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LIFTINGS OF 1-FORMS TO THE LINEAR
r-TANGENT BUNDLE

W. M. MIKULSKI

ABSTRACT. Let 7,n be fixed natural numbers. We prove that for n-manifolds the
set of all linear natural operators T* — T*T(7) is a finitely dimensional vector space
over R. We construct explicitly the bases of the vector spaces. As a corollary we
find all linear natural operators T* — T7*.

All manifolds and maps are assumed to be infinitely differentiable.

0. Let r, n be fixed natural numbers. Given a manifold M we denote by T7* M =
J"(M,R)o the space of all r-jets of maps M — R with target 0. This is a vector
bundle over M with the source projection. The dual vector bundle (77*M)* of
T7*M is denoted by T") M and called the linear r-tangent bundle of M. We denote
the fibre of 77*M and T M over z by Tr*M and Tx(T)M respectively. Every
embedding ¢ : M — N of two n-manifoldsinduces a vector bundle homomorphism
T : T™M — T™N over ¢ defined by T™(jry) = j:)(x)('y o =1 for any
¥ : M — R and any # € M with y(z) = 0, where by jiv we denote the r-jet
of v at x. This embedding induces also a vector bundle homomorphism 7" :
TCIM — TUN over ¢ dual to T7*p~ 1 . T(’“)go((a)(j:)(x)n) = 0(j%(n o)) for
any © € Tx(T)M, any * € M and any j:)(x)n € T;’("x)N, cf. [4].

In this paper we study the problem how a 1-form w on a manifold M can induce
a 1-form on T M and a section of 7"*M — M. This problem is reflected in the
concept of linear natural operators 7% — T*T(") and T* — T"*, cf. [4]. In the
fundamental monograph [4] there is a very general definition of natural operators.
We restrict ourselves to the following one.

Definition 0.1. Let r, n be fixed natural numbers. Let Q'(M) denotes the vector
space of all 1-forms on M and I'T"* M denotes the vector space of all sections of
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T™*M — M. A linear natural operator A : T* — T*T() for A:T" —=T")is a
system of R-linear functions

Apr QY M) — QUTYIM)  (or Ay - QY (M) —TT™M ),

for any n-manifold M, such that A is invariant with respect to ¢ for any embedding
¢ : M — N of two n-manifolds, i.e. Ap(p*w) = (T e)*An(w) (or T™*p o
Ap(¢p*w) = Axy(w) o ) for any w € QY(N), where p*w € QY (M), (¢*w)s =
Wy(z) © Twp, € M is the pull-back of w with respect to ¢.

The set of all linear natural operators T%* — T*T(") (or T — T ) is a vector
space over R. If A, B : T* — T*T(r) (or A, B :T* — T" ) are two linear natural
operators and «, f € R, then o4 + B : T* — T*T(r) (or aA+pB T — T
) is defined by («A + By (w) = a(Ap(w)) + B(By (w)) for any n-manifold M
and any w € Q1 (M).

This paper is dedicated to prove the following theorem.

Theorem 0.1. Let r,n € N. For n-manifolds the vector space of all linear natural
operators T* — T*T") is of dimension 1, if » > 3 and n > 2, of dimension 2, if
r=2orn =1, and of dimension 3, if n > 2 and r = 1.

In the proof of the theorem we construct explicitly the bases of the vector spaces
( see Theorem 1.1).

Similar problems are studied in papers [1]-[3], [5]-[8].

In item 1 we describe main examples of linear natural operators 7% — T*T(")
and we formulate the main theorem. In item 2 we prove that the natural opera-
tors described in item 1 are linearly independent in the vector space of all linear
natural operators 7% — T*T() . In item 3 we prove a reducibility lemma. Some
transformation rules are presented in item 4. The proof of the main theorem is

given in item 5. In item 6, the following fact will be proved as a consequence of
Theorem 0.1.

Corollary 0.1. Let r,n € N. For n-manifolds the vector space of all linear
natural operators T* — T s of dimension 0, if r > 3 and n > 2, and of
dimenston 1, if r <2 orn=1.

1. In this item we describe main examples of linear natural operators T —
T=T() and we formulate the main theorem.

From now on the usual coordinates on R are denoted by z!, ..., ?. The canon-
ical 1-forms on R™ induced by «', ..., 2" are denoted by da?, ..., da™.

We start with the following obvious example.

Example 1.1. The family of functions

QY M) 3w — miy(w) € QHTTIM)
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where M is an n-manifold, 73 : TU)M — M is the projection and 7 (w) is the
pull-back of w with respect to ma, is a linear natural operator 7% — T*T(") in
the sense of Definition 0.1. This operator is denoted by #*.

To give other examples of linear natural operators 7% — T*T") we need some
preparations. In Example 1.2 we use the following two lemmas.

Lemma 1.1. Let r € N. Then there exists one and only one linear natural
operator A") . T* — T such that

(1.1) (A5 (dN) (o) = 15, (f = F(x0))

for any l-manifold M, any v, € M and any f : M — R, where df € QY(M)
denotes the differential of f.

