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CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF
HIGHER ORDER NEUTRAL TYPE DIFFERENCE EQUATIONS

E. THANDAPANI, P. SUNDARAM, JOHN R.
GRAEF* | A. MiciaNO, AND PauL W. SPIKES*

ABSTRACT. The authors consider the difference equation
(*) Am[yn - pnyn—k] + 5Qnyo-(n+m—1) =0

where m > 2, 6§ = 1, k € Nog = {0,1,2,... }, Ayn = Ynt1 — ¥n, qn > 0, and
{o(n)} is a sequence of integers with o(n) < n and limp— o o(n) = co. They
obtain results on the classification of the set of nonoscillatory solutions of (*) and
use a fixed point method to show the existence of solutions having certain types of
asymptotic behavior. Examples illustrating the results are included.

1. INTRODUCTION

This paper is concerned with the asymptotic behavior of nonoscillatory solutions
of neutral linear difference equations of the type

(E) Am[yn - pnyn—k] + 6qnya(n+m—1) =0

where m > 2,6 =41, k € No={0,1,2,...}, and A denotes the forward difference
operator defined by Ay, = yny1 — yn and Aly, = A(A*"1y,), 1 < i < m. The
following conditions are assumed to hold throughout the remainder of this paper.
There is an ng € Ny such that:

(c1)  {pn} is a real sequence satisfying [p,| < A < 1 for all n > ng;

(c2)  {o(n)} is a sequence of integers, o(n) < n for n > ng,

and lim, .o 0(n) = oo;

(¢s)  {gn} is a real sequence and ¢, > 0 for all n > ny.

By a solution of equation (E), we mean a sequence {y, } of real numbers defined
for n > ng — m+ 1 — max{k, minen,{o(i + m — 1)} } and which satisfies (E) for
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all n € Ny. A solution of (E) is said to be nonoscillatory if it is either eventually
positive or eventually negative. Otherwise, it is called oscillatory.

In recent years there has been an increasing interest in oscillation theory of
difference equations of neutral type; see, for example, [1-17] and the references
contained therein. Most of the literature, however, is focused on first and second
order equations with relatively few results available for higher order equations.
The purpose of this paper is to classify the possible nonoscillatory solutions of (E)
according to their asymptotic behavior as n — oo and to give necessary conditions
for the existence of nonoscillatory solutions {y,} having the following types of
asymptotic behavior:

(I;) lim %: constant # 0 for some j € {0,1,...,m — 1},
n— 00 n
or
. Yn — PnlYn—k . Yn — PnlYn—k
(1) Jim, S =0 lim PG = e
for some £ € {1,2,...,m—1} where nl) is the usual generalized factorial notation.

In addition, using a fixed point technique, we are able to give sufficient conditions
for the existence of a nonoscillatory solution of the types I; and Il,.

2. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS

We begin by classifying the asymptotic behavior of nonoscillatory solutions of
(E) on the basis of a discrete analogue of Kiguradze’s Lemma [17] (also see [1;

Theorem 1.7.11]).
Lemma 2.1. Let {«,} be a sequence of real numbers and let «, and A™z,, be
of constant sign with A™z, not eventually identically zero. If

(2.1) San A", < 0,

then there exist integers £ € {0,1,2,...,m} and N > 0 such that (—1)m~*"16 =1
and
AN, >0forj=01,...,¢,

(2.2) L,
(1) 2, A, >0forj=L+1,...,m

forn> N.

A sequence {z,} satisfying (2.2) is called a sequence of (Kiguradze) degree £.
The possible asymptotic behaviors of a sequence of degree £ are as follows.

(i) If £ = 0 (which is possible only when § = 1 and m is odd or 6 = —1 and m
is even), then either

lim z, = constant # 0 or lim z, = 0.
n—00 n—0oo
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(i) If 1 < £ < m — 1, then one of the following three cases holds:

lim % = constant # 0
n—oo 1
lim % = constant # 0
n—oo plt—
. no__ . Ly _
Wty = 0 nd I Sy = e

(iii) If £ = m (which is possible only when § = —1), then

. T
A0, oy = £
Let {y,} be a nonoscillatory solution of equation (E). Clearly, ¥, — ppiyn—r is
eventually of one sign, so either

