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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 259 { 262INDEXED ANNIHILATORS IN LATTICESIvan ChajdaAbstract. The concept of annihilator in lattice was introduced by M. Mandelker.Although annihilators have some properties common with ideals, the set of all an-nihilators in L need not be a lattice. We give the concept of indexed annihilatorwhich generalizes it and we show the basic properties of the lattice of indexed anni-hilators. Moreover, distributive and modular lattices can be characterized by usingof indexed annihilators.M. Mandelker [2] introduced the concept of annihilator in lattice as a naturalgeneralization of the relative pseudocomplement a � b of an element a of a latticeL relative to an element b:De�nition 1. The annihilator ha; bi for a; b 2 L is the set fx 2 L; a ^ x � bg.Evidently, the greatest element of ha; bi, if it exists, is the relative pseudocom-plement a � b.Although annihilators have some properties in common with ideals, there arealso essential distinctions: the set of all annihilators in a lattice L need not be alattice. This can be seen by means of the six element lattice L = f0; a; b; c; d; 1gwhere the elements a; b; c; d are pairwise incomparable and all between 0 and 1. Inthis case, ha; ci = f0; b; c; dg and hb; ci = f0; a; c; d; gbut ha; ci \ hb; ci = f0; c; dg, which is not an annihilator in L. Moreover, there isno annihilator in L properly contained in ha; ci or in hb; ci. This motivates us tolook after a new concept generalizing that of annihilator.De�nition 2. Let L be a lattice, � 6= ; an index set and a
 , b
 2 L for 
 2 �.By an indexed annihilator is meant the setfx 2 L; a
 ^ x � b
 for each 
 2 �g :The following assertion is evident:1991 Mathematics Subject Classi�cation : 06B10, 06C05, 06D05.Key words and phrases: lattice, distributive lattice, modular lattice, annihilator, ideal, in-dexed annihilator.Received May 17, 1994.



260 IVAN CHAJDALemma 1. Let L be a lattice, � 6= ; and a
 ; b
 2 L for 
 2 �. Thenfx 2 L; a
 ^ x � b
 for each 
 2 �g = \fha
 ; b
i; 
 2 �g :By Lemma 1, every indexed annihilator is intersection of annihilators. There-fore, we need not any huge notation for this concept and the indexed annihilatorwill be denoted simply by \fha
 ; b
i; 
 2 �g.Lemma 2. Let L be a lattice. Then(a) every annihilator in L is an indexed annihilator in L;(b) if B is an indexed annihilator in L and x 2 B and y � x then y 2 B.Proof. Then �rst assertion follows immediately from Lemma 1 by using � = f1g.The second follows directly by De�nition 2. �If a lattice L has not the least element then clearly ; is the least indexedannihilator in L with respect to set inclusion since; = \fha; bi; a; b 2 Lg :If a lattice L has the least element 0, then 0 2 ha; bi for every a; b of L, i.e.0 2 \fha; bi; a; b 2 Lg. On the other hand, f0g = \fha; bi; a; b 2 Lg, thus f0g isthe least annihilator in L with respect to set inclusion.Denote by IA0(L) the set of all indexed annihilators in L and by IA(L) the setof all non-void annihilators in L.Theorem 1. The set IA0(L) of all indexed annihilators in a lattice L forms acomplete lattice with respect to set inclusion. The greatest element of IA0(L) isL and the least element is \fha; bi; a; b;2 Lg. The operation meet coincides withset intersection, If L has the least element 0 then IA0(L) = IA(L) and f0g is theleast element of the lattice IA(L).Proof. It follows directly by Lemma1 and the foregoing remarks. Since ha; ai = Lfor each a 2 L, L is the greatest element of IA(L). �Remark 1. If a lattice has the greatest element 1 then every principal idealJ = (c] is an annihilator in L, namely J = h1; ci.Let L be a lattice and M be a subset of L. Since IA0(L) is a complete lattice,there exists the least indexed annihilator in L containing M . Denote it by A(M )and call an indexed annihilator generated by M . It is easy to show that A(M ) =\fha; bi; m 2 ha; bi for each m 2Mg.Theorem 2. Every principal ideal of L is an indexed annihilator in L.Proof. Let c 2 L and J = (c]. By the de�nition of annihilator, we haveA(J) = \fha; bi; j 2 ha; bi for each j 2 Jg = \fha; bi; c 2 ha; big; i.e.A(J) = fx 2 L; a ^ c � b) a ^ x � b for each a; b;2 Ag = fx 2 L; x � cg = J :However, J = A(J) implies that J is an indexed annihilator in L. �



