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ON THE OSCILLATION OF AN mTH ORDER PERTURBED
NONLINEAR DIFFERENCE EQUATION

P.J. Y. WonGg AND R. P. AGARWAL

ABSTRACT. We offer sufficient conditions for the oscillation of all solutions of
the perturbed difference equation

[A™y(k)[* LA™y (k) + Q(k,y(k — ok), Ay(k — o), -+ , A" 2y(k — o))
= P(k,y(k — o), Ay(k — op), - ,A™ Yy(k — 0p)), k> ko

where o > 0. Examples which dwell upon the importance of our results are
also included.

1. INTRODUCTION

The theory of difference equations and their applications have been and still are
receiving intensive attention. In fact, in the last few years several monographs and
hundreds of research papers have appeared, e.g., [1,8] cover more than 450 articles.
In this paper we shall consider the mth order perturbed difference equation

ATyY(E) ST AMY() + QU y(k 0w Ay(k ox), ATk o))
= P(k,y(k or),Ay(k or), A" lylk o)), k ko (1.1)
where o > 0 and A is the forward difference operator defined as Ay(k) = y(k +

1) y(k). Further, we suppose that o, 7 and limg_—.o(k o3) = . Throughout
it is also assumed that there exist real sequences ¢(k) , p(k) and a function
f: such that

(I) wf(u) >0 for all w =0;
Qk,x(k o), Ax(k op), JA™ (ko))

(1I) ek on) q(k),
Pk, x(k Uk)’mjffmak);k)) A2k 7)) for all & = 0

and
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(III) -~ lim [q(k)  p(k)] 0.

k—o0

By a solution of (1.1), we mean a nontrivial sequence y(k) defined for k
mings>o(¢ o), A™y(k) is not identically zero, and y(k) fulfills (1.1) for k& k.
A solution y(k) is said to be oscillatory if it is neither eventually positive nor
negative, and nonoscillatory otherwise. Throughout, for ¢ 0 we shall use the
usual factorial notation () = k(k 1) (k4 1).

In the literature, numerous oscillation criteria for nonlinear difference and dif-
ferential equations related to (1.1) have been established, e.g., see [1-4,7,9, 13-20
and the references cited therein]. We refer particularly to [2-4] in which oscillation
theorems for higher order nonlinear difference equations are presented. Thanda-
pani and Sundaram [12] have recently considered a special case of (1.1)

(1.2) A*My(k) +q(k)f(y(k ox)) =0, k ko

where q(k) is an eventually positive sequence. We have extended their work
to general higher order equations. In fact, our results include, as special cases,
known oscillation theorems not only for (1.2), but also for several other particular
difference equations considered in [1]. Further, our results generalize those in
[11,19]. Finally, we remark that the paper is partly motivated by the analogy
between differential and difference equations, in fact discrete version of the results

in [5,6,10] have been developed.

2. PRELIMINARIES

Lemma 2.1. [1,p.29] Let 1 j m 1 and y(k) be defined for k  ky. Then,

(a) liminf,_ . Ady(k) > 0 implies limy_ o, Aly(k) = ,0 i j 1;
(b) limsup,_ .. AJy(k) < 0 implies limj,_ ., Aly(k) = 0 1 5 1.

Lemma 2.2. [1, p.29] (Discrete Kneser’s Theorem) Let y(k) be defined fork ko,
and y(k) > 0 with A™y(k) of constant sign for k ko and not identically zero.
Then, there exists an integer p, 0 p m with (m + p) odd for Ay(k) 0 and
(m 4+ p) even for A"y(k) 0, such that

(a) p m 1implies( 1)PY*Aly(k) >0 forallk ko,p i m 1;

(b) p 1 implies A'y(k) > 0 for all large k ko, 1 i p 1.

