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AN INTEGRAL CONDITION OF OSCILLATION
FOR EQUATION y" +p(t)y'+q(t)y =0
WITH NONNEGATIVE COEFFICIENTS

ANTON SKERL{K

ABSTRACT. Our aim in this paper is to obtain a new oscillation criterion for equa-
tion

) Y +p(t)y +q(t)y =0

with a nonnegative coefficients which extends and improves some oscillation criteria
for this equation. In the special case of equation (*), namely, for equation y'" +
q(t)y = 0, our results solve the open question of Chanturiya.

1. INTRODUCTION

Consider the differential equation
(1) y"' +p)y +q(t)y =0,

where p, ¢, p’ : I — R, I = [a,00) C (0,00), R = (—00, >0) are continuous. In
the sequel we suppose that p(t) > 0, ¢(t) > 0, and sup{q(s); s >t} >0,t > a.

We consider only nontrivial solutions of equation (1). Such solution of (1)
is called oscillatory on I if it has arbitrarily large zeros, otherwise it is called
nonoscillatory on I. Concerning nonoscillatory solutions of (1) without loss of
generality we can restrict our attention only to positive ones. Equation (1) is
called oscillatory if it has at least one oscillatory solution.

In the particular case of (1) when p(t) =0, ¢t € I equation (1) becomes to

(2) v +q(t)y = 0.
Following Kiguradze [10], also [2, Definition 1.1], equation (2) is said to have
property A if every solution y of (2) is either oscillatory or

lim y(t) =0, (i=0,1,2),

t—o0
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monotonically. Tt is well-known that equation (2) is oscillatory iff it has property A,
see e.g. [2, Lemma 2.8°]. From the other hand equation (2) has property A if

(3) / 127 q(t) dt = oo, for any e € (0, 2],

see e.g. [2], [5], [16].
Recently Chanturiya improved condition (3) of oscillation of (2).

Theorem A. ([2, Theorem 2.12]). If

lim inft/ sq(s)ds > —,
t

t—o0

then equation (2) has property A.

For analogous result for third-order functional differential equation the reader
is referred to [3].

In the same book ( see [2, Problem 1.14, p. 48, n = 3] ), Chanturiya introduced
the following question:

Question. Is the condition

/Ootz (q(t) - ?t_?’) dt = oo

sufficient for equation (2) to have property A?

From our results the answer to this question follows immediately.

For p(t) # 0,1t € I, there is a large literature on the oscillation of equation (1).
About oscillation criteria of Kneser-type the reader is reffered to [6], [8] and [12],
see also the books [2], [5], [16], and papers [1] and [4]. From others results we
present

Theorem B. ([6, Theorem 5.12]) Let p(t) > 0, ¢(t) > 0, and ¢(t) > p'() in
(o, 00), o« > 0. If equation

(5) u” + p(t)u =0,

is nonoscillatory, and if

(6) / T llg(t) = O] dt = o

then equation (1) is oscillatory.

For nontrivial solution y of (1) we denote

(7) Fly(t)] = 2y(t)y" (t) — o/ *(t) + p(t)y* (1).
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Theorem C. ([11, Theorem 3.1]) If 2¢q(t) — p'(t) > 0 and not identically zero
in any subinterval of I and there exists a number m < % such that second-order
differential equation

(8) w4 (p(t) + mtq(t)) u =0,

is oscillatory, then equation (1) is also oscillatory. In fact, if y is any nonzero
solution of (1) with Fly(c)] < 0 (¢ > a) then y is oscillatory.

The aim of this paper is to establish some integral criterion for oscillation of (1)
for the case when Theorem B and Therem C' fail. The next theorem gives sufficient
conditions under which nonoscillatory solutions of (1) tend to zero as ¢ tends to
infinity. These our result for p(¢t) = 0, that is equation (2), are the affirmative
answer to the question of Chanturiya.

2. PRELIMINARIES

In this section we present some lemmas requsite to proofs of main results.

The following lemma is proved in [11, Lemma 3.2], for nonlinear equation see

also [14] and [15].

Lemma 1. If 2¢(t) — p/(t) > 0 and not identically zero in any subinterval of
I and y is a nonoscilatory solution of (1) which is eventually nonnegative with
Fly(c)] €0 (see (7), ¢ € I arbitrary) then there exists a number d > ¢ such that
y(t) >0,y (t) >0,y"(t) >0, and ¢y’ (t) <0, fort > d.

Remark 1. Any solution y with a zero, that is y(¢*) = 0, satisfies F'[y(t*)] < 0.

Remark 2. Let hypothesis of Lemma 1 hold. Considering additional assumptions
we eliminate positive increasing solutions and so we obtain oscillation criterion.
Since for t?p(t) > %, t > 0 equation (8) is oscillatory by Sturm comparison theorem
(see Theorem 1.1 in [16]) and Kneser criterion (see [16, p. 45]), so Theorem C' is
aplicable. Therefore we will interested with the case t?p(t) < %, t>0.

It is easy to verify that the following inequality is fullfiled for all ¢ > 0,

(9) ip(t) = == (1~ *p(t)* <0 for £*p(t) <

bl

-

2
3v3t
since 4t%p3 (1) + 15t p?(¢) + 12¢*p(t) — 4 = (4¢%p(t) — 1)(t*p(t) + 2)2.

Using this inequality we obtain the assertion needed to proof of main results.
Proof of this assertion is elementary.

Lemma 2. Let 0 < t%p(t) < % for allt > 0. Let P be the polynomial in the
variable z,
P(z) =23 -3 + (2 +t2p(t))z +t2q(t), t > 0.
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Then

wjw

(10) P(2) > t2q(t) + t?p(t) — 3%(1 —p(t))?, t>0

forallz>1-2 #ﬁ.

Remark 3. The right-hand side of (10) is the local minimum of P in the point
Zo = 1—|— ”4_21—@]7 i .
3. MAIN RESULTS

For the proof of our oscillation result we use the similar method like in the
paper [13], see also [11, Theorem 3.1].

Theorem 1. Let hypotheses of Lemma 1 hold, and in addition t?p(t) <
allt > 0. If

“ e 2 2 £ _
(11) / (t q(t) +tp(t) — m(1—1& p(t)) ) dt = oo

for all

1
1

then equation (1) is oscillatory. In fact, any solution y which satisfies Fy(t*)] < 0
for some t* > a, is oscillatory.

Proof. Let y be a solution of (1) which satisfies F[y(tg)] < 0 for some t; > a.
Then by Lemma 1, y is oscillatory or y(t)y' (t) > 0 for all sufficiently large t.
Suppose without loss of generality that y(¢) > 0, ¢'(t) > 0 for allt > b > ¢;. Now,

we denote ,
ty (¢
AP AC
y(t)

So z(t) > 0 and it is easy to verify that z satisfies the second-order Riccati equation

(12) () + %Zz —4z) + %(23 =327+ (2+2p(t))z + £7(t)) = 0.

Substituting the estimate (1 (12) we have

0) to
1 5 9 Ey
;( q(t) +t7p ()—V(l—tp(t))Q)——Q(t),

for all ¢ > b. Integrating the above inequality from b to t > b we get

((tz) + %zz - 4,2)/ < -

(tz(t)) + %zz(t) —4z(t) < Ko — /b Q(s)ds

where Ky is a constant. Since %zz(t) —4z(t) > —% , an integration of the above
inequality from b to ¢t > b yields

(13) tz(t) < Ko+ Kqt — /t /s Q(u) duds,
b Jb
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where K| = Ky + %, and Kz = b(z(b) — K1). So it follows from (11) and (13) that
z(t) < 0 for sufficiently large ¢, which contradicts positivity of z. So equation (1)
cannot have any solution with property y(¢)y'(t) > 0 for all large ¢ and by Lemma 1
equation (1) is oscillatory.

The next theorem describes asymptotic behavior of nonoscillatory solutions
of (1).

Theorem 2. Let 0 < t?p(t) < %, and ¢(t) > 0, ¢ € I. If (11) is satisfied, then any

nonoscilatory solution of (1) has property lim;_., y(t) = 0.

Proof. Since t?p(t) < %, t € I from Kneser comparison theorem it follows that
equation (5) is nonoscillatory. So by Theorem 3.6 in [7] it follows that there exists
d > a such that either y(3)y'(t) > 0 or y(¢)y'(t) < 0 for all t > d. Let y be a
nonoscillatory solution, and suppose that y(t) > 0, /() > 0 for all ¢ > d. We
again denote z(t) = ti//égt)), t > d. So z(t) > 0. Let hypothesis (11) hold. The
same process as in the proof of Theorem 1 shows (by (13)) that z becomes negative
for sufficiently large ¢, a contradiction. Let y(¢) > 0, ¢/(t) < 0 for t > d. Hence
lim;—oo y(t) = L > 0 exists. Let L > 0. Multiplying equation (1) by ¢* and
integration from d to ¢t > d yields

t

(1) — 2ty (1) + %y(t) <K - L/ s%q(s) ds,
d

where K is some constant. By (9) and condition (11) we have fdoo t2q(t)dt = oo.
From this and from the last inequality, for all sufficiently large ¢, we have y”/(¢) < 0,
which contradicts y(¢) > 0, ¥'(¢) < 0. The proof is complete.

Now we consider equation (2). Let y be a nonoscillatory solution of (2). Without
loss of generality we may suppose that y is a positive one. Then according a lemma
of Kiguradze [9, Lemma 3], see also [2, Lemma 1.1], there is a number ¢; > a such
that

y(t) >0, ¥ (t) <0, ¥ (t) >0, y'(t) <0,

or
y(t) >0, ¥ (t) >0, ¥ (t) >0, y'(t) <0,

for all ¢ > ¢;. So, from Theorem 1 and Theorem 2 we have

/100 t? <q(t) - %t—?’) dt = .

Then equation (2) has property A.

Corollary 1. Let

Remark 4. Corollary 1 is the affirmative answer to the question of Chanturiya.
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4. COMPARISONS AND EXAMPLES

To show that Theorem 1 can be applied even in the case when Theorem B and
Theorem C' are not applicable, let us consider the following equation

(14) " + potPu’ + qotPu=0, t >0,

where < =2, pg > 0, g9 > %, and pg < % if B =-2; 0, pop and ¢g are some
constants.

Directly we see that Theorem B is not applicable to equation (14). For § =
—2 equation (14) becomes to the Euler equation. The neccesary and sufficient
condition for oscillation of Euler equation (14) is

2 3
15 +po— ——=(1— 2> 0.
( ) qo T Po 3\/3( Po)

It is easy to check that condition (15) is equivalent to condition (11) of Theorem 1.
To compare our result to Theorem C' we note that equation (8) in this case, that
is = —2,and pg < % becomes to the Euler equation,

(8) v" + (po + mgo)t~%v = 0.

Equation (8’) is oscillatory iff pg+mgo > % for some m < %, that is 2po+qo > 2po+
2mqoy > % So it is easy to check that inequality ¢qo + po > % —po > %(1 — Po)%
holds for some gy > 0 and every 0 < py < %. From this it follows that Theorem 1
is better than Theorem C' in this case, e.g. for pg = 0.06, ¢ = 0.3 condition (15)
is fullfiled, while (8’) is nonoscillatory.

Let 8 < —2. So there is a number 6 > 0 such that § = —2 — § and hence
t2p(t) = pot™% < % fort > ag = (4p0)%. If we denote & = pot~? for t > ag then
the function f(z) = = — %(1 — l‘)% is increasing and so for 0 < & < % we have

flx) > f(0) = —%. Therefore

1 _s 2 NS 2 /°° dt
— + pot™" — ——=(1 — pot 2) dt > - — —.
/ao t(Qo Po 3\/3( Po ) ) _(qO 3\/3) j 7

o

So we see by Theorem 1 that for pg > 0, g9 > % and # < —2, equation (14) is

oscillatory. On the other hand, by Theorem C equation (14) is oscillatory only if
g0 > 0.5.

Remark 5. About comparison Theorem A to Corollary 1 the reader is referred

to [13].
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