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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 97 { 111LIFTINGS OF 1-FORMS TO THE LINEARr-TANGENT BUNDLEW. M. MikulskiAbstract. Let r; n be �xed natural numbers. We prove that for n-manifolds theset of all linear natural operators T � ! T �T (r) is a �nitely dimensional vector spaceover R. We construct explicitly the bases of the vector spaces. As a corollary we�nd all linear natural operators T � ! T r�.All manifolds and maps are assumed to be in�nitely di�erentiable.0. Let r; n be �xed natural numbers. Given a manifoldM we denote by T r�M =Jr(M;R)0 the space of all r-jets of maps M ! R with target 0. This is a vectorbundle over M with the source projection. The dual vector bundle (T r�M )� ofT r�M is denoted by T (r)M and called the linear r-tangent bundle ofM . We denotethe �bre of T r�M and T (r)M over x by T r�x M and T (r)x M respectively. Everyembedding ' :M ! N of two n-manifolds induces a vector bundle homomorphismT r�' : T r�M ! T r�N over ' de�ned by T r�'(jrx
) = jr'(x)(
 � '�1) for any
 : M ! R and any x 2 M with 
(x) = 0, where by jrx
 we denote the r-jetof 
 at x. This embedding induces also a vector bundle homomorphism T (r)' :T (r)M ! T (r)N over ' dual to T r�'�1, i.e. T (r)'(�)(jr'(x)�) = �(jrx(� � ')) forany � 2 T (r)x M , any x 2M and any jr'(x)� 2 T r�'(x)N , cf. [4].In this paper we study the problem how a 1-form ! on a manifoldM can inducea 1-form on T (r)M and a section of T r�M !M . This problem is re
ected in theconcept of linear natural operators T � ! T �T (r) and T � ! T r�, cf. [4]. In thefundamental monograph [4] there is a very general de�nition of natural operators.We restrict ourselves to the following one.De�nition 0.1. Let r; n be �xed natural numbers. Let 
1(M ) denotes the vectorspace of all 1-forms on M and �T r�M denotes the vector space of all sections of1991 Mathematics Subject Classi�cation : 58A20, 53A55.Key words and phrases: linear r-tangent bundle, linear natural operator, 1-form.Received January 19, 1994.



98 W. M. MIKULSKIT r�M ! M . A linear natural operator A : T � ! T �T (r) (or A : T � ! T r�) is asystem of R-linear functionsAM : 
1(M )! 
1(T (r)M ) (or AM : 
1(M )! �T r�M ) ;for any n-manifoldM , such that A is invariant with respect to ' for any embedding' : M ! N of two n-manifolds, i.e. AM('�!) = (T (r)')�AN (!) (or T r�' �AM ('�!) = AN (!) � ' ) for any ! 2 
1(N ), where '�! 2 
1(M ), ('�!)x :=!'(x) � Tx', x 2M is the pull-back of ! with respect to '.The set of all linear natural operators T � ! T �T (r) (or T � ! T r� ) is a vectorspace over R. If A;B : T � ! T �T (r) (or A;B : T � ! T r� ) are two linear naturaloperators and �; � 2 R, then �A + �B : T � ! T �T (r) (or �A + �B : T � ! T r�) is de�ned by (�A + �B)M (!) = �(AM (!)) + �(BM (!)) for any n-manifold Mand any ! 2 
1(M ).This paper is dedicated to prove the following theorem.Theorem 0.1. Let r; n 2N. For n-manifolds the vector space of all linear naturaloperators T � ! T �T (r) is of dimension 1, if r � 3 and n � 2, of dimension 2, ifr = 2 or n = 1, and of dimension 3, if n � 2 and r = 1.In the proof of the theorem we construct explicitly the bases of the vector spaces( see Theorem 1.1).Similar problems are studied in papers [1]-[3], [5]-[8].In item 1 we describe main examples of linear natural operators T � ! T �T (r)and we formulate the main theorem. In item 2 we prove that the natural opera-tors described in item 1 are linearly independent in the vector space of all linearnatural operators T � ! T �T (r). In item 3 we prove a reducibility lemma. Sometransformation rules are presented in item 4. The proof of the main theorem isgiven in item 5. In item 6, the following fact will be proved as a consequence ofTheorem 0.1.Corollary 0.1. Let r; n 2 N. For n-manifolds the vector space of all linearnatural operators T � ! T r� is of dimension 0, if r � 3 and n � 2, and ofdimension 1, if r � 2 or n = 1.1. In this item we describe main examples of linear natural operators T � !T �T (r) and we formulate the main theorem.From now on the usual coordinates on Rn are denoted by x1; :::; xn. The canon-ical 1-forms on Rn induced by x1; :::; xn are denoted by dx1; :::; dxn.We start with the following obvious example.Example 1.1. The family of functions