Proof. By the Poincare lemma any element of (J'~'T*)oR = {ji 'w : w
QYR)} is of the form ji~'(df), where f : R — R, f(0) = 0. If ji='(df
jo=t(dh), where f,h : R — R, f(0) = h(0) = 0, then j5~'(f") = j5~*(h'), i.e.
Jjof = joh. Thus the mapping

[Im

o (JTTITYR = TR o (G d) = g0 f

where f: R — R, f(0) = 0, is well-defined. Obviously & is linear. If ¢ : R — R
is a diffeomorphism preserving 0, then

(0" o (J" 7 ™)™ )5~ (df)) = o (G5 (d(f 0 )
=5(F o) = (T oo a)(js ™ (df))

where (J" T )op ™t (J"TIT*)oR — (JT 71T )oRois given by ji ™ tw — ji 7 H(p*w)
and (T™*p~1)g is the restriction of T"*p~1 to the fibre over 0. Hence o is L7-
equivariant.

According to the general theory of natural operators, cf. [4], there exists one
and only one linear natural operator A") : T* — T7* corresponding to a”, i.e such

that fi(f:)(w)(O) = o/(jér_l)w) for any w € Q}(R). (Namely

(AR ))(@) = T o~ " (5 (™1 w)))

for any w € QY(M) and any @ € M, where ¢ is a chart on M such that ¢(z) = 0.
This definition is correct because of the equivariancy of a”.)
We see that

(A% (dg))(0) = a” (i3~ (dg)) = i (g — 9(0))

for any g : R — R. Now, using the invariancy of both sides of (1.1) with respect
to charts we obtain (1.1) for any l-manifold M, any , € M and any f: M — R.
O
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Lemma 1.2. Let n € N. There exists one and only one linear natural operator
BM) T — T% such that

(1.2) (BS (fdg))(z,) = —ax ((f + Fl2o))(g — 9(x0))

for any n-manifold M, any v, € M and any f,g : M — R.

Proof. The mapping 3" : (J1T*)oR" — TZ*R" given by

(3¢ Zfzdx Zf; RS DA

zkl

is well-defined and linear. We are going to show that 3" is LZ-equivariant, i.e.
that for any diffeomorphism ¢ = (¢!, ...,¢") : R® — R" preserving 0 € R" we
have

(1.3) B o ((J1T )op™) = (I~ o0 5" .

Since both sides of (1.3) are linear, then without loss of generality it is sufficient
to verify equality (1.3) at ji(dz?t), ji(xldz') and ji(2z%dz'). We have

(8" o ((J'T™)ow™ (o (da)) = 8" (o (dip?))

and

(7% )o Oﬁ”)(jé(dl‘l)):(Tz* ‘1) (jg( D) =ds(eh)

. 8@ i
= Ji a Z 81‘ 890 (0)a'a") .

i=1 k=1

Similarly for 7 = 1,2 we have

(8" o (1T )o™ ) (o (27 dx')) = 8" (G5 (7 dg"))

n

N[ 7'a 7
= PG ¢ )
i=1
_ 22 l - dp” 3801 ik
—.70(2 Z axk(o)axl (0)z"2")

k=1
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and

(T ™Mo 0 B™) (o (27 da')) = (Tz*so‘l)o(jg(%x%l))

o1
213(580 801)

n

_ 2 l de” dp! ik
=385 22 G r 0’

2=

Thus A" is L%-equivariant.

Let B : T% — T2* be the linear natural operator corresponding to 47 i.e.
such that ng(w)(O) = B"(jiw) for any w € Q(R"™). We will prove (1.2) for any
n-manifold M| any =, € M and any f, ¢ : M — R. Using the invariancy of both
sides of (1.2) with respect to embeddings and the linearity of both sides of (1.2)
with respect to g we can assume that M = R”, z, = 0 and ¢ = '. Then

(B (dr)(0) = G () = 70 + 53 L ()i
i=1
= LR+ FO)).
The lemma is proved. a

Remark 1.1. (a) For l-manifolds we have B(1) = fi(z), where A(?) is described
in Lemma 1.1 and B() is described in Lemma 1.2. ,

(b) Let n,r > 2 and a € R. We have z?da! = 1_T_x1d(x1 + %(xl)z) near
(1,1,0,..,0) € R™ and

l,Z

aoq o 1og
m+§)($ +—(l‘) —1,5))

j(l,l,o,...,o)((l’z + a)(l’l - 1) # j(1,1,0,...,0)(( 5

if either » > 3 or @« # 1. (It is sufficient to consider the coordinates of these

jets corresponding to a(‘z?)Q and afoaaxl)Q .) Thus if there exists a linear natural

operator B :T* — T7* such that

Bur(fdg) = j;, ((f + af(2,))(g — 9(x0)))

for any n-manifold M ,any z, € M and any f,g : M — R, then ¢ = 1 and r = 2.
We are now in position to give some examples of linear natural operators 7™ —

7).

Example 1.2. (I) Let A T* — T be a linear natