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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 13 { 27ON THE OSCILLATION OF AN mmmTH ORDER PERTURBEDNONLINEAR DIFFERENCE EQUATIONP. J. Y. Wong and R. P. AgarwalAbstract. We o�er su�cient conditions for the oscillation of all solutions ofthe perturbed di�erence equationj�my(k)j��1�my(k) +Q(k; y(k � �k);�y(k � �k); � � � ;�m�2y(k � �k))= P (k; y(k � �k);�y(k � �k); � � � ;�m�1y(k � �k)); k � k0where � > 0: Examples which dwell upon the importance of our results arealso included. 1. INTRODUCTIONThe theory of di�erence equations and their applications have been and still arereceiving intensive attention. In fact, in the last few years several monographs andhundreds of research papers have appeared, e.g., [1,8] cover more than 450 articles.In this paper we shall consider the mth order perturbed di�erence equation
j �my(k)j

��1�my(k) + Q(k; y(k � �k);�y(k � �k); � � � ;�m�2y(k � �k))= P (k; y(k � �k);�y(k � �k); � � � ;�m�1y(k � �k)); k � k0 (1:1)where � > 0 and � is the forward di�erence operator de�ned as �y(k) = y(k +1) � y(k): Further, we suppose that �k 2 Z and limk!1(k � �k) = 1 : Throughoutit is also assumed that there exist real sequences f q(k)g ; f p(k)g and a functionf : < ! < such that(I) uf(u) > 0 for all u 6= 0;(II) Q(k; x(k � �k);�x(k � �k); � � � ;�m�2x(k � �k))f(x(k � �k)) � q(k);P (k; x(k � �k);�x(k � �k); � � � ;�m�1x(k � �k))f(x(k � �k)) � p(k) for all x 6= 0;and1991 Mathematics Subject Classi�cation : 39A10.Key words and phrases: oscillatory solutions, di�erence equations.Received August 31, 1995.



14 P. J. Y. WONG AND R. P. AGARWAL(III) limk!1[q(k) � p(k)] � 0:By a solution of (1.1), we mean a nontrivial sequence f y(k)g de�ned for k �min`�0(` � �`); �my(k) is not identically zero, and y(k) ful�lls (1.1) for k � k0:A solution f y(k)g is said to be oscillatory if it is neither eventually positive nornegative, and nonoscillatory otherwise. Throughout, for i � 0 we shall use theusual factorial notation k(i) = k(k � 1) � � � (k � i + 1):In the literature, numerous oscillation criteria for nonlinear di�erence and dif-ferential equations related to (1.1) have been established, e.g., see [1-4,7,9, 13-20and the references cited therein]. We refer particularly to [2-4] in which oscillationtheorems for higher order nonlinear di�erence equations are presented. Thanda-pani and Sundaram [12] have recently considered a special case of (1.1)(1:2) �2my(k) + q(k)f(y(k � �k)) = 0; k � k0where f q(k)g is an eventually positive sequence. We have extended their workto general higher order equations. In fact, our results include, as special cases,known oscillation theorems not only for (1.2), but also for several other particulardi�erence equations considered in [1]. Further, our results generalize those in[11,19]. Finally, we remark that the paper is partly motivated by the analogybetween di�erential and di�erence equations, in fact discrete version of the resultsin [5,6,10] have been developed.2. PRELIMINARIESLemma 2.1. [1, p.29] Let 1 � j � m � 1 and y(k) be de�ned for k � k0: Then,(a) lim infk!1�jy(k) > 0 implies limk!1�iy(k) = 1 ; 0 � i � j � 1;(b) lim supk!1�jy(k) < 0 implies limk!1�iy(k) = �1 ; 0 � i � j � 1:Lemma 2.2. [1, p.29] (Discrete Kneser's Theorem) Let y(k) be de�ned for k � k0;and y(k) > 0 with �my(k) of constant sign for k � k0 and not identically zero.Then, there exists an integer p; 0 � p � m with (m + p) odd for �my(k) � 0 and(m + p) even for �my(k) � 0; such that(a) p � m � 1 implies (� 1)p+i�iy(k) > 0 for all k � k0; p � i � m � 1;(b) p � 1 implies �iy(k) > 0 for all large k � k0; 1 � i � p � 1:Lemma 2.3. [1, p.30] Let y(k) be de�ned for k � k0; and y(k) > 0 with �my(k) �0 for k � k0 and not identically zero. Then, there exists a large integer k1 � k0such that y(k) �

1(m � 1)! (k � k1)(m�1)�m�1y(2m�p�1k); k � k1where p is de�ned in Lemma 2.2.



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 153. MAIN RESULTSFor clarity the conditions used in the main results are listed as follows :(3:1) f is continuous and lim infjuj!1 f(u) > 0;(3:2) 1
X [q(k) � p(k)]1=� = 1 ;(3:3) f is nondecreasing;(3:4) limk!1 1k(m�1) k�mX`=k0(k � ` � 1)(m�1)[q(`) � p(`)]1=� = 1 ;f is nondecreasing; f(uv) � Mf(u)f(v) for u; v > 0(3:5) and some positive constant M;(3:6) Z �0 duf(u)1=� < 1 ; Z ��0 duf(u)1=� < 1 for all � > 0;(3:7) 1

X

n f(k(m�1))[q(k) � p(k)]o 1=� = 1 :Theorem 3.1. Suppose (3.1) and (3.2) hold.(a) If m is even or m = 1; then all solutions of (1.1) are oscillatory.(b) Ifm(� 3) is odd, then a solution y(k) of (1.1) is either oscillatory or �y(k)is oscillatory.Proof. Let f y(k)g be a nonoscillatory solution of (1.1), say, y(k) > 0 for k � k1 �k0: We shall consider only this case because the proof for the case y(k) < 0 fork � k1 � k0 is similar. Using (I) - (III), it follows from (1.1) that(3:8) j �my(k)j

��1�my(k) � [p(k) � q(k)]f(y(k � �k))
� 0; k � k1:Hence, we have(3:9) �my(k) � 0; k � k1:Case 1 m is evenIn view of (3.9), from Lemma 2.2 (here p is odd and 1 � p � m � 1; take i = 1in (b)) it follows that(3:10) �y(k) > 0; k � k1:



16 P. J. Y. WONG AND R. P. AGARWALLet(3:11) L = limk!1 y(k � �k):Then, since k � �k ! 1 and y(k) is increasing for large k (by (3.10)), we haveL > 0 and L is �nite or in�nite.(i) Suppose that 0 < L < 1 : Since f is continuous, we getlimk!1f(y(k � �k)) = f(L) > 0:Thus, there exists an integer k2 � k1 such that(3:12) f(y(k � �k)) �

12 f(L); k � k2:Now, from (3.8) we get(3:13) j �my(k)j

��1�my(k) + [q(k) � p(k)]f(y(k � �k)) � 0; k � k2which in view of (III) and (3.12) leads to(3:14) j �my(k)j

��1�my(k) + [q(k) � p(k)]12 f(L) � 0; k � k2:Using (3.9), inequality (3.14) is equivalent to
j �my(k)j

�
� [q(k) � p(k)]12 f(L); k � k2or(3:15) � �my(k) �

� [q(k) � p(k)]12 f(L)� 1=� ; k � k2:Summing (3.15) from k2 to (k � 1); we obtain(3:16) �m�1y(k) � �m�1y(k2) �

� 12 f(L)� 1=� k�1
X`=k2[q(`) � p(`)]1=�:By (3.2), the right side of (3.16) tends to �1 as k ! 1 : Thus, there exists aninteger k3 � k2 such that �m�1y(k) < 0; k � k3:It follows from Lemma 2.1(b) (j = m � 1) that y(k) ! �1 as k ! 1 : Thiscontradicts the assumption that f y(k)g is eventually positive.(ii) Suppose that L = 1 : By (3.1), we havelim infk!1 f(y(k � �k)) > 0:This implies the existence of an integer k2 � k1 such that(3:17) f(y(k � �k)) � A; k � k2



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 17for some A > 0: In view of (III) and (3.17), it follows from (3.13) that
j �my(k)j

��1�my(k) + [q(k) � p(k)]A � 0; k � k2:The rest of the proof is similar to that of Case 1(i).Case 2 m is oddHere, in view of (3.9), in Lemma 2.2 we have p is even and 0 � p � m � 1 andhence we cannot conclude that (3.10) is true. Let L be de�ned as in (3.11). Wenote that L > 0:(i) Suppose that �y(k) > 0 for k � k1; i.e., (3.10) holds. Then, L is �nite orin�nite and the proof follows as in Case 1.(ii) Suppose that �y(k) < 0 for k � k1: Then, L is �nite and the proof follows asin Case 1(i).(iii) Suppose that �y(k) is oscillatory. For the special case m = 1; (1.1) provides(3:18) j �y(k)j

��1�y(k) � [p(k) � q(k)]f(y(k � �k)) < 0; k � k1where in view of (3.2), we have noted and used in the last inequality(3:19) q(k) � p(k) > 0for su�ciently large k: It follows from (3.18) that�y(k) < 0; k � k1which contradicts the assumption that �y(k) is oscillatory.The proof of the theorem is now complete.Example 3.1. Consider the di�erence equation(3:20) j �4y(k)j

2�4y(k) + [y(k + 1)]3 � b+ 31229 � = b[y(k + 1)]3; k � 0where b = b(k; y(k + 1);�y(k + 1);�2y(k + 1)) is any function. Here, � = 3 andm = 4: Take k � �k � (k + 1) and f(y) = y3: Then, (3.1) clearly holds. Further,we have Q(k; y(k + 1);�y(k + 1);�2y(k + 1))f(y(k + 1)) = b+ 31229 � q(k)and P (k; y(k + 1);�y(k + 1);�2y(k + 1);�3y(k + 1))f(y(k + 1)) = b � p(k)and so (3.2) is satis�ed. It follows from Theorem 3.1(a) that all solutions of (3.20)are oscillatory. One such solution is given by f y(k)g = f (� 1)k=2k g :Example 3.2. Consider the di�erence equation(3:21) j �y(k)j

��1�y(k) + y(k � 2c) � (b+ 2�) = b y(k � 2c); k � 0



18 P. J. Y. WONG AND R. P. AGARWALwhere � > 0; c is any �xed integer, and b = b(k; y(k � 2c)) is any function. Here,m = 1: Take k � �k � (k � 2c) and f(y) = y: Then, it is obvious that (3.1) holds.Further, we have Q(k; y(k � 2c))f(y(k � 2c)) = b+ 2� � q(k)and P (k; y(k � 2c))f(y(k � 2c)) = b � p(k)and so (3.2) is satis�ed. Hence, Theorem 3.1(a) ensures that all solutions of (3.21)are oscillatory. One such solution is given by f y(k)g = f (� 1)k g :Example 3.3. Consider the di�erence equation(3:22) j �3y(k)j

��1�3y(k) + y(k) � b+ 4�(2k + 3)�k � = b y(k); k � 1where 0 < � < 1=2 and b = b(k; y(k);�y(k)) is any function. Here, m = 3: Takingk � �k � k and f(y) = y; we note that (3.1) holds. Next,Q(k; y(k);�y(k))f(y(k)) = b+ 4�(2k + 3)�k � q(k)and P (k; y(k);�y(k);�2y(k))f(y(k)) = b � p(k)lead to 1
X [q(k) � p(k)]1=� = 4 1

X

� 2k1=��1 + 3k1=� � < 1and hence (3.2) is not satis�ed. The conditions of Theorem 3.1 are violated. Infact, (3.22) has a solution given by f y(k)g = f (� 1)kk g ; and we observe that both
f y(k)g and f �y(k)g = f (� 1)k+1(2k+1)g are oscillatory. This illustrates Theorem3.1(b).Theorem 3.2. Suppose (3.3) and (3.4) hold. Then, the conclusion of Theorem3.1 follows.Proof. Suppose that f y(k)g is a nonoscillatory solution of (1.1), say, y(k) > 0 fork � k1 � k0: Using (I) - (III), from (1.1) we still get (3.8) and (3.9).Case 1 m is evenSince (3.9) holds, from Lemma 2.2 (take i = 1 in (b)) we obtain (3.10). Itfollows that(3:23) y(k) � y(k1) � a; k � k1:In view of (3.23) and the fact that limk!1(k � �k) = 1 ; there exists an integerk2 � k1 such that(3:24) y(k � �k) � a; k � k2:



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 19Since the function f is nondecreasing (condition (3.3)), (3.24) provides(3:25) f(y(k � �k)) � f(a) � A; k � k2:Now, from (3.8) we get (3.13) which on using (3.25) provides
j �my(k)j

��1�my(k) + [q(k) � p(k)]A � 0; k � k2:In view of (3.9), the above inequality is the same as
j �my(k)j

�
� [q(k) � p(k)]A; k � k2or(3:26) � �my(k) � f [q(k) � p(k)]Ag

1=� ; k � k2:By discrete Taylor's formula [1, p.26], y(k) can be expressed asy(k) = m�1
Xi=0 (k � k2)(i)i! �iy(k2) + 1(m � 1)! k�mX`=k2(k � ` � 1)(m�1)�my(`)which on rearranging and using (3.26) yieldsA1=�(m � 1)! k�mX`=k2(k � ` � 1)(m�1)[q(`) � p(`)]1=�

�

m�1
Xi=0 (k � k2)(i)i! �iy(k2) � y(k) �

m�1
Xi=0 (k � k2)(i)i! �iy(k2) ; k � k2:Dividing both sides by k(m�1); the above inequality becomesA1=�(m � 1)! 1k(m�1) k�mX`=k2(k � ` � 1)(m�1)[q(`) � p(`)]1=�(3:27) �

m�1
Xi=0 (k � k2)(i)i! 1k(m�1) �iy(k2); k � k2:By (3.4), the left side of (3.27) tends to 1 as k ! 1 : However, the right side of(3.27) is �nite as k ! 1 :Case 2 m is oddIn this case, taking note of (3.9), in Lemma 2.2 we have p is even and 0 � p �m � 1: Therefore, we cannot ensure that (3.10) holds.(i) Suppose that �y(k) > 0 for k � k1; i.e., (3.10) holds. The proof for this casefollows from that of Case 1.(ii) Suppose that �y(k) < 0 for k � k1: Then, y(k) # a (> 0) and so there existsa k2 � k1 such that (3.24) holds. The proof then proceeds as in Case 1.



20 P. J. Y. WONG AND R. P. AGARWAL(iii) Suppose that �y(k) is oscillatory. Condition (3.4) implies that1k(m�1) (k � (k � m) � 1)(m�1)[q(k � m) � p(k � m)]1=� > 0for su�ciently large k; which ensures that (3.19) holds for su�ciently large k:Hence, for the special case m = 1; we get (3.18) and it is seen from the proof ofTheorem 3.1 (Case 2(iii)) that this leads to some contradiction.The proof of the theorem is now complete.Example 3.4. Consider the di�erence equation(3:28) j �4y(k)j

2�4y(k) + [y(k + 1)]15 � b+ 312 212k+3� = b[y(k + 1)]15; k � 0where b = b(k; y(k+1);�y(k+1);�2y(k+1)) is any function. Here, � = 3; m = 4;and f(y) = y15; which is nondecreasing. Taking k � �k � (k + 1); we haveQ(k; y(k + 1);�y(k + 1);�2y(k + 1))f(y(k + 1)) = b+ 312 212k+3 � q(k)and P (k; y(k + 1);�y(k + 1);�2y(k + 1);�3y(k + 1))f(y(k + 1)) = b � p(k):We �nd that1k(m�1) k�mX`=k0(k � ` � 1)(m�1)[q(`) � p(`)]1=�= 1k(3) k�4X`=0(k � ` � 1)(3) � 81 � 24`+1 �

1k(3) 3(3) � 81 � 24(k�4)+1= 3(3) � 81 � 2k�323(k�4)k(3) � 3(3) � 81 � 2k�3; k � 7:Hence, (3.4) is satis�ed. By Theorem 3.2(a) all solutions of (3.28) are oscillatory.One such solution is given by f y(k)g = f (� 1)k=2k g :Remark 3.1. It is clear that conditions (3.1) and (3.2) are ful�lled for equation(3.28). Hence, Example 3.4 also illustrates Theorem 3.1(a).Remark 3.2. Equation (3.21) also satis�es conditions (3.3) and (3.4). Hence,Theorem 3.2(a) ensures that all solutions of (3.21) are oscillatory. We have seenthat one such solution is given by f y(k)g = f (� 1)k g :Remark 3.3. In Example 3.3, the condition (3.3) is satis�ed. To check whethercondition (3.4) is ful�lled, we note that



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 211k(m�1) k�mX`=k0(k � ` � 1)(m�1)[q(`) � p(`)]1=�= 1k(2) k�3X`=1(k � ` � 1)(2) 4(2`+ 3)`1=� � 4 (k � 2)(2)k(2) k�3
X`=1 � 2`1=��1 + 3`1=� � :Letting k ! 1 ; we get, in view of 0 < � < 1=2;limk!1 1k(2) k�3X`=1(k � ` � 1)(2) 4(2`+ 3)`1=� � 4 1

X`=1 � 2`1=��1 + 3`1=� � < 1and hence (3.4) is not satis�ed. The conditions of Theorem 3.2 are violated. Infact, it is noted that equation (3.22) has an oscillatory solution given by f y(k)g =
f (� 1)kk g where f �y(k)g is also oscillatory. Hence, Example 3.3 also illustratesTheorem 3.2(b).Theorem 3.3. Suppose �k = � �; � � 1 and (3.5) - (3.7) hold. Then, theconclusion of Theorem 3.1 follows.Proof. Again suppose that f y(k)g is a nonoscillatory solution of (1.1), say, y(k) >0 for k � k1 � k0: Using (I) - (III), from (1.1) we have(3:29) j �my(k)j

��1�my(k) � [p(k) � q(k)]f(y(k + �)) � 0; k � k1and therefore (3.9) holds.Case 1 m is evenSince (3.9) holds, from Lemma 2.2 (take i = 1 in (b), i = m � 1 in (a)) we getfor k � k1;(3:30) �y(k) > 0; �m�1y(k) > 0:Using �y(k) > 0 for k � k1 and Lemma 2.3, we �nd that there exists k2 � k1such thaty(k + �) � y(k)
� y � 2p�m+1 k �

�

1(m � 1)! � 2p�m+1 k � k2 � (m�1)�m�1y(k)
�

1(m � 1)! 2(p�m+1)(m�1) (k � 2m k2)(m�1)�m�1y(k); k � k2:It follows that(3:31) y(k + �) �

1(m � 1)! 2(p�m+1)(m�1) 12m�1 k(m�1)�m�1y(k)= A k(m�1)�m�1y(k); k � 2m+1 k2 +m � 2 � k3



22 P. J. Y. WONG AND R. P. AGARWALwhere A = 2(p�m)(m�1)=(m � 1)!:In view of (3.5), it follows from (3.31) thatf(y(k + �)) � f � A k(m�1)�m�1y(k)�

� Mf(A)f � k(m�1)�m�1y(k)�(3:32) � M2f(A)f � k(m�1) � f � �m�1y(k)� ; k � k3:Now, using (3.32) in (3.29) gives
j �my(k)j

��1�my(k) + [q(k) � p(k)]M2f(A)f � k(m�1) � f � �m�1y(k)�

� 0;k � k3which, on noting that �m�1y(k) > 0 for k � k3 and (3.9), is equivalent toM2f(A)f � k(m�1) � [q(k) � p(k)] �

j �my(k)j

�f (�m�1y(k)) ; k � k3or(3:33) n M2f(A)f � k(m�1) � [q(k) � p(k)]o 1=�
�

� �my(k)f (�m�1y(k))1=� ; k � k3:Summing (3.33) from k3 to k; we get(3:34)
� M2f(A)� 1=� P k̀=k3 � f(`(m�1))[q(`) � p(`)]	 1=�

�

P k̀=k3 � �my(`)f (�m�1y(`))1=�
�

R �m�1y(k3)0 duf(u)1=� :By (3.7), the left side of (3.34) tends to 1 as k ! 1 ; whereas the right side is�nite by (3.6).Case 2 m is oddHere, in view of (3.9), in Lemma 2.2 we have p is even and 0 � p � m � 1:Hence, instead of (3.30) we can only conclude that(3:35) �m�1y(k) > 0; k � k1:(i) Suppose that �y(k) > 0 for k � k1: The proof follows as in Case 1.



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 23(ii) Suppose that �y(k) < 0 for k � k1: Then, on using Lemma 2.3 we �nd thatthere exists k2 � k1 such thaty(k + �)
� y(2p�m+1 k + k + �)
�

1(m � 1)! � 2p�m+1 k + k + � � k2 � (m�1)�m�1y � 2m�p�1(2p�m+1 k + k + �)�

�

1(m � 1)! � 2p�m+1 k + k + � � k2 � (m�1) �m�1y(k)�m�1y(k) �m�1y � k + 2m�1(k + �)�

�

�(m � 1)! � 2p�m+1 k � k2 � (m�1)�m�1y(k)
�

�(m � 1)! 2(p�m+1)(m�1) (k � 2m k2)(m�1)�m�1y(k); k � k2where we have also used the fact that �m�1y(k) is nonincreasing (by (3.9)) and� = mink�k2 �m�1y(k + 2m�1(k + �))�m�1y(k) > 0:It follows thaty(k + �) �

�(m � 1)! 2(p�m+1)(m�1) 12m�1 k(m�1)�m�1y(k)= A� k(m�1)�m�1y(k); k � k3where A and k3 are de�ned in (3.31). The rest of the proof uses a similar argumentas in Case 1.(iii) Suppose that �y(k) is oscillatory. Condition (3.7) implies that
n f(k(m�1))[q(k) � p(k)]o 1=� > 0for su�ciently large k: This ensures that (3.19) holds for su�ciently large k:Hence,for the special case m = 1; we get (3.18) and we have seen from the proof ofTheorem 3.1 (Case 2(iii)) that this leads to some contradiction.The proof of the theorem is now complete.Example 3.5. Consider the di�erence equation(3:36) j �2y(k)j �2y(k) + y(k + 1) [b+ 16(k + 1)] = b y(k + 1); k � 0where b = b(k; y(k + 1)) is any function. Here, � = 2 and m = 2: Take k � �k �(k + 1) and f(y) = y: Then, (3.5) and (3.6) clearly hold. Further, we haveQ(k; y(k + 1))f(y(k + 1)) = b+ 16(k + 1) � q(k)



24 P. J. Y. WONG AND R. P. AGARWALand P (k; y(k + 1);�y(k + 1))f(y(k + 1)) = b � p(k):Hence, 1
X

n f(k(m�1))[q(k) � p(k)]o 1=� = 1
X [k � 16(k + 1)]1=2 = 1and (3.7) is satis�ed. It follows from Theorem 3.3(a) that all solutions of (3.36)are oscillatory. One such solution is given by f y(k)g = f (� 1)kk g :Remark 3.4. In the above example, it is obvious that the conditions of Theorem3.1 are satis�ed. Hence, Example 3.5 also illustrates Theorem 3.1(a).Remark 3.5. Equation (3.36) clearly satis�es condition (3.3). To see that (3.4)is ful�lled, we note thatlimk!1 1k(m�1) k�mX`=k0(k � ` � 1)(m�1)[q(`) � p(`)]1=�= limk!1 1k k�2

X`=0(k � ` � 1) 4p ` + 1= 4 limk!1 " k�2
X`=0 p ` + 1 �

1k k�2
X`=0(` + 1)3=2 #

� 4 limk!1 " k�2
X`=0 p ` + 1 �

k � 1k k�2
X`=0 p ` + 1#= 4 limk!1 1k k�1

X`=1 p `
� 4 limk!1 1k Z k1 p ` � 1 d` = 83 limk!1 (k � 1)3=2k = 1 :Hence, the conditions of Theorem 3.2 are satis�ed and Example 3.5 also illustratesTheorem 3.2(a).Example 3.6. Consider the di�erence equation(3:37) j �y(k)j

��1�y(k) + y(k + 2c) � (b+ 2�) = b y(k + 2c); k � 0where � > 1; c is any �xed positive integer, and b = b(k; y(k+2c)) is any function.Here, m = 1: Take k � �k � (k + 2c) and f(y) = y: Then, it is obvious that (3.5)



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 25and (3.6) hold. Further, we haveQ(k; y(k + 2c))f(y(k + 2c)) = b+ 2� � q(k)and P (k; y(k + 2c))f(y(k + 2c)) = b � p(k):Thus, 1
X

n f(k(m�1))[q(k) � p(k)]o 1=� = 1
X 2 = 1and (3.7) is ful�lled. It follows from Theorem 3.3(a) that all solutions of (3.37)are oscillatory. One such solution is given by f y(k)g = f (� 1)k g :Example 3.7. Consider the di�erence equation(3:38) j �3y(k)j

��1�3y(k) + [y(k+ 2)]� � b+ 4�(2k + 3)�(k + 2)� � = b[y(k+ 2)]�; k � 0where � > 0; � is any odd integer satisfying j � j > �; and b = b(k; y(k+2);�y(k+2)) is any function. We have k � �k � (k + 2); f(y) = y� ; andQ(k; y(k + 2);�y(k + 2))f(y(k + 2)) = b+ 4�(2k + 3)�(k + 2)� � q(k);P (k; y(k + 2);�y(k + 2);�2y(k + 2))f(y(k + 2)) = b � p(k):Case 1 � > �It is clear that (3.5) and (3.7) hold whereas (3.6) does not hold.Case 2 � < � �In this case (3.6) holds but (3.5) and (3.7) are not satis�ed.Hence, the conditions of Theorem 3.3 are violated if j � j > �: In fact, (3.38)has a solution given by f y(k)g = f (� 1)kk g and both f y(k)g and f �y(k)g areoscillatory. This example illustrates Theorem 3.3(b).Remark 3.6. Let � > 2� in Example 3.7. Condition (3.1) clearly holds. However,1
X [q(k) � p(k)]1=� = 1

X 4(2k + 3)(k + 2)�=� < 1and so (3.2) is not ful�lled. Hence, the conditions of Theorem 3.1 are violated.Moreover, we see that (3.3) holds. Since
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� 4 (k � 1)(2)k(2) k�3

X`=0 4(2`+ 3)(` + 2)�=� � 4 1
X`=0 4(2`+ 3)(` + 2)�=� < 1 ;the condition (3.4) is not satis�ed. Therefore, the conditions of Theorem 3.2 areviolated.Hence, when � > 2� Example 3.7 also illustrates both Theorems 3.1(b) and3.2(b). References[1] Agarwal, R.P., Di�erence Equations and Inequalities, Marcel Dekker, New York, 1992.[2] Agarwal, R. P., Properties of solutions of higher order nonlinear di�erence equations I, An.St. Univ. Iasi 29(1983), 85-96.[3] Agarwal, R. P., Di�erence calculus with applications to di�erence equations, in GeneralInequalities, ed. W. Walter, ISNM 71, Birkhaver Verlag, Basel (1984), 95-160.[4] Agarwal, R.P., Properties of solutions of higher order nonlinear di�erence equations II,An. St. Univ. Iasi 29(1985), 165-172.[5] Grace, S.R., Lalli, B.S., Oscillation theorems for nth order delay equations, J. Math. Anal.Appl. 91(1983), 342-366.[6] Grace, S.R., Lalli, B. S., Oscillation theorems for damped di�erential equations of evenorder with deviating arguments, SIAM J. Math. Anal. 15(1984), 308-316.[7] Hooker. J.W., Patula, W.T., A second order nonlinear di�erence equation: oscillation andasymptotic behavior, J. Math. Anal. Appl. 91(1983), 9-29.[8] Lakshmikantham, V., Trigiante, D., Di�erence Equations with Applications to NumericalAnalysis, Academic Press, New York, 1988.[9] Popenda, J. Oscillation and nonoscillation theorems for second order di�erence equations,J. Math. Anal. Appl. 123(1987), 34-38.[10] Staikos, V.A., Basic results on oscillation for di�erential equations, Hiroshima Math. J.10(1980), 495-516.[11] Thandapani, E., Oscillatory behavior of solutions of second order nonlinear di�erence equa-tions, J. Math. Phys. Sci. 25(1991), 451-464.[12] Thandapani, E., Sundaram, P., Oscillation theorems for some even order nonlinear di�er-ence equations, preprint.[13] Wong, P. J. Y., Agarwal, R. P., Oscillation theorems and existence of positive monotonesolutions for second order nonlinear di�erence equations, Math. Comp. Modelling 21(1995),63-84.[14] Wong, P. J. Y., Agarwal, R. P., Oscillation theorems and existence criteria of asymptot-ically monotone solutions for second order di�erential equations, Dynamic Systems andApplications, to appear.[15] Wong, P. J. Y., Agarwal, R. P., Oscillatory behavior of solutions of certain second ordernonlinear di�erential equations, J. Math. Anal. Applic., 198 (1996), 337-354.[16] Wong, P. J. Y., Agarwal, R. P., Oscillation theorems for certain second order nonlineardi�erence equations, to appear.



ON THE OSCILLATION OF AN mTH ORDER PERTURBED NONLINEAR D.E. 27[17] Wong, P. J. Y., Agarwal, R. P., Oscillation and monotone solutions of a second orderquasilinear di�erence equation, to appear.[18] Wong, P. J. Y., Agarwal, R. P., On the oscillation and asymptotically monotone solutionsof second order quasilinear di�erential equations, Appl. Math. Comp., to appear.[19] Wong, P. J. Y., Agarwal, R. P., Oscillations and nonoscillations of half-linear di�erenceequations generated by deviating arguments, Advances in Di�erence Equations II, Comput-ers Math. Applic., to appear.[20] Wong, Z., Yu, J., Oscillation criteria for second order nonlinear di�erence equations, Funk.Ekv. 34(1991), 313-319.Patricia J. Y. WongDivision of MathematicsNanyang Technological UniversitySingaporeRavi P. AgarwalDepartment of MathematicsNational University of SingaporeSingapore


		webmaster@dml.cz
	2012-05-10T11:31:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