1(M ) 3 ! ! ��M (!) 2 
1(T (r)M ) ;



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 99where M is an n-manifold, �M : T (r)M ! M is the projection and ��M(!) is thepull-back of ! with respect to �M , is a linear natural operator T � ! T �T (r) inthe sense of De�nition 0.1. This operator is denoted by ��.To give other examples of linear natural operators T � ! T �T (r) we need somepreparations. In Example 1.2 we use the following two lemmas.Lemma 1.1. Let r 2 N. Then there exists one and only one linear naturaloperator ~A(r) : T � ! T r� such that(1:1) ( ~A(r)M (df))(xo) = jrxo(f � f(xo))for any 1-manifold M , any xo 2 M and any f : M ! R, where df 2 
1(M )denotes the di�erential of f .Proof. By the Poincare lemma any element of (Jr�1T �)0R = fjr�10 ! : ! 2
1(R)g is of the form jr�10 (df), where f : R ! R, f(0) = 0. If jr�10 (df) =jr�10 (dh), where f; h : R ! R, f(0) = h(0) = 0, then jr�10 (f 0) = jr�10 (h0), i.e.jr0f = jr0h. Thus the mapping�r : (Jr�1T �)0R! T r�0 R ; �r(jr�10 (df)) = jr0f ;where f : R! R, f(0) = 0, is well-de�ned. Obviously �r is linear. If ' : R! Ris a di�eomorphism preserving 0, then(�r � ((Jr�1T �)0'�1))(jr�10 (df)) = �r(jr�10 (d(f � ')))=jr0(f � ') = ((T r�'�1)0 � �r)(jr�10 (df)) ;where (Jr�1T �)0'�1 : (Jr�1T �)0R! (Jr�1T �)0R is given by jr�10 ! ! jr�10 ('�!)and (T r�'�1)0 is the restriction of T r�'�1 to the �bre over 0. Hence �r is Lr1-equivariant.According to the general theory of natural operators, cf. [4], there exists oneand only one linear natural operator ~A(r) : T � ! T r� corresponding to �r, i.e suchthat ~A(r)R (!)(0) = �r(j(r�1)0 !) for any ! 2 
1(R). (Namely( ~A(r)M (!))(x) = T r�'�1(�r(jr�10 (('�1)�!)))for any ! 2 
1(M ) and any x 2M , where ' is a chart on M such that '(x) = 0.This de�nition is correct because of the equivariancy of �r.)We see that ( ~A(r)R (dg))(0) = �r(jr�10 (dg)) = jr0(g � g(0))for any g : R! R. Now, using the invariancy of both sides of (1.1) with respectto charts we obtain (1.1) for any 1-manifoldM , any xo 2M and any f :M ! R.�



100 W. M. MIKULSKILemma 1.2. Let n 2 N. There exists one and only one linear natural operator~B(n) : T � ! T 2� such that(1:2) ( ~B(n)M (fdg))(xo) = 12j2xo((f + f(xo))(g � g(xo))for any n-manifold M , any xo 2M and any f; g :M ! R.Proof. The mapping �n : (J1T �)0Rn ! T 2�0 Rn given by�n(j10( nXi=1 fidxi)) = j20( nXi=1 fi(0)xi + 12 nXi;k=1 @fi@xk (0)xixk)is well-de�ned and linear. We are going to show that �n is L2n-equivariant, i.e.that for any di�eomorphism ' = ('1; :::; 'n) : Rn ! Rn preserving 0 2 Rn wehave(1:3) �n � ((J1T �)0'�1) = (T 2�'�1)0 � �n :Since both sides of (1.3) are linear, then without loss of generality it is su�cientto verify equality (1.3) at j10(dx1), j10(x1dx1) and j10(x2dx1). We have(�n � ((J1T �)0'�1))(j10 (dx1)) = �n(j10(d'1))= �n(j10( nXi=1 @'1@xi dxi))= j20( nXi=1 @'1@xi (0)xi + 12 nXi;k=1 @2'1@xi@xk (0)xixk)and ((T 2�'�1)0 � �n)(j10(dx1)) = (T 2�'�1)0(j20(x1)) = j20 ('1)= j20( nXi=1 @'1@xi (0)xi + 12 nXi;k=1 @2'1@xi@xk (0)xixk) :Similarly for � = 1; 2 we have(�n � ((J1T �)0'�1))(j10 (x�dx1)) = �n(j10 ('�d'1))= �n(j10( nXi=1 '� @'1@xi dxi))= j20(12 nXk;i=1 @'�@xk (0)@'1@xi (0)xixk)



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 101and ((T 2�'�1)0 � �n)(j10(x�dx1)) = (T 2�'�1)0(j20 (12x�x1))= j20(12'�'1)= j20(12 nXk;i=1 @'�@xk (0)@'1@xi (0)xixk) :Thus �n is L2n-equivariant.Let ~B(n) : T � ! T 2� be the linear natural operator corresponding to �n, i.e.such that ~B(n)Rn (!)(0) = �n(j10!) for any ! 2 
(Rn). We will prove (1.2) for anyn-manifoldM , any xo 2M and any f; g : M ! R. Using the invariancy of bothsides of (1.2) with respect to embeddings and the linearity of both sides of (1.2)with respect to g we can assume that M = Rn, xo = 0 and g = x1. Then( ~B(n)Rn (fdx1))(0) = �n(j10(fdx1)) = j20(f(0)x1 + 12 nXi=1 @f@xi (0)xix1)= 12j20((f + f(0))x1) :The lemma is proved. �Remark 1.1. (a) For 1-manifolds we have ~B(1) = ~A(2), where ~A(2) is describedin Lemma 1.1 and ~B(1) is described in Lemma 1.2.(b) Let n; r � 2 and a 2 R. We have x2dx1 = x21+x1 d(x1 + 12(x1)2) near(1; 1; 0; :::; 0)2 Rn andjr(1;1;0;:::;0)((x2 + a)(x1 � 1)) 6= jr(1;1;0;:::;0)(( x21 + x1 + a2)(x1 + 12(x1)2 � 1; 5))if either r � 3 or a 6= 1. (It is su�cient to consider the coordinates of thesejets corresponding to @2@(x1)2 and @3@x2(@x1)2 .) Thus if there exists a linear naturaloperator ~B : T � ! T r� such that~BM (fdg) = jrxo((f + af(xo))(g � g(xo)))for any n-manifoldM ,any xo 2M and any f; g :M ! R, then a = 1 and r = 2.We are now in position to give some examples of linear natural operators T � !T �T (r).Example 1.2. (I) Let ~A : T � ! T r� be a linear natural operator. Then forany ! 2 
1(M ) we have a section ~AM (!) : M ! T r�M . This section can beinterpreted as a mapping AM (!) : T (r)M ! R, (AM (!))(�) = �(( ~AM (!))(x)),where � 2 T (r)x M , x 2M . The family of functions(1:4) 
1(M ) 3 ! ! AM (!) := d(AM (!)) 2 
1(T (r)M ) ;



102 W. M. MIKULSKIwhere M is an n-manifold, is a linear natural operator T � ! T �T (r) in the sense ofDe�nition 0.1. We apply this general construction to some linear natural operatorsT � ! T r�.(a) Applying this construction to ~A(r) : T � ! T r� described in Lemma 1.1 weget a linear natural operator A(r) : T � ! T �T (r) for 1-manifolds.(b) Similarly, applying this construction to ~B(n) : T � ! T 2� described inLemma 1.2 we get a linear natural operator B(n) : T � ! T �T (2) for n-manifolds .(c) Using the natural vector bundle isomorphism iM : T 1�M ! T �M , iM (j1x
) :=dx
, we de�ne a linear natural operator ~C(n) : T � ! T 1�, ~C(n)M (!) := i�1M � !, forany n-manifold M and any ! 2 
1(M ). Oving to the general construction de-scribed above this operator induces a linear natural operator C(n) : T � ! T �T (1)for n-manifolds.(II) Let i�M : TM ! T (1)M be the natural vector bundle isomorphism dual toiM : T 1�M ! T �M . We de�ne a linear natural operator D(n) : T � ! T �T (1) byD(n)M (!) = ((i�M )�1)�!C � C(n)M (!)for any n-manifold M and any ! 2 
1(M ), where !C 2 
1(TM ) denotes thecomplete lift of ! to TM in the sense of [9] and C(n) is described above.The main result of this paper is the following theorem corresponding to Theorem0.1.Theorem 1.1. (a) If n � 2 and r � 3, then the linear natural operator ��described in Example 1.1 forms a basis of the vector space of all linear naturaloperators T � ! T �T (r) for n-manifolds.(b) If n � 2, then the linear natural operators �� and B(n) described in Ex-amples 1.1 and 1.2 form a basis of the vector space of all linear natural operatorsT � ! T �T (2) for n-manifolds.(c) If n � 2, then the linear natural operators ��; C(n) and D(n) described inExamples 1.1 and 1.2 form a basis of the vector space of all linear natural operatorsT � ! T �T (1) for n-manifolds.(d) If r � 1, then the linear natural operators �� and A(r) described in Examples1.1 and 1.2 form a basis of the vector space of all linear natural operators T � !T �T (r) for 1-manifolds .2. The linear natural operators described in Examples 1.1 and 1.2 have thefollowing properties.Lemma 2.1. (a) Let r � 1. Then �� and A(r) are linearly independent in thevector space of all linear natural operators T � ! T �T (r) for 1-manifolds.(b) Let n � 2. Then �� and B(n) are linearly independent in the vector spaceof all linear natural operators T � ! T �T (2) for n-manifolds.(c) Let n � 2. Then ��; C(n); D(n) are linearly independent in the vector spaceof all linear natural operators T � ! T �T (1) for n-manifolds.