Lemma 2.3. [1, p.30] Let y(k) be defined for k& k¢, and y(k) > 0 with A™y(k)
0 for & ko and not identically zero. Then, there exists a large integer k1 kg
such that

1
m(k k)T DALy 0mP Ty ke

where p is defined in Lemma 2.2.

y(k)
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3. MAIN RESULTS

For clarity the conditions used in the main results are listed as follows :

(3.1) f is continuous and lllrln inf f(u) > 0,
(3.2) [a(k)  p(R)]* =,
(3.3) f is nondecreasing,
1 k—m
(3.4) lim —— (k¢ 1" Vge) pO)/ =,
k—o0 k‘(m_l) i—k

f is nondecreasing, f(uv) M f(u)f(v) for u,v >0

(3.5) and some positive constant M,
6 -6
du du
3.6 < ——— < forall 8 >0,
(3.6) o flu)t/e o flu)t/e
R (m—1) 1/«
(3.7) fk Hatk) p(k)] =

Theorem 3.1. Suppose (3.1) and (3.2) hold.

(a) If m is even or m = 1, then all solutions of (1.1) are oscillatory.
(b) Tfm( 3)is odd, then asolution y(k) of (1.1) is either oscillatory or Ay(k)

is oscillatory.

Proof. Let y(k) be anonoscillatory solution of (1.1), say, y(k) > 0 for k. k;
ko. We shall consider only this case because the proof for the case y(k) < 0 for
k ki ko is similar. Using (I) - (ITI), it follows from (1.1) that

AMy(k) “~TATy(k) [p(k) a(k)]f(y(k o))
(3.8)

Hence, we have

(3.9) A™y(k) 0, k k.

Case 1 m 1s even

In view of (3.9), from Lemma 2.2 (here pisodd and 1 p m 1, takei=1
in (b)) it follows that

(3.10) Ay(k) >0, k k.
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Let
(3.11) L= klim ylk o).
Then, since k op and y(k) is increasing for large k& (by (3.10)), we have

L > 0 and L 1s finite or infinite.

(i) Suppose that 0 < L < . Since f is continuous, we get
Am fly(k o)) = f(L) > 0.
Thus, there exists an integer ko k1 such that
1
(3.12) otk @) LRk ks

Now, from (3.8) we get

(3.13) AMy(k) T AP y(k) + [g(k)  p(R)]f(y(k  ox)) 0, k ko
which in view of (IIT) and (3.12) leads to

(3.14) A™y(k) “TAy(k) + [a(k) - p(k)]

Using (3.9), inequality (3.14) is equivalent to
AMy(k)* le(k) p(R)]5 F(L), & ke

(3.15) Ay(k)  g(k)  p(k)]

Summing (3.15) from ks to (K 1), we obtain

(3.16) A" ly(k) A Ly(ky) (L) [a(6)  p(O]".

N | —

By (3.2), the right side of (3.16) tends to as k . Thus, there exists an
integer ks ko such that

AP ly(k) <0, b ks.

It follows from Lemma 2.1(b) (j = m 1) that y(k) as k . This
contradicts the assumption that y(k) is eventually positive.

(ii) Suppose that L = . By (3.1), we have
likm inf f(y(k o1)) > 0.

This implies the existence of an integer ks  k; such that

(3.17) flylk o) Ak kg
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for some A > 0. In view of (ITT) and (3.17), it follows from (3.13) that
A™y(k) “TIATyY(k) + (k) p(k)]A 0, K ko

The rest of the proof is similar to that of Case 1(i).

Case 2 m 1s odd

Here, in view of (3.9), in Lemma 2.2 we have piseven and 0 p m 1 and
hence we cannot conclude that (3.10) is true. Let L be defined as in (3.11). We
note that L > 0.

(i) Suppose that Ay(k) > 0 for k& ki, i.e., (3.10) holds. Then, L is finite or

infinite and the proof follows as in Case 1.

(ii) Suppose that Ay(k) < 0for k k. Then, L is finite and the proof follows as
in Case 1(i).

(iii) Suppose that Ay(k) is oscillatory. For the special case m = 1, (1.1) provides

(3.18) Ay(k) I Ay(k)  [p(k)  a(R)]f(y(k 1)) <0, & Ky
where in view of (3.2), we have noted and used in the last inequality
(3.19) g(k) p(k)>0

for sufficiently large k. Tt follows from (3.18) that
Ay(k) <0, kK

which contradicts the assumption that Ay(k) is oscillatory.
The proof of the theorem is now complete.

Example 3.1. Consider the difference equation

(3.20) Aty(k) *Aty(k) + [y(k + 1)> b+ 32%2 =byk+1)P & 0

where b = b(k,y(k + 1), Ay(k + 1), A%y(k + 1)) is any function. Here, « = 3 and
m=4. Take ko (k+1)and f(y) = y>. Then, (3.1) clearly holds. Further,

we have

kyy(k + 1), Ay(k + 1), A2y(k + 1 312
Qk,y(k+1), Ay(k+1) y(+)):b—|——9 a(k)
f(y(k + 1)) 2

and

Pk, y(k+ 1), Ay(k 4 1), A%y(k 4 1), A%y(k + 1))

=b  p(k)
f(y(k + 1))

and so (3.2) is satisfied. Tt follows from Theorem 3.1(a) that all solutions of (3.20)
are oscillatory. One such solution is given by y(k) = ( 1)F/2% .

Example 3.2. Consider the difference equation

(3.21) Ay(k) ““TAy(k) +y(k  2¢) (b+2%)=by(k 2¢), k 0
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where a > 0, ¢ is any fixed integer, and b = b(k,y(k  2¢)) is any function. Here,
m=1.Take k o (k 2¢)and f(y) =y. Then, it is obvious that (3.1) holds.

Further, we have
QUeyk_20) _, .,
I

Pl gk 20)
) B

and so (3.2) is satisfied. Hence, Theorem 3.1(a) ensures that all solutions of (3.21)
are oscillatory. One such solution is given by y(k) = ( 1)* .

q(k)

and

Example 3.3. Consider the difference equation
4%(2k + 3)
k

where 0 < « < 1/2 and b = b(k, y(k), Ay(k)) is any function. Here, m = 3. Taking
k or kand f(y) =y, we note that (3.1) holds. Next,

(3.22) APy(k) =T A%y(k) + y(k) b+ =by(k), k1

Q(k,y(k), Ay(k)) _ | 4°(2k+3)*
0 R I
and
Pk, y(k), Ay(k), Ay(k))
7R =b p)
lead to
o o 2 3

1/ _ _
[Q(k) p(k‘)] =4 kl/a_l + k’l/o‘ <

and hence (3.2) is not satisfied. The conditions of Theorem 3.1 are violated. In
fact, (3.22) has a solution given by y(k) = ( 1)*k , and we observe that both

y(k) and Ay(k) = ( 1)*t1(2k+1) are oscillatory. This illustrates Theorem
3.1(b).

Theorem 3.2. Suppose (3.3) and (3.4) hold. Then, the conclusion of Theorem
3.1 follows.

Proof. Suppose that y(k) is a nonoscillatory solution of (1.1), say, y(k) > 0 for
k ki ko. Using (I) - (ITI), from (1.1) we still get (3.8) and (3.9).

Case 1 m 1s even

Since (3.9) holds, from Lemma 2.2 (take ¢ = 1 in (b)) we obtain (3.10). Tt
follows that

(3.23) y(k)  ylki) a, k ki

In view of (3.23) and the fact that limy_o(k o) = , there exists an integer
ks ky such that

(3.24) ylk  or) a, k k.
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Since the function f is nondecreasing (condition (3.3)), (3.24) provides
(3.25) flylk o)) fla) Ak ke
Now, from (3.8) we get (3.13) which on using (3.25) provides
A"y(k) LA™ y(k) + [q(k)  p(k)]A 0, & ko.
In view of (3.9), the above inequality is the same as

Ay(k) * q(k)  p(R)]A, ko ke

or
(3.26) A"yk)  fg(k)  p(k)]A YTk k.
By discrete Taylor’s formula [1, p.26], y(k) can be expressed as
m—1 ; k—m
kooky)® 1 T
s = BT vy s Lk e Ay
i=0 " (m1)! t=ks

which on rearranging and using (3.26) yields

Al/a k—m
CR T

T =k,

¢ DY) po)te

m—1 . m—1 .
Eooko)® Eooko)®
% A'y(kz)  y(k) % A'y(kz), k ks
i=0 ’ i=0 ’

Dividing both sides by k(™= the above inequality becomes

Al/a 1 k—m

kS DA CCRF DR

2

Pk k)1

(3.27) 2! k(m=1)

Aly(ks), k ko

i=0
By (3.4), the left side of (3.27) tends to  as k . However, the right side of
(3.27) is finite as k

Case 2 m 1s odd

In this case, taking note of (3.9), in Lemma 2.2 we have p is even and 0 p
m 1. Therefore, we cannot ensure that (3.10) holds.

(i) Suppose that Ay(k) > 0 for &k  kq, i.e., (3.10) holds. The proof for this case
follows from that of Case 1.

(ii) Suppose that Ay(k) < 0 for k&  k;. Then, y(k) a (> 0) and so there exists
a k2 ky such that (3.24) holds. The proof then proceeds as in Case 1.
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(iii) Suppose that Ay(k) is oscillatory. Condition (3.4) implies that

1

m(/ﬂ (k m) D" Vgk m) plk m)]Y>0

for sufficiently large k, which ensures that (3.19) holds for sufficiently large k.
Hence, for the special case m = 1, we get (3.18) and it is seen from the proof of
Theorem 3.1 (Case 2(iii)) that this leads to some contradiction.

The proof of the theorem is now complete.

Example 3.4. Consider the difference equation
(3.28)  A'y(k) ZA%(k) + [y(k + D] b4+ 312 2123 —ply(k + )], k0

where b = b(k, y(k+1), Ay(k+1), A?y(k+1)) is any function. Here, « = 3, m = 4,
and f(y) = y'®, which is nondecreasing. Taking k o  (k + 1), we have

Qk,y(k + 1), Ay(k + 1), A%y(k + 1))

— b+ 312 212k+3 q(k)

fy(k + 1))
and
Pk, y(k + 1), Ay(k + 1), Ay(k + 1), APy(k 4+ 1))
=b pk).
fy(k + 1))
We find that
1 k—m
=) (k¢ D™Dy pe)e
L=ko
T 1
_ (3) 1w L oom A(k—4)+1
= (]C b4 1) 81 2 e 3 81 2
£=0
(3) pog 20— (3) k-3
=30 81 P 3 81 20 T,

Hence, (3.4) is satisfied. By Theorem 3.2(a) all solutions of (3.28) are oscillatory.
One such solution is given by y(k) = ( 1)%/2% .

Remark 3.1. Tt is clear that conditions (3.1) and (3.2) are fulfilled for equation
(3.28). Hence, Example 3.4 also illustrates Theorem 3.1(a).

Remark 3.2. Equation (3.21) also satisfies conditions (3.3) and (3.4). Hence,
Theorem 3.2(a) ensures that all solutions of (3.21) are oscillatory. We have seen
that one such solution is given by y(k) = ( 1)* .

Remark 3.3. In Example 3.3, the condition (3.3) is satisfied. To check whether
condition (3.4) is fulfilled, we note that
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k—m
—1 - (a3
oy (0 DU po]Y
L=ko
_1 7 NG Rk ) (k 2)® 7% 3
T k@ ( ) 1/ a k(2) (/a1 + e
=1 =1
Letting k , we get, in view of 0 < v < 1/2,
k—3 0o
. 1 4(2¢+ 3) 2
— (2) 22 T 9) s 42
kILH;o k(2) z—1(k ¢ 1/ 4z—1 1/o—1 + e <

and hence (3.4) is not satisfied. The conditions of Theorem 3.2 are violated. In
fact, it is noted that equation (3.22) has an oscillatory solution given by y(k) =

( )*k where Ay(k) is also oscillatory. Hence, Example 3.3 also illustrates
Theorem 3.2(b).

Theorem 3.3. Suppose o, = ¢
conclusion of Theorem 3.1 follows.

, C 1 and (3.5) - (3.7) hold. Then, the

Proof. Again suppose that y(k) is a nonoscillatory solution of (1.1), say, y(k) >
0fork k1 ko. Using (I) - (ITT), from (1.1) we have

(3.29) AMy(k) “TTATy(k)  [p(k) (B f(y(k+0) 0,k ks
and therefore (3.9) holds.
Case 1 m 1s even

Since (3.9) holds, from Lemma 2.2 (take ¢ = 1in (b), i = m 1 in (a)) we get
for k  kq,

(3.30) Ay(k) > 0, A" y(k) > 0.

Using Ay(k) > 0 for & k1 and Lemma 2.3, we find that there exists ks k1
such that

y(k + o) y(k)
y 2p—m+1 ke
1 p—m+1 (m=1) \m—1
1

71)' 9(p—m+1)(m—1) (k 2m kz)(m—l) Am_ly(/ﬂ), ko ks

(m
It follows that
1
yk+o)  ——
(3.31) (m 1)
= A kMDA (k) ko 27 ke m 2 k3

1
2(p—m+1)(m—1) 5 - k(m—l)Am—ly(k)
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where A = 2(P=m)m=1) /(1 1)1,
In view of (3.5), it follows from (3.31) that

Fylk+0))  f AKMUAM (k) MF(A)F EmTYAM T y(k)

(3.32) M2F(AF ™Y A™ (k) ko ks
Now, using (3.32) in (3.29) gives
Ay(k) “TIATY(k) + [g(k)  p(R)MPFCAYS RTTD O f AT (k) 0,

ko ks
which, on noting that A™~1y(k) > 0 for k k3 and (3.9), is equivalent to

m— A™y(k)
M2FAYE KD (k) p(k)] ———— k k
F(A ) 1) e b b
or
333)  MIFCAV KD [k pky] AR g,
(333 M) awy o) T
Summing (3.33) from ks to k, we get
(3.34)
M2 A 1/« k_ f(m_l) ) ) 1/« k_ Amy(g)
f(4) L=Fks f( Ma(0)  p(0)] L=Fks f(Am—ly(E))l/“
Am=ly(ks)  du
0 Flu)le
By (3.7), the left side of (3.34) tends to  as k , whereas the right side is

finite by (3.6).
Case 2 m 1s odd

Here, in view of (3.9), in Lemma 2.2 we have pis even and 0 p m 1.
Hence, instead of (3.30) we can only conclude that

(3.35) A" ly(k) >0, & k1.

(i) Suppose that Ay(k) >0 for k  ki. The proof follows as in Case 1.
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(ii) Suppose that Ay(k) < 0 for k& k;. Then, on using Lemma 2.3 we find that
there exists ks k; such that

y(k +0)
y(2P=mF b+ k4 0)

1 m—
T h kit ky T ATy gl ptl g )
(m 1)

m—1
2P—m+1 k+k+o ks (m-1) A y(k)

- 7Am—1 k‘ 2m—1k
(1! Rery(ry &Y TR )

p—m+1 (m=1) \m—1
o 2 kooks A Ly(k)

6 ( — 1 — m—1 —

P glemmAD(m=1) (p. 9m py\( AT Lyl ke
where we have also used the fact that A™~1y(k) is nonincreasing (by (3.9)) and
A= Ly(k 4+ 2=k + 7))

ak kZ

v= AnTy(k) >0
It follows that
6 —m m— 1 m— m—
y(k + o) m 9lp—m+1)(m-1) ST JACEOWN Ly(k)

= ABETDAT k), k k3

where A and k3 are defined in (3.31). The rest of the proof uses a similar argument
as in Case 1.
(iii) Suppose that Ay(k) is oscillatory. Condition (3.7) implies that

1/«

FEPNg(k) pk)] >0

for sufficiently large k. This ensures that (3.19) holds for sufficiently large k. Hence,
for the special case m = 1, we get (3.18) and we have seen from the proof of
Theorem 3.1 (Case 2(iii)) that this leads to some contradiction.

The proof of the theorem is now complete.

Example 3.5. Consider the difference equation
(3.36) A?y(k) Ay(k) +y(k + )b+ 16(k+ 1)) =bylk+1), & 0

where b = b(k,y(k + 1)) is any function. Here, o = 2 and m = 2. Take k oy,
(k+ 1) and f(y) = y. Then, (3.5) and (3.6) clearly hold. Further, we have

Qk,y(k +1))

G =t 16(k+1)  q(k)
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and
P(k,y(k+1), Ay(k+1))
fut+n) 0 P
Hence,
FROa) p) =k 6k ) =

and (3.7) is satisfied. Tt follows from Theorem 3.3(a) that all solutions of (3.36)
are oscillatory. One such solution is given by y(k) = ( 1)k .

Remark 3.4. In the above example, it 1s obvious that the conditions of Theorem
3.1 are satisfied. Hence, Example 3.5 also illustrates Theorem 3.1(a).

Remark 3.5. Equation (3.36) clearly satisfies condition (3.3). To see that (3.4)
1s fulfilled, we note that

k—m
1
lim ——— (k¢ 1)) pO]*
k—oo k(m—l)
L=ko
1 F2
:klirgo T (k‘ b4 1)4 {+1
£=0
k-2 | k2
=4 lim (+1 ¢ (0 +1)3/2
k= o =0
k-2 k-2
k1 -
4 lim {+1 — £+1
k—oo k
£=0 £=0
k-1
) 1 -
=4fm ozt
£=1
| — koo1)3/2
Alim + T T = S DT _
k—oo k 1 3 k—oo k

Hence, the conditions of Theorem 3.2 are satisfied and Example 3.5 also illustrates

Theorem 3.2(a).
Example 3.6. Consider the difference equation
(3.37) Ay(k) T Ay(k) +y(k +2¢) (b+2*)=by(k+2¢), k 0

where o > 1, ¢ is any fixed positive integer, and b = b(k, y(k+ 2¢)) is any function.
Here, m = 1. Take ko (k4 2¢) and f(y) = y. Then, it is obvious that (3.5)
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and (3.6) hold. Further, we have

QUk,y(k +20)) _

+2%  q(k
Tk 1 20) )
and
Pk, y(k + 2¢

(ofk+2)

S(y(k + 2¢))
Thus,

f(k Ma(k)  p(k)] = 2=

and (3.7) is fulfilled. Tt follows from Theorem 3.3(a) that all solutions of (3.37)
are oscillatory. One such solution is given by y(k) = ( 1)* .

Example 3.7. Consider the difference equation

4% (2k 4 3)®

Gy =2l k0

(3.38) A%y(k) “~LAy(k) + [y(k +2)° b+

where o > 0, 8 is any odd integer satisfying 3 > «, and b = b(k, y(k +2), Ay(k +
2)) is any function. We have k o (k+2), f(y) = ¥°, and

Q(k, y(k + 2), Ay(k + 2)) _ 4“(2/6 + 3)CY
) R (S
P(k,y(k—i—?),Ay(k—|—2),A2y(/€—|—2)) -

f(y(k +2))

Case 1l >«
It is clear that (3.5) and (3.7) hold whereas (3.6) does not hold.
Case2 < «a

In this case (3.6) holds but (3.5) and (3.7) are not satisfied.

Hence, the conditions of Theorem 3.3 are violated if 8 > «. In fact, (3.38)
has a solution given by y(k) = ( 1)*k and both y(k) and Ay(k) are
oscillatory. This example illustrates Theorem 3.3(b).

Remark 3.6. Let 3 > 2« in Example 3.7. Condition (3.1) clearly holds. However,

I

and so (3.2) is not fulfilled. Hence, the conditions of Theorem 3.1 are violated.
Moreover, we see that (3.3) holds. Since
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the condition (3.4) is not satisfied. Therefore, the conditions of Theorem 3.2 are
violated.

3.2

Hence, when 3 > 2« Example 3.7 also illustrates both Theorems 3.1(b) and

(b).
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