :; 14g;we have f
4

(x
1

; x
2

) < 1:53 for every [x
1

; x
2

] 2M
4

:VI. Let 2x
2

� x
1

: By (2) we can pack the squares Q
4

; Q
5

; : : : into a rectangleP with sides a and x
1

+ x
2

if x2

4

+ (a� x
4

)(x
1

+ x
2

� x
4

) = 1� x2

1

� x2

2

� x2

4(� 1� x2

1

� x2

2

� x2

3

): It is valid fora = 1� x2

1

� x2

2

� 3x2

4

+ x
1

x
4

+ x
2

x
4x

1

+ x
2

� x
4

:All squares can be packed into a rectangle R by Fig. 7: Its area isf
5

(x
1

; x
2

; x
4

) = (x
1

+ x
2

)(x
1

+ a) = (x
1

+ x
2

)(1� x2

2

� 3x2

4

+ x
1

x
2

+ x
2

x
4

)x
1

+ x
2

� x
4

:We have @f
5@x

4

= (x
1

+ x
2

)(1 + 2x
1

x
2

+ 3x2

4

� 6x
1

x
4

� 6x
2

x
4

)(x
1

+ x
2

� x
4

) 2

:If we denote v = 1 + 2x
1

x
2

+ 3x2

4

� 6x
1

x
4

� 6x
2

x
4

; then @v@x4 < 0; thusv(x
1

; x
2

; x
4

) � v(x
1

; x
2

; x
2

) = 1 � 4x
1

x
2

� 3x2

2

> 0 for [x
1

; x
2

] 2 M
5

(Fig. 11).Hence @f5@x4 > 0 andf
5

(x
1

; x
2

; x
4

) � f
5

(x
1

; x
2

; x
2

) = (x
1

+ x
2

)(1 � 3x2

2

+ x
1

x
2

)x
1

= g(x
1

; x
2

):Since @g@x
1

= x
2

(x2

1

+ 3x2

2

� 1)x2

1

< 0 in M
5

;g(x
1

; x
2

) � g(2x
2

; x
2

) = 3(1� x2

2

)2 < 1:5;we have f
5

(x
1

; x
2

; x
4

) � g(x
1

; x
2

) < 1:5 for every [x
1

; x
2

] 2M
5

; x
4

� x
2

:
Fig. 7 Fig. 8



ON PACKING OF SQUARES INTO A RECTANGLE 79VII. Let 2x
2

� x
1

: We pack Q
4

; Q
5

; : : : as in VI. All squares can be packedinto a rectangle R by Fig. 8: The area of R isf
6

(x
1

; x
2

; x
4

) = (x
1

+ x
2

)(2x
2

+ a) == (x
1

+ x
2

)(1� x2

1

+ x2

2

� 3x2

4

+ x
1

x
4

+ 2x
1

x
2

� x
2

x
4

)x
1

+ x
2

� x
4

;@f
6@x

4

= (x
1

+ x
2

)(1 + 2x
1

x
2

+ 3x2

4

� 6x
1

x
4

� 6x
2

x
4

)(x
1

+ x
2

� x
4

)2

�� (x
1

+ x
2

)(1 + 2x
1

x
2

+ 3x2

2

� 6x
1

x
2

� 6x2

2

)(x
1

+ x
2

� x
4

)2

> 0for [x
1

; x
2

] 2M
6

(Fig. 11), x
4

� x
2

: Hence f
6

(x
1

; x
2

; x
4

) � f
6

(x
1

; x
2

; x
2

): Denot-ing h(x
1

; x
2

) = f
6

(x
1

; x
2

; x
2

) = (x
1

+ x
2

)(1� x2

1

� 3x2

2

+ 3x
1

x
2

)x
1

;we have @h@x
1

= 2x
2

� 2x
1

+ x
2

(3x2

2

� 1)x2

1

< 0; @h@x
2

= 2x
1

+ 1� 9x2

2x
1

> 0in M
6

: It follows from this that h is maximal in M
6

at some from the pointsZ
12

; Z
16

: But h(Z
12

) < 1:53; h(Z
16

) < 1:53:VIII. By (2) we can pack Q
4

; Q
5

; : : : into a rectangle P with sides x
1

+x
2

anda if x2

4

+ (a� x
4

)(x
1

+ 2x
2

� x
4

) = 1� x2

1

� x2

2

� x2

4

; i.e.a = 1� x2

1

� x2

2

� 3x2

4

+ x
1

x
4

+ 2x
2

x
4x

1

+ 2x
2

� x
4

:All squares can be packed into a rectangle R by Fig. 9: Its area isf
7

(x
1

; x
2

; x
4

) = (x
1

+ 2x
2

)(1� x2

2

� 3x2

4

+ 2x
1

x
2

+ 2x
2

x
4

)x
1

+ 2x
2

� x
4

:Since @f
7@x

4

= (x
1

+ 2x
2

)(1 + 4x
1

x
2

+ 3x2

2

+ 3x2

4

� 6x
1

x
4

� 12x
2

x
4

)(x
1

+ 2x
2

� x
4

)2

�� (x
1

+ 2x
2

)(1� 2x
1

x
2

� 6x2

2

)(x
1

+ 2x
2

� x
4

) 2

> 0for [x
1

; x
2

] 2M
7

(Fig. 11), x
4

� x
2

; we have f
7

(x
1

; x
2

; x
4

) � f
7

(x
1

; x
2

; x
2

): If wedenote k(x
1

; x
2

) = f
7

(x
1

; x
2

; x
2

) = (x
1

+ 2x
2

)(1� 2x2

2

+ 2x
1

x
2

)x
1

+ x
2

;then the system @k@x
1

= x
2

(6x2

2

+ 4x
1

x
2

+ 2x2

1

� 1)(x
1

+ x
2

)2

= 0;



80 PAVEL NOVOTN�Y@k@x
2

= x
1

+ 2x3

1

+ 4x2

1

x
2

� 10x
1

x2

2

� 8x3

2(x
1

+ x
2

)2

= 0has no solution in the interior of M
7

: Therefore the function k has a maximum onthe boundary ofM
7

: An easy calculation shows that this maximum is at the pointZ
15

(Fig. 11) and k(Z
15

) < 1:53:Further@f
7@x

1

= 2x2

1

x
2

+ 8x
1

x2

2

� 4x
1

x
2

x
4

+ 8x3

2

� 3x2

2

x
4

� 2x
2

x2

4

� x
4

+ 3x3

4(x
1

+ 2x
2

� x
4

)2

�� 9x3

2

� x
2(x

1

+ 2x
2

� x
4

) 2

> 0for [x
1

; x
2

] 2M
8

(Fig. 11), x
4

� x
2

: It means that f
7

(x
1

; x
2

; x
4

) � f
7

(0:42; x
2

; x
4

):If we denote '(x
2

; x
4

) = f
7

(0:42; x
2

; x
4

); then(4) @'@x
4

= (0:42 + 2x
2

)(1 + 1:68x
2

+ 3x2

2

+ 3x2

4

� 2:52x
4

� 12x
2

x
4

)(0:42 + 2x
2

� x
4

) 2

:For w(x
2

; x
4

) = 1+ 1:68x
2

+ 3x2

2

+ 3x2

4

� 2:52x
4

� 12x
2

x
4

and for x
4

� 0:35 wehave w(x
2

; x
4

) � w(x
2

; 0:35) = 3x2

2

� 2:52x
2

+ 0:4855 < 0 for all x
2

2 h0:34; 0:39i:Similarly, if x
4

� 0:34; then w(x
2

; x
4

) � w(x
2

; 0:34) = 3x2

2

� 2:4x
2

+ 0:49 > 0for x
2

2 h0:34; 0:39i: In consequence of this the function ' has a maximumfor x
4

2 h0:34; 0:35i: We shall estimate maxT '(x2

; x
4

) for T = h0:34; 0:39i ��h0:34; 0; 35i: It follows from @w@x2 < 0; @w@x4 < 0 that �0:041 = w(0:39; 0:35) �� w(x
2

; x
4

) � w(0:34; 0:34) = 0:0208: Since0:42 + 2x
2(0:42 + 2x

2

� x
4

)2

� 0:42 + 0:78(0:42 + 0:33)2

< 2:2;we have in regard of (4) j @'@x4 j < 0:1 in T: Further@'@x
2

= (0:148176 + 1:0584x
2

+ 0:84x
2

x
4

� 0:84x2

4

� 8x3

2

++14x2

2

x
4

� 8x
2

x2

4

+ 6x3

4

� 2x
4

)=(0:42 + 2x
2

� x
4

)2 :Since the functiont(x
2

; x
4

) = 0:148176+1:0584x
2

+0:84x
2

x
4

�0:84x2

4

�8x3

2

+14x2

2

x
4

�8x
2

x2

4

+6x3

4

�2x
4satis�es @t@x2 > 0; @t@x4 < 0; we have �0:01885 = t(0:34; 0:35) � t(x

2

; x
4

) �� t(0:39; 0:34) = 0:019828 and because of 1=(0:42 + 2x
2

� x
4

)2 < 1:8 we getj @'@x2 j < 0:04 in T:If U � T is a square with side of length 0:01; then for Y
1

; Y
2

2 U the inequality(5) j'(Y
1

) � '(Y
2

)j < 0:0014is satis�ed. Since the function ' gets values less than 1:527 at the points [x
2

; 0:34]for x
2

2 f0:34; 0:35; 0:36;0:37;0:38g; (5) yields '(x
2

; x
4

) < 1:53 in T:
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Fig. 9 Fig. 10IX. Let [x

1

; x
2

] 2M
9

= h0:42; 0:50i� h0:29; 0:37i; x
2

+x
4

� x
1

: By (2) we canpack Q
6

; Q
7

; : : : into a rectangle P with sides a and x
1

+ x
2

+ x
3

ifx2

6

+ (a� x
6

)(x
1

+ x
2

+ x
3

� x
6

) = 1� x2

1

� x2

2

� x2

3

� x2

4

� x2

6

;i.e a = 1� x2

1

� x2

2

� x2

3

� x2

4

� 3x2

6

+ x
6

(x
1

+ x
2

+ x
3

)x
1

+ x
2

+ x
3

� x
6

:All squares can be packed into a rectangle R (Fig. 10) with sides x
1

+ x
2

+ x
3

;x
2

+ x
4

+ a: Its area is f
8

(x
1

; x
2

; x
3

; x
4

; x
6

) = (x
1

+ x
2

+ x
3

)[(x
2

+ x
4

)(x
1

+ x
2

++x
3

� x
6

) + 1� x2

1

� x2

2

� x2

3

� x2

4

� 3x2

6

+ x
6

(x
1

+ x
2

+ x
3

)]=(x
1

+ x
2

+ x
3

� x
6

):Evidently @f8@x4 > 0; hencef
8

(x
1

; x
2

; x
3

; x
4

; x
6

) � f
8

(x
1

; x
2

; x
3

; x
3

; x
6

) = m(x
1

; x
2

; x
3

; x
6

) == (x
1

+ x
2

+ x
3

)(x
1

x
2

+ 2x
2

x
3

+ x
1

x
3

+ 1� x2

1

� x2

3

� 3x2

6

+ x
1

x
6

)x
1

+ x
2

+ x
3

� x
6

:Because of @m@x1 = [x
6

(2x2

1

+ x2

2

+ 2x2

3

+ x
1

x
2

+ x
1

x
3

� 1 + 3x2

6

� 2x
1

x
6

� x
2

x
6

��x
3

x
6

)+ (x
2

+x
3

� 2x
1

)(x
1

+x
2

+x
3

)(x
1

+x
2

+x
3

�x
6

)]=(x
1

+x
2

+x
3

�x
6

)2 �� x
6

(2 � 0:52 + 3 � 0:372 + 0:37� 1 + 3x2

6

� 1:74x
6

)� 0:1 � 0:712(x
1

+ x
2

+ x
3

� x
6

)2

== 3x3

6

� 1:74x2

6

+ 0:2807x
6

� 0:05041(x
1

+ x
2

+ x
3

� x
6

)2

< 0for x
6

� 0:37; m has a maximum in M
9

for x
1

= 0:42: Similarly,@m@x2 = [(x
1

+x
2

+x
3

)(x
1

+2x
3

)(x
1

+x
2

+x
3

�x
6

)�x
6

(x
1

x
2

+2x
2

x
3

+x
1

x
3

+1�x2

1

��x2

3

� 3x2

6

+ x
1

x
6

)]=(x
1

+ x
2

+ x
3

� x
6

)2 � [(0:71 + x
3

)(0:42 + 2x
3

) � 0:71��x
3

(0:50 �0:37+0:74x
3

+0:50x
3

+1�0:422 �x2

3

+0:50x
3

)]=(x
1

+x
2

+x
3

�x
6

)2 == 0:211722+ 0:2978x
3

� 0:32x2

3

+ x3

3(x
1

+ x
2

+ x
3

� x
6

)2

> 0;



82 PAVEL NOVOTN�Yand hence m has a maximum for x
2

= 0:37:Further, on the assumptions x
1

= 0:42; x
2

= 0:37; using x
3

� x
6

;@m@x
3

� 0:723956� 0:3318x
3

� 1:58x2

3

� 0:979x
6

� 1:16x
3

x
6

+ x2

3

x
6

+ 3x3

6

� 0:42x2

6(x
1

+ x
2

+ x
3

� x
6

)2

:Since the function s(x
3

; x
6

) = 0:723956 � 0:3318x
3

� 1:58x2

3

� 0:979x
6

��1:16x
3

x
6

+ x2

3

x
6

+ 3x2

6

� 0:42x2

6

satis�es @s@x3 < 0; @s@x6 < 0; we have s(x
3

; x
6

) �� s(0:37; 0:37) > 0; i.e. @m@x3 > 0 and hence m has a maximum for x
3

= 0:37: We�nd easily that m is maximal if x
6

= 3 :48 �p6 :8349

3

and that the maximal value off
8

in M
9

is f
8

�0:42; 0:37; 0:37; 0:37; 3:48�p6:83493 � < 1:53:
Z

1

= [0:47; 0:47] Z
2

= [0:51; 0:42]Z
3

= [0:55; 0:35] Z
4

= [0:59; 0:31]Z
5

= [0:62; 0:28] Z
6

= [0:51; 0:47]Z
7

= [0:55; 0:42] Z
8

= [0:59; 0:35]Z
9

= [0:62; 0:31] Z
10

= [0:39; 0:39]Z
11

= [0:42; 0:37] Z
12

= [0:50; 0:32]Z
13

= [0:54; 0:31] Z
14

= [0:56; 0:28]Z
15

= [0:42; 0:34] Z
16

= [0:46; 0:29]Fig. 11X. Let [x
1

; x
2

] 2M
9

; x
2

+ x
4

� x
1

: As in VIII, the squares can be packed intoa rectangle R with areaf
7

(x
1

; x
2

; x
4

) = (x
1

+ 2x
2

)(1� x2

2

� 3x2

4

+ 2x
1

x
2

+ 2x
2

x
4

)x
1

+ 2x
2

� x
4

:Since @f
7@x

1

� 2x2

1

x
2

+ 4x
1

x2

2

+ 3x3

2

� x
2(x

1

+ 2x
2

� x
4

)2

> 0;
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7@x

4

� (x
1

+ 2x
2

)[1 + 4x
1

x
2

+ 3x2

2

+ 3(x
1

� x
2

)2 � 6x
1

(x
1

� x
2

)��12x
2

(x
1

� x
2

)]=(x
1

+ 2x
2

� x
4

)2 = (x
1

+ 2x
2

)(1 � 3x2

1

+ 18x2

2

� 8x
1

x
2

)(x
1

+ 2x
2

� x
4

)2

> 0for [x
1

; x
2

] 2M
9

; f
7

is maximal for x
1

= 0:5; x
4

= 0:5�x
2

: It is easy to show thatf
7

(0:5; x
2

; 0:5� x
2

) � f
7

(0:5; 0:29; 0:21)< 1:5 for x
2

2 h0:29; 0:37i:Since the domains M
1

; : : : ;M
9
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