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 103Proof. At �rst we make some preparations. Let V T (r)M := ker(T�M ) � TT (r)Mbe the vertical distribution. We see that:(1) A(r)R (dx1)(v) 6= 0 for some v 2 V T (r)R\ (TT (r))0R. For, ( ~A(r)R (dx1))(0) =jr0(x1) 6= 0, and hence A(r)R (dx1)jT (r)0 R is not constant.(2) Similarly, B(n)Rn (dx1)(v) 6= 0 for some v 2 V T (2)Rn \ (TT (2))0Rn,and C(n)Rn (dx1)(v) 6= 0 for some v 2 V T (1)Rn \ (TT (1))0Rn.(3) ��M(!)(v) = 0 for any n-manifoldM , any ! 2 
1(M ) and any v 2 V T (r)M .(4) D(n)M (!)(v) = 0 for any n-manifold M , any ! 2 
1(M ) and any v 2V T (1)M .For let us consider a vector �eld X on M , a point y 2 TxM , x 2 M , such thatXV (y) = v, where XV is the vertical lift of X to TM , cf. [9]. Then !C (XV )(y) =(!(X))(x) and(((i�M )�(C(n)M (!)))(XV ))(y) = ddt!(y + tX(x))jt=0 = (!(X))(x) :Hence D(n)M (!)(v) = 0.(5) D(n)Rn(x2dx1)(i�Rn (vo)) 6= 0, where vo = @1(0) 2 T0Rn and i�M : TM !T (1)M is the natural vector bundle isomorphism (see Example 1.2 (II)).For, ((x2dx1)C(@C2 ))(vo) = ((x2dx1)(@2))C(vo) = 0 and(((i�M )(C(n)Rn (x2dx1)))(@C2 ))(vo) = ddt((x2dx1)(T�(0;t;0;:::;0)(vo)))jt=0= ddt(t)jt=0 = 1 ;where �(0;t;0;:::;0) : Rn ! Rn is the translation by (0; t; 0; :::;0) ( the 
ow of @2 )and @C2 is the complete lift of @2 to TRn, i.e. the vector �eld on TRn generatedby the 
ow T�(0;t;0;:::;0). Hence D(n)Rn (x2dx1) 6= 0 at i�M (vo).(6) ��Rn(x2dx1) = 0 on the �bre T (1)0 Rn.Using these facts one can prove the lemma as follows. We prove only part (c).Suppose that ���+�C(n)+
D(n) = 0 for some �; �; 
 2 R. Since ��Rn(dx1)(v) =0, D(n)Rn (dx1)(v) = 0 and C(n)Rn (dx1)(v) 6= 0 for some v 2 V T (1)Rn \ (TT (1))0Rn,then � = 0. Next, since D(n)Rn (x2dx1) 6= 0 at i�Rn(vo) and ��Rn(x2dx1) = 0 ati�Rn (vo), then 
 = 0. Then, since �� 6= 0, � = 0. �



104 W. M. MIKULSKI3. In this item we prove the following reducibility lemma.Lemma 3.1. Let A;B : T � ! T �T (r) be two linear natural operators for n-manifolds. Suppose that ARn(!o) = BRn (!o), where !o = x2dx1, if n � 2, and!o = dx1, if n = 1. Then A = B.Proof. . At �rst we assume that n � 2. Consider a mapping f : Rn ! R. Let y 2Rn. There is � 2 R such that @(f+�x2)@x2 (y) 6= 0. Using the assumption of the lemmaand the invariancy of A and B with respect to the local di�eomorphism (x1; f +�x2; x3; :::; xn) de�ned on some neighbourhood of y we deduce that ARn ((f +�x2)dx1) = BRn ((f+�x2)dx1) over y. Then by the linearity of A and B we deducethat ARn(fdx1) = BRn(fdx1) over y. Hence ARn(fdx1) = BRn(fdx1) for any f :Rn ! R. Next using the invariancy of A and B with respect to di�eomorphismswhich permute coordinates we deduce that ARn (fdxi) = BRn (fdxi) for any f :Rn ! R and any i = 1; :::; n. Thus by the linearity of A and B we obtain thatARn(!) = BRn (!) for any ! 2 
1(Rn). Then A = B because of the invariancyof A and B with respect to charts.Now, let n = 1. Consider ! 2 