(23) yn(yn _pnyn—k) >0
or
(24) yn(yn _pnyn—k) <0

for all sufficiently large n. If (2.3) holds, then the sequence x, = yn — Pp¥n—i
satisfies (2.1) for all large n, so by Lemma 2.1, {#,} is a sequence of Kiguradze
degree ¢ for some £ € {0,1,...,m} and (—=1)"~*~1§ = 1. Let N, denote the set
of solutions {y,} of (E) satisfying (2.3) and for which y, — ppyn—p is of degree
£. On the other hand, if (2.4) holds, then #, = ppyn—r — yn satisfies (2.1) (with
8§ repalced by —#) for all large n. However, the degree of {x,} must be zero. In
fact, from (2.4) we have |y,| < [payn—k| < AMyn—zl, and hence |yniir| < N |yal,
J=1,2,..., which in turn implies lim,_ . y, = 0. The set of all solutions {y, }
of (E) satisfying (2.4) will be denoted by Ny . It is clear that the class N is
empty if (=1)™~16 = 1, that is, if § = 1 and m is odd or § = —1 and m is even.
From the above observations, we have the following classification of the set N of
all nonoscillatory solutions of (E):

N=NFUNFU---UNF_ UN; foré=1and m even;
N=Ntu~NSuU. - uN_, for 6 =1 and m odd;
N=NfuNSuU---UNT for 6 = —1 and m even;
N=NFUuNF U - UNFUN for § = —1 and m odd.

(2.5)

We note that if {p, } is either oscillatory or eventually negative, then (E) cannot
possess a nonoscillatory solution {y,, } satisfying (2.4), so in this case the class Ny
should be removed from (2.5).
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From the above discussion, it follows that a nonoscillatory solution {y, } of (E)
falls into one of the following four cases:

(T) limp— e % = constant # 0 for some j € {0,1,2,...,m — 1};
(I0) limp o % = 0, limy_eo % = 4o for some [ €
n U

{1,2,...,m— 1} with (=1)"~'=1s = 1;
. Yn — Pnln—k
(I10) limy o e et

(IV) hmn—»oo[yn _pnyn—k] =0.

Next, we will see how the asymptotic behavior of ¥, — p,yn_j affects the behav-
ior of the solution {y, } itself. It is enough to consider only the solutions {y, } of (E)
satisfying (2.3). Let {yn} be such a solution for n > ny. Then z,, = ¥ — PrYn—i
satisfies (2.2) for some £ € {0,1,...,m} with (=1)™=¢1 § = 1. Let ny > n; be
such that n — k > ny for n > ns. Using the relation

= Fo0;

(26) Yn = Tn + PnlYn—k

repeatedly, we have

j—1
(2.7) Yo = > Hi(n)an_ix + Hj(0)yn_jr, n>ns
i=0

where j denotes the least positive integer such that nqy < n — jk < ny and H;(n),
j=0,1,2,..., are defined by

j—1
(2.8) Ho(n) =1, Hj(n)=][]po-ir, i=12,...
i=0

From (2.7) and the fact that |H;(n)| < M, it follows that

Tn
(29) i<k ws,
if £ > 1, and

T,
(2.10) el <y w,

if £ =0, where > 0 is a constant.
If {p,} is eventually positive, then we have

(2.11) |yn| > |2n| for all large n.

On the other hand, using (2.6) we obtain

Yn = Tpn + PnZTn—k + PnPn—kYn—2k,
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which shows that if

(2.12) PnPn—t > 0 for all large n
and if the Kiguradze degree ¢ of {z,} is positive, then
(2.13) |yn| > (1 — A)|a,]| for all large n.

In view of (2.9), (2.10), (2.11) and (2.13), we conclude that under the hypothesis
(2.12), the following four types of asymptotic behavior are possible for nonoscilla-
tory solutions {y,} of equation (E):

|yn| |yn|

(A) 0 < liminf, o ) < lim sup,, . oo ) < oo for some j € {0,1,...,m—
1};
(B) limy,— oo % =0 and lim,,_, o % = oo for some [ € {1,2,...,m — 1}
n U
with (—=1)m=!=16 = 1;
: lynl
(C) limy o D) = 00;

(D) limp_co yn = 0.

3. EXISTENCE OF NONOSCILLATORY SOLUTIONS

The purpose of this section is to obtain criteria for equation (E) to have certain
kinds of nonoscillatory solutions. In addition to the fact that our results apply to
equations of order m greater than just 1 and 2, the results here differ from previ-
ously known work in that we give some necessary and some sufficient conditions
for equation (E) to have nonoscillatory solutions with a prescribed asymptotic be-
havior. By contrast, most other known results are either criteria for all solutions
to oscillate or for nonoscillatory solutions {y, } to satisfy broad asymptotic prop-
erties such as y, — 0 or |y,| — o0 as n — oo (see, for example, Erbe and Zhang
[2], Georgiou et al. [3, 4], Lalli et al. [5 — 9], Thandapani et al. [12 — 16], and
Zafer and Dahiya [17]). We begin with a necessary condition for the existence of
Type I solutions.

Theorem 3.1. Suppose that (2.12) holds. If equation (E) has a nonoscillatory
solution {y,} satisfying (2.3) and

3.1 lim M = constant 0
()
n— 00 n

for some j €{0,1,...,m— 1}, i.e., {yn} is a Type I solution, then

(3.2) Z n(m_j_l)(a(n +m— 1))(]')(]” < 0.

n=ng

Proof. Let {y,} be a solution of (E) satisfying (2.3) and (3.1). Observe that

lim Ay, — ppyn_ir] =0, j+1<i<m-—L1

n—oQ
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If j < m — 1, a repeated summation of (E) shows that
(33) Z n(m_j_l)QH|ya(n+m—1)| < o0
n=N

provided N > ng is large enough. If j = m — 1, a summation of (E) implies that
(3.3) holds. On the other hand, from (2.12) and (3.1), we have

. . |ya(n+m—1)|
3.4 1 f - 0.
(3.4) L Gmrm—1)D

Inequality (3.2) then follows from (3.3) and (3.4).

The method of proof to be used for the next theorem involves an application
of the Knaster-Tarski fixed point theorem (see, for example, Moore [11]) and the
contraction mapping principle. This technique requires that an appropriate oper-
ator be defined on the proper function space. We give sufficient conditions for the
existence of Type I solutions in case either

(3.5) (=1)™=771§ = 1 and condition (2.12) holds,
or
(3.6) (=1)™=971§ = —1 and p, > 0 for all n > ny.

Theorem 3.2. Suppose that (3.5) or (3.6) holds. Equation (E) has a nonoscilla-
tory solution {y, } satisfying (2.3) and (3.1) for some j € {0,1,...,m — 1} if

(3.7) > alm=i=(e(n 4+ m = 1))V)g, < oo

n=ng

Proof. Suppose that (3.5) holds. Choose N > ng so large that

(3.8) Ny = min{N — k, 1;1157 o(i+m—1)} > ng

and

(3.9) > (e (n 4+ m - 1))g, < (127
n=N

Consider the Banach space €30 of all bounded real sequences Y = {y, }n>n,
. _N)@
with norm ||Y|| = sup,» v, (|yn/pn|) where p, = %, n > No. We define a

closed bounded subset S; of £X0 by
(3.10)

Sj:{YEEé\;”:cgyn/pn§;fornzN—I—landyn:nyorNogngN}
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where ¢ > 0 is an arbitrary but fixed constant. We define a partial order on ¢Y°
in the usual way. Thus, if for any X = {z,}, Y = {yn} € ¥, z,, = y, for all
sufficiently large n, we Wlll consider such sequences to be the same. Then, for
every subset A of S; both inf A and sup A exist and belong to S;. With each
{yn} € Sj, we associate a real sequence {g,} defined by

ZH n)Yn—sk + 7 N Hi(n), n>N+1
(3.11) Un = PN

yN

l—pn’

where 7 is the least positive integer such that Ny < n— ik < N and Hy(n),s =
0,1,2,... are given by (2.8). Tt is easy to verify that {g,} is positive and satisfies
the equation

(312) gn - pngn—k = Yn, n Z N.

Now define the mapping 1" : S; — (Mo as follows: if j > 1, then
(3.13)

n—r—l(] D (i—r+m—j—1)m-i-bH
CPn —|— Z Z (m — j — 1)' Qiya(i+m—1)a
(Ty)n — i=r
n Z N

Oa NOSnSNa

if j =0, then
> (i+m—1-n)m=D
c+ Z (m —1)! 9i¥o(i+m—-1);, 1N =N
© (i4m—1—N)m-1
C+Z : (m_l)l) 9i¥o(i+m—-1), No <n <N.

Letting y, € S; and using (3.11), we have

i—1 . .

_ L (o(s+m—1)0)  Nyy

Ogya(n+m—1)§2/\ ¢ 2! +1_/\a
s=0

which implies that for all n > N

0< ga(n+m—1) < (0’(77, +m— 1))(])

M1 =)

if j > 1, and
¢

<y < —
0 > ya(n+m—1) >~ /\(1 — /\)
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if j = 0. From the above inequalities and (3.9), we see that for n > N, if j > 1,
then

n—j o j—1) ._ _ (m—j—l)
(n—r 1)(7 i r+m Jj—1) ~
0< Yo (i+m—
SN (7= ZZ:; m—j—1) didlotitm=1)
n—j i1y o0
(n—r—l)(f ( 1 c . )
< {m=ig—— (s(i+m—1))V)
Loy Tty
1—-Xe
S( . ) .
and if j = 0, then
°° Z+m_1_n)(m—1) ~ ad (m—1) ¢ e(1=2X)

Using these inequalities in (3.13) and (3.14), we conclude that T'(S;) C S; and
that T is an increasing mapping. By the Knaster-Tarski fixed point theorem [11],

there exists {y}} € S; such that (T'y*), = y;;. That is,

(n—r—10U-D (i—r+m—j—1)m-i-b
CPn —|— Z j — 1 ZZ:; (m _] — 1)' Qiya(i+m—1)a
. jz1
c—l—; (m—1)! %Yo (i+m—1)>
i=0

for n > N. From (3.12)—(3.14) we obtain

e (n—r— 1)(j_1)§: (i—r+m—j—1)m=i-b

(m _j — 1)' Qiga(i+m—1)

if j > 1, and

—k —k = (Z —n+m-— 1)(m—1) —%
Yo = PnlYp_p = c+ Z (m _ 1)[ qiya(”‘m_l)

if 7 = 0, and we see that {7} is a positive solution of (E) satisfying (2.3) and
(3.1).
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Now suppose (3.6) holds. In the above proof, instead of (3.13) and (3.14), for
j > 1 we define

Qiga(i+m—1)a

n—j s (%) . . i
c (n—r—1U-D (i—r+m—j—1)m=i-b
S 2

(Ty)n = = U=t (m—j—1)!
n>N
0, No <n <N,
and for j =0
C [e) (i+m_1_n)(m—1) -
X - Z (m _ 1)' GYo(i+m—1), n>N
(Ty)n — Zjon
c (i+m—1-=N)m=b
X_ Z (m—l)' qiya(i+m—1), NO SRSN
i=N .

Then, as above, T(S;) C S;. Next, we show that the operator 7' is a contraction
on S;. First note that from (3.12) we have g, > y,. Now, for ¥ = {y,}, X =
{x,} € S, we have

1H (n—r—l)(j_l)i(i—r—l—m—j—l)(m_j_l)

X Qi|ya(i+m—1) - $U(i+m—1)|

1 (n—r—1)U-D i (i—r+m—j— 1)m=i-1

mi G-I (m—j—1)

))(]) ya(i+m—1) _ $U(i+m—1)
pa(i+m—1) pa(i+m—1)

x qi(o(i+m—1
< (=27 - X1,

S0
1Ty = TX|| < (1= MY = X]I.

That is, 7" is a contraction on S; for j > 1. Similarly, we can prove that 7" is a

contraction on Sy. Thus, for j > 0, 17" has a unique fixed point in S;. That is,

there exists {y;} € S; such that (T'y*), = y};. Hence, for n > N,

n—j s (%) . . i
c (n—r—10U-D (i—r+m—j—1mi-0
yFn . . 4iYs(i+m—1)s
P 7‘;\7 G- 1) Z (m—j—1)! (i+m=1)

i>1

i=r

Z z—n—l—m—l)(m_l)

)' Qig;(i+m—1)’

ylm

_]IO.
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From (3.12) with y = y*, we obtain

g; _pn§:—k
n—j s (%) . . i
c (n—r—10U-D (i—r+m—j—1)mi-b
= —pn — . . LGYo(ifm—
A ;V (G—1)! Z:: (m—j—1)! (E+m=—1)
for 7 > 1, and

i i Po— i—n—i—m—l)(m_l) .
Yo = PnlYp_p = X Z )' qiya(i-l—m—l)

for j = 0. Once again, {g} is a positive solution of (E) satisfying (2.3) and (3.1).
This completes the proof of the theorem.

Remark. To this point in time, we have been unable to obtain sufficient condi-
tions for the existence of Type I solutions when (—1)"77~1§ = —1 and {p,} is
eventually negative. Such a result would be of interest.

We now consider nonoscillatory solutions of Type II, that is, those solutions

{yn} which satisfy (2.3) and

: Yn — Pnln—-k _ . Yn — PnlYn—tk
(3.15) Jim =—— =0, lim ==
for some £ € {1,2,...,m—1} such that (—1)™~*~16 = 1. If {y,, } is a positive such
solution of (E), then a summation of (E) yields

=400

Z n —t= QHya(n+m 1) < 00

and
Z n QHya(n+m 1) =

for some sufficiently large N > ng. Suppose that (2.12) holds. Now (2.9), (2.12)
and (3.15) imply that there exist positive constants « and 7 such that

9| > an™ and |y, | < n'”
for n > N. It then follows that

(3.16) Z D (a(n4+m—1) Vg, <
and
(3.17) Z n(m_z)(a(n +m— 1))(Z)qn = oo.

Thus, under condition (2.12), (3.16) and (3.17) are necessary for the existence of
a solution {y, } satisfying (2.3) and (3.15). The following result summarizes these
observations.
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Theorem 3.3. Suppose condition (2.12) holds. Then in order for equation (E)
to have a nonoscillatory solution {y,} satisfying (2.3) and (3.15), i.e., a Type IT
solution, it is necessary that (3.16) and (3.17) hold.

Our final theorem provides sufficient conditions for the existence of a Type 11
solution of (E) in the case where {p,} is eventually nonnegative. Such a result in
the case where {p,} is eventually nonpositive would, of course, also be of interest.

Theorem 3.4. Let p, > 0 and o(n) < n forn > ng, and let £ € {1,2,...,m—1}
satisfy (—1)™~¢=16 = 1. Equation (E) has a nonoscillatory solution {y, } satisfying
(2.3) and (3.15) if

(3.18) Z n(m_z_l)(a(n +m— 1))“)(]” < 00
n=N

and

(3.19) Z "= (a(n4+m — 1) Vg, = .
n=N

Proof. Choose N > ng so large that (3.8) holds and

1—A)
.

Z S(m—Z—l)(O,(5+ m— 1))(2)(]5 < (
s=N

Let ¢ > 0 be fixed and consider the subset S; of £Y° given by
e(n — N)=D e(n — N1 n e(n — N)®
(—nr =P 1T
and y, = yny for Ng <n < N}.

SzI{YEfé\gD:

forn> N

We define a partial order on ¢Y° in the usual way, and we will avoid introducing
equivalence classes in ¢Y°. Thus, if for any X = {z,}, Y = {y,} € &, x,, =y,
for all n >> 1, we will consider such sequences to be the same. Then, for every
subset A of Sy both inf A and sup A exist and belong to Se. If {y,} € Se, then
since y, < 2cn(® /(£ —1)! for n > N, the sequence {g,} defined by (3.11) satisfies

(o(n+m—1))®

2c
1—2A
for n > N, and so the mapping T defined by

ga(n+m—1) S

e(n — N)=D =t (n—r—1=D
(£ —1)! Z (£ —1)!