INDEXED ANNIHILATORS IN LATTICES 261Theorem 3. Let L be a lattice with the least element 0. Then the lattice IA(L)of all indexed annihilators is pseudocomplemented.Proof. Let A 2 IA(L) and put B = fha; bi; a 2 Ag. If x 2 A \B then x ^ a = 0for each a 2 A, i.e. A \ B = f0g. Moreover, if A \ C = f0g for some c 2 IA(L),suppose y 2 A\C and y =2 B. Then there exists an element a 2 A with a^ y 6= 0.By (b) of Lemma 2 we concludea 2 A; y 2 C =) a ^ y 2 A \C = f0g ;i.e. a^y = 0, a contradiction. Hence y 2 B proving C � B. Thus B is a pseucom-plement of A in IA(L). �Theorem 4. Let L be a lattice. The following conditions are equivalent:(1) L is distributive;(2) every non-void indexed annihilator in L is an ideal of L.Proof. Let J = \fha
; b
i; 
 2 Lg 2 IA(L) and suppose x; y 2 J , a 2 L.Applying distributivity of L, we obtaina
 ^ (x _ y) = (a
 ^ x) _ (a
 ^ y) � b
 _ b
 = b
for each 
 2 �, thus x _ y 2 J . Moreover,a
 ^ (x ^ a) � a
 ^ x � b
for each 
 2 � thus also x ^ a 2 J , i.e. J is an ideal of L.Conversely, if every non-void indexed annihilator in L is an ideal of L then, by(a) of Lemma 2, also every annihilator in L is an ideal of L. By Theorem 1 in [2],we conclude that L is distributive. �Corollary. In every �nite distributive lattice L, ideals and indexed annihilatorscoincide.Proof. If a lattice L is �nite then L has 0, thus every indexed annihilator in Lis non-void. Moreover, every ideal in a �nite lattice is principal, thus, by Theorem2, every ideal is an indexed annihilator in L. The converse statement follows byTheorem 4. �Remark 2. The assertion of Corollary need not be valid if L is an in�nite lattice,see the following:Example. Let S be an in�nite set and consider the lattice (ExpS;�) of all subsetsof S. Trivially, (Exp S;�) is a complete and distributive lattice. Denote by J the setof all �nite subsets of S. Clearly, J is an ideal of (ExpS;�) which is not principal.However, for any A 2 IA0(ExpS), A 6= S there exists a �nite subset F � S � A,thus A(J) = S 6= J . Hence J is not an indexed annihilator in (ExpS;�). �Annihilators in modular lattices were treated by B. Davey and J. Nieminen [1].For indexed annihilators, we can state the following characterization of modularlattices:



262 IVAN CHAJDATheorem 5. For a lattice L, the following conditions are equivalent(1) L is modular;(2) for each J = \ha
 ; b
i; 
 2 �g 2 IA(L) with b
 � a
 for each 
 2 � itholds: if x 2 \f(b
 ]; 
 2 �g and y 2 J then x _ y 2 J :Proof. Let L be a modular lattice and b
 � a
 for each 
 2 �. Let J =\fa
 ; b
i; 
 2 �g 2 IA(L). Suppose x 2 \f(b
 ]; 
 2 �g and 
 2 J . Thena
 ^ y � b
 and x � b
 � a
 for each 
 2 � :Applying modularity of L, we obtaina
 ^ (x _ y) = x ^ (a
 ^ y) � b
for each 
 2 �, which yields x _ y 2 J .Conversely, let L satis�es (2) and x, y, z 2 L with x � z. Then x _ (z ^ y) � zand x 2 (p] for p = x _ (z ^ y) and z ^ y � x _ (z ^ y). It impliesy 2 hz; x_ (z ^ y)i :By Lemma 2, hz; x _ (z ^ y)i is an indexed annihilator in L. Applying (2) weconclude x _ y 2 hz; x_ (z ^ y)i ;which gives z ^ (x _ y) � x _ (z ^ y). Hence, L is modular. �References[1] Davey, B., Nieminen, J., Annihilators in modular lattices, Algebra Univ. 22 (1986), 154-158.[2] Mandelker, M., Relative annihilators in lattices, Duke Math. J. 40 (1970), 377-386.Ivan ChajdaPalacký University OlomoucTomkova 40779 00 Olomouc, CZECH REPUBLIC


		webmaster@dml.cz
	2012-05-10T11:24:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