1(R) and y 2 Rn. There is � 2 R such that(!+ �!o)(y) 6= 0. There is a local di�eomorphism de�ned on some neighbourhoodof y which transforms germy(! + �!o) into germ0(!o). By the assumption of thelemma and the invariancy of A and B we deduce that AR(!+�!o) = BR(!+�!o)over y. Then by the linearity of A and B we get AR(!) = BR(!) over y. HenceA = B because of the invariancy of A and B with respect to charts. �Remark 3.1. This lemma is true for every natural bundle E instead of T (r).4. Let S = f� = (�1; :::; �n) 2 (NSf0g)n : 1 � j�j � rg. On T (r)Rn we havethe coordinates (xi; X�), i = 1; :::; n;� 2 S, given by(4:0) xi(�) = xio; X�(�) = �(jrxo((x� xo)�)) ;where � 2 T (r)xo Rn and xo = (x1o; :::; xno) 2 Rn. We shall identify Rn �RS withT (r)Rn by these coordinates.We prove the following lemma.Lemma 4.1. Let n � 2. Let G be a local di�eomorphism de�ned on someneighbourhood U of 0 2 Rn by G = ((x1 � 12 (x1)2; x21�x1 ; x3; :::; xn). Then:(4:1) X(1;0;:::;0) � T (1)G = (1� x1)X(1;0;:::;0)(4:2) X(0;1;0;:::;0) � T (1)G = x2(1� x1)2X(1;0;:::;0) + 11� x1X(0;1;0;:::;0)over U , if r = 1;(4:3) X(1;1;0;:::;0) � T (2)G = x21� x1X(2;0;:::;0)+X(1;1;0;:::;0) ;



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 105(4:4) X(1;0;:::;0) � T (2)G = (1� x1)X(1;0;:::;0) � 12X(2;0;:::;0) ;(4:5) X(0;1;0;:::;0) � T (2)G = x2(1� x1)2X(1;0;:::;0) + 11� x1X(0;1;0;:::;0)+ x2(1� x1)3X(2;0;:::;0) + 1(1� x1)2X(1;1;0;:::;0)over U , if r = 2; and(4:6) X(1;1;0;:::;0) � T (3)G = X(1;1;0;:::;0)+ 12X(2;1;0;:::;0)on the �bre over 0 2 Rn, if r = 3.Proof. Let xo = (x1o; :::; xno) 2 U and � 2 T (2)xo Rn. We see that(4:7) j2xo[G1 � G1(xo)] = j2xo[(1� x1o)(x1 � x1o) � 12(x1 � x1o)2] and(4:8) j2xo [G2 � G2(xo)] = j2xo [ x2o(1� x1o)2 (x1 � x1o) + 11� x1o (x2 � x2o)+ x2o(1� x1o)3 (x1 � x1o)2+ 1(1� x1o)2 (x1 � x1o)(x2 � x2o)](4:9) j2xo [(G1 �G1(xo))(G2 �G2(xo))]= j2xo[ x2o1� x1o (x1 � x1o)2 + (x1 � x1o)(x2 � x2o)](4:10) j30(G1G2) = j30(x1x2 + 12x2(x1)2) ;where G = (G1; G2; :::; Gn). Then for � 2 T (2)xo Rn we have(X(1;1;0;:::;0) � T (2)G)(�) = (T (2)G(�))(j2G(xo)[(x1 �G1(xo))(x2 �G2(xo))])= �(j2xo [(G1 � G1(xo))(G2 � G2(xo))])= �(j2xo [ x2o1� x1o (x1 � x1o)2 + (x1 � x1o)(x2 � x2o)])= ( x21� x1X(2;0;:::;0))(�) +X(1;1;0;:::;0)(�)



106 W. M. MIKULSKIbecause of (4.9). It implies (4.3). Similarly, from (4:7) and (4:8) it follows (4:1),(4:4) and (4:2), (4:5) respectively. From (4:10) it follows (4:6). �5. Proof of Theorem 1.1. Let A : T � ! T �T (r) be a linear natural operator.After the identi�cation T (r)Rn = Rn �RS (see Item 4) we can write(5:0) ARn (!o) = nXi=1 fidxi +X�2S f�dX�for some mappings fi; f� : Rn � RS ! R, where !o is as in Lemma 3.1. Weconsider two cases.(I) At �rst we assume that n � 2. Using the invariancy of A with respect to thedi�eomorphisms t id, (x1; tx2; :::; txn), (tx1; x2; tx3; :::; txn), (x1; x2; tx3; :::; txn)and (x1 + 1; x2; :::; xn) and the linearity of A we obtain(5:1) t2f�(xj ; X�) = tj�jf�(txj; tj�jX�) ;(5:2) tf�(xj; X�) = tj�j��1f�(t1��1jxj; tj�j��1X�) ;(5:3) tf�(xj; X�) = tj�j��2f�(t1��2jxj; tj�j��2X�) ;(5:4) f�(xj; X�) = tj�j��1��2f�(t1��1j��2jxj; tj�j��1��2X�) ;(5:5) f�(xj ; X�) = f�(xj + �1j; X�) ;(5:6) t2fi(xj; X�) = tfi(txj; tj�jX� ) ;(5:7) tfi(xj ; X�) = t1��1ifi(t1��1jxj; tj�j��1X�) ;(5:8) tfi(xj ; X�) = t1��2ifi(t1��2jxj; tj�j��2X�) ;(5:9) fi(xj; X�) = t1��1i��2ifi(t1��1j��2jxj; tj�j��1��2X�) ;(5:10) fi(xj ; X�) = fi(xj + �1j; X�) ;



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 107for any t 2 R � f0g, any (xj; X�) = (xj; X�)j=1;:::;n;�2S 2 Rn �RS , any � 2 Sand any i = 1; :::; n, where �ij is the Cronecker delta. ( For example,t2ARn(!o) = ARn(t2!o) = ARn((t id)�!o) = (T (r)(t id))�(ARn (!o))and X� � T (r)(t id) = tj�jX� for any � 2 S and any t 2 R� f0g. It implies (5:1)and (5:6). Similarly one can prove (5:2)� (5:5) and (5:7)� (5:10). )From (5:1); (5:2); (5:3) and (5:4) it follows that f� = 0, if j�j � 3 or j�j��1 � 2or j�j � �2 � 2 or j�j � �1 � �2 � 1, i.e. if � 2 S � f(1; 1; 0; :::;0); (1; 0; :::; 0),(0; 1; 0; :::; 0)g.From (5:1) we get that f(1;1;0:::;0) does not depend on xj and X� for any j =1; :::; n and any � 2 S.By (5:1) and the homogeneous function theorem, cf. [4], we obtain that f(1;0;:::;0)and f(0;1;0;:::;0) are linear in xj and X� with j�j = 1 and they are independent ofX� with j�j � 2. Next, using (5:4) and (5:5) we see that they are independent ofx1; x3; :::; xn and X(0;0;1;0;:::;0),. . .,X(0;:::;0;1). Using (5:3) we deduce that f(1;0;:::;0)is independent of X(1;0;:::;0). Similarly, f(0;1;0;:::;0) is independent of X(0;1;0;:::;0)and x2, because of (5:2).Using similar arguments it folows from (5:6)� (5:10) that f3 = ::: = fn = 0, f1depends linearly on x2 and X(0;1;0;:::;0) and it is independent of the other xj andX� , and f2 depends linearly on X(1;0;:::;0) and it is independent of the other X�and xj.Hence(5:11) ARn (!o) = �1dX(1;1;0;:::;0)+ (�2x2 + �3X(0;1;0;:::;0))dX(1;0;:::;0)+ �4X(1;0;:::;0)dX(0;1;0;:::;0)+ (�5x2 + �6X(0;1;0;:::;0))dx1+ �7X(1;0;:::;0)dx2for some �1; :::; �7 2 R. Obviously, if r = 1 then the term �1dX(1;1;0;:::;0) does notexist.It is clear that ��Rn(!o) = x2dx1. Thus replacing A by A � �5�� one can assume(in (5.11)) that �5 = 0.We consider four subcases:(a) At �rst we assume that r = 1. The local di�eomorphism G described inLemma 4.1 preserves germ0(!o). Hence by the invariancy of A with respect to G



108 W. M. MIKULSKIand by (4.1) and (4.2) from (5.11) we obtain�3X(0;1;0;:::;0)dX(1;0;:::;0) + �4X(1;0;:::;0)dX(0;1;0;:::;0)+ �6X(0;1;0;:::;0)dx1 + �7X(1;0;:::;0)dx2= �3(X(0;1;0;:::;0) � T (1)G)d(X(1;0;:::;0) � T (1)G)+ �4(X(1;0;:::;0) � T (1)G)d(X(0;1;0;:::;0) � T (1)G)+ �6(X(0;1;0;:::;0) � T (1)G)d(x1 � T (1)G) + �7(X(1;0;:::;0) � T (1)G)d(x2 � T (1)G)= �3X(0;1;0;:::;0)(dX(1;0;:::;0) �X(1;0;:::;0)dx1)+ �4X(1;0;:::;0)(X(1;0;:::;0)dx2 + dX(0;1;0;:::;0)+X(0;1;0;:::;0)dx1)+ �6X(0;1;0;:::;0)dx1 + �7X(1;0;:::;0)dx2on the �bre (T (1)Rn)0 of T (1)Rn over 0. (For example, by (4.1)d(X(1;0;:::;0) � T (1)G) = d((1� x1)X(1;0;:::;0))= �X(1;0;:::;0)dx1 + (1� x1)dX(1;0;:::;0)= dX(1;0;:::;0) �X(1;0;:::;0)dx1on the �bre (T (1)Rn)0 as x1 = ::: = xn = 0. Similarly we analyse the otherterms.) It implies that �3 = �4 = 0. (We analyse the coe�cients correspondingto (X(0;1;0;:::;0))2 dx2 and X(0;1;:::;0)X(1;0;:::;0) dx1:)Next using the invariancy of A with respect to G and (4.1) and (4.2) from (5.11)we have �2x2dX(1;0;:::;0)+ �6X(0;1;0;:::;0)dx1 + �7X(1;0;:::;0)dx2= �2 x21� x1 (�X(1;0;:::;0)dx1 + (1� x1)dX(1;0;:::;0))+ �6( x2(1� x1)2X(1;0;:::;0)+ 11� x1X(0;1;0;:::;0))(1 � x1)dx1+ �7(1� x1)X(1;0;:::;0)( 11� x1dx2 + x2(1� x1)2 dx1)over some neighbourhood of 0 2 Rn. It implies that �2 = �6 + �7. (We multiplybooth sides of the equality by 1 � x1 and next we analyse the coe�cients onx2X(1;0;:::;0) dx1.)On the other hand by Lemma3.1 the mappingA! ARn (x2dx1) is a linerar mo-nomorphism. Hence the vector space of all linear natural operators T � ! T �T (1)has dimension � 3. (This vector space depends eventually on �5, �6 and �7.)Since ��; C(n); D(n) : T � ! T �T (1) described in Examples 1.1 and 1.2 are linearlyindependent (see Lemma 2.1), we end the proof in this subcase.(b) Now we assume that r = 2.



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 109In general, for r1 � r2 we have a natural vector bundle monomorphism Ir1 ;r2M :T (r1)M ! T (r2)M , (Ir1;r2M (�))(jr2x 
) := �(jr1x 
), where M is a manifold, � 2T (r1)x M , x 2M and jr2x 
 2 T r2�x M = (T (r2)x M )�.The natural vector bundle monomorphism I = I1;2 : T (1) ! T (2) induces alinear natural operator I�A : T � ! T �T (1), (I�A)M (!) := I�M (AM (!)), for anyn-manifold M and any ! 2 
1(M ). We see that X� � IRn = X� for any � 2 Swith j�j = 1, and X� � IRn = 0 for any � 2 S with j�j = 2. Therefore it followsfrom subcase (a) that we have the formula (5.11) with �4 = �3 = �5 = 0 and�2 = �6 + �7. By the invariancy of A with respect to G and by (4.3), (4.4) and(4.5) from (5.11) we obtain�1dX(1;1;0;:::;0)+ �6X(0;1;0;:::;0)dx1 + �7X(1;0;:::;0)dx2= �1(X(2;0;:::;0)dx2 + dX(1;1;0;:::;0))+ �6(X(0;1;0;:::;0)+X(1;1;0;:::;0))dx1 + �7(X(1;0;:::;0) � 12X(2;0;:::;0))dx2on the �bre (T (2)Rn)0. It implies that �6 = 0 and �1 = 12�7. (We consider thecoe�cients corresponding to X(1;1;0;:::;0) dx1 andX(2;0;:::;0) dx2.) Hence by Lemma3.1 the vector space of all linear natural operators T � ! T �T (2) has dimension� 2. Since ��; B(n) : T � ! T �T (2) described in Examples 1.1 and 1.2 are linearlyindependent (see Lemma 2.1), we end the proof in this subcase.(c) Let r = 3. Using similar arguments as in subcase (b) with the natural vectorbundle monomorphism T (2) ! T (3) instead of T (1) ! T (2) we have the formula(5:11) with �1 = 12�7, �2 = �7 and �3 = �4 = �5 = �6 = 0. Using the invariancyof A with respect to G and (4.6) from (5.11) we obtain12�7dX(1;1;0;:::;0) = 12�7(dX(1;1;0;:::;0)+ 12dX(2;1;0;:::;0))on the vertical space V0(T (3)Rn) with 0 2 (T (3)Rn)0. Then �7 = 0. Henceby Lemma 3.1 the vector space of all linear natural operators T � ! T �T (3) hasdimension � 1. Since �� : T � ! T �T (3) described in Example 1.1 is not zero, weend the proof in this subcase.(d) Let r � 4. Using similar arguments as in subcase (c) with the naturalvector bundle monomorphism T (3) ! T (r) instead of T (2) ! T (3) we have theformula (5:11) with �1 = ::: = �7 = 0. Hence by Lemma 3.1 the vector space of alllinear natural operators T � ! T �T (r) has dimension � 1. Since �� : T � ! T �T (r)described in Example 1.1 is not zero, we end the proof in this subcase.(II) Now we assume that n = 1. Using the invariancy of A with respect to t idand the linearity of A we deduce thattf�(x1; X�) = tj�jf�(tx1; tj�jX�) andtf1(x1; X�) = tf1(tx1; tj�jX�)



110 W. M. MIKULSKIfor any � 2 S and any (x1; X�) 2 Rn �RS. Then f� = 0, if j�j � 2, and f(1); f1are constants. Hence AR(!o) = �1dX(1) + �2dx1for some �1; �2 2 R. Thus the vector space of all linear natural operators T � !T �T (r) has dimension � 2. Since ��; A(r) : T � ! T �T (r) described in Examples1.1 and 1.2 are linearly independent, we end the proof in this case. �6. We have the following simple corollary of Theorem 1.1.Corollary 6.1. (a) If n � 2 and r � 3, then the vector space of all linear naturaloperators T � ! T r� for n-manifolds is the zero vector space.(b) If n � 2, then the vector space of all linear natural operators T � ! T 2� forn-manifolds is generated (over R) by ~B(n) : T � ! T 2� described in Lemma 1.2.(c) If n � 2, then the vector space of all linear natural operators T � ! T 1� forn-manifolds is generated (over R) by ~C(n) : T � ! T 1� described in Example 1.2.(d) If r � 1, then the vector space of all linear natural operators T � ! T r� for1-manifolds is generated (over R) by ~A(r) described in Lemma 1.1.Proof. Let r; n 2 N. Let ~A : T � ! T r� be a linear natural operator for n-manifolds. Using Example 1.2 we have the induced linear natural operator A :T � ! T �T (r) given by (1.4). We see that if ~A0; ~A" : T � ! T r� are two linearnatural operators such that for the induced operators A0; A" : T � ! T �T (r) wehave A0M (!) = A"M (!) on the vertical distribution V T (r)M for any n-manifoldM and any ! 2 
1(M ), then ~A0 = ~A". On the other hand ��M(!) and D(n)M (!)are zero on V T (r)M (see Proof of Lemma 2.1). Using Theorem 1.1 we end theproof. �References[1] Doupovec, M., Kurek, J., Liftings of covariant (0;2)-tensor �elds to the bundle of k-dimen-sional 1-velocities, Suppl. Rend. Circ. Mat. Palermo (in press).[2] Gancarzewicz, J., Mahi, S., Liftings of 1-forms to the tangent bundle of higher order, Czech.Math. J. 40 (115) (1990), 397{407.[3] Jany¹ka, J., Natural operations with projectable tangent valued forms on �bered manifolds,Annali di Math. CLIX (1991), 171{184.[4] Koláø, I., Michor, P. W., Slovák, J., Natural Operations in Di�erential Geometry, Sprin-ger-Verlag, Berlin, 1993.[5] Kurek, J., On the �rst order natural operators transforming 1-forms on a manifold to linearframe bundle, Demonstratio Math. 26 (1993), 287{293.[6] Kurek, J., On the �rst order natural operators transforming 1-forms on a manifold to thetangent bundle, Ann. U.M.C.S. 43 (1989), 79{83.
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