— %] s—r4+m—L0—1)(m=4t=1) -
(Ty)n - X Zs:r : +(m—zﬁ—1£)! QSya(s-I—m—l)a n Z N

0, No<n<Nforl>2
c, No<n<Nforl=1
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maps Sy onto itself and is increasing. By the Knaster-Tarski fixed point theorem
[11], there exists an element {y’} € S; such that ¢ = (Ty*),. As in the proof of
Theorem 3.2, the {g } associated with {y}} via (3.11) satisfies the equation

. . cln— N1
(3.20) yn" —pnii_p = =
n—~{
(n—r—1)D s—r+m (-t
+ Z (ﬁ— 1) Z_: — ¢ — 1)' QSyg(s+m_1), n> N.

r= =

Clearly, {g } is also a solution of equation (E). To show that {g} has the desired
asymptotic behavior, we note that

n—1 oo
- - (s—r4+m—(—1)m=t=0
(321) AZ 1[3/” _pnyn_k] =ct Z (m —f— 1)' qsya(s+m—1)
r=N s=r
and
_— . S (5 —n4m—f— 1)(m—£—1) i
22 Al —posidd =2 (m—(—1)! 95U (s4m—1)

for n > N. In view of (3.12) with y = y* and (2.13), we have

—x * —x % cln—N (¢=1)
for all large n. Combining (3.23) with the inequality
S—N—I—m—ﬁ)(m_z) i
A Gy = paiog] = e+ Z W TsYo(s+m=1)>

which is a consequence of (3.21), condition (3.19) then implies

lim Ay — pag_i] = .

n—oQ

On the other hand, from (3.22) we have

n—oQ

Thus, {y} satisfies (2.3) and (3.15). This completes the proof of the theorem.
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4. EXAMPLES

We present some examples to illustrate the results obtained in the previous
section.

Example 4.1. Consider the equation

(&

2
(1.1) N = Aol + 0k =) (1) g =0 a2

where 0 < A< 1land k> 1.

(i) Suppose that Ae® > 1. From (2.5) we have V' = Nj" U N for (4.1). Note
that Ny # ¢ since (4.1) has a solution {y,} = {¢~"} belonging to this class. The
possible asymptotic behaviors of the solutions {y,} in N are

n — AYp_
(4.2) lim L2729k onstant #0,
n—o00 n
(4.3) lim [y, — Ayn—g] = constant # 0,
or
. Un — AYn—k .
(4.4) lim Y = 0, lim [y, — Ayn—g] = oo.

Since condition (3.7) does not hold (m = 2), equation (4.1) has neither a solution
satisfying (4.2) nor a solution satisfying (4.3) (see Theorem 3.1).

(ii) Suppose that Aef < 1. The classification (2.5) then reduces to N' = N U
N;’ and the possible types of asymptotic behavior of the nonoscillatory solutions

{yn} of (4.1) are (4.2), (4.3),

(4.5) Jim [y — Ayn—i] = 0,
or
= AYn—
(4.6) lim 2= 2=k
n—oQ n

Exactly the same statements as in (i) hold for solutions which satisfy (4.2) and
(4.3). Equation (4.1) has a solution {y, } = {e7"} satisfying (4.5). No information
can be drawn about the solutions of (4.1) satisfying (4.6).

Example 4.2. Consider the difference equation
(4.7) Ay = Mn_i] — (1 =Ae ™) (e = 1)y, =0, n>1

where 0 < A < 1 and k& > 2. The classification and the asymptotic behavior
of nonoscillatory solutions of (4.7) are the same as in (ii) of Example 4.1. This
equation has a solution {y,} = {e"} satisfying (4.6). It is not known if there is a
solution of (4.7) satisfying (4.5).
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Example 4.3. The equation

(48) Am[yn _pnyn—k] + 5naya(n+m_1) =0, n>2,

where p, > 0 and o(n) is the greatest integer function of n®

ses of Theorem 3.4 provided £ and « satisfy

, satisfies the hypothe-

(=)™ s =land ¢/2—m—1/2<a < {/2—m.
Thus, equation (4.8) will have a nonoscillatory solution {y, } with

lim Yn — Pnln-k _ 0 and lim Yn — PnlYn—k
n—oQ n(Z) B n—oQ n([—l)

= +o0.

In conclusion, note that the results of this paper can be easily extended to
equations of the form

M
Am[yn - pnyn—k] + 6Zqiny0,(n+m—1) = 0;
i=1

where m > 2, 8§ = £1, {p,} and k are the same as before, {¢; } are non-negative
sequences of real numbers, and {o;(n)} are sequences of integers such that ¢;(n) <
n and lim, e 0i(n) = 00, 1 <i < M.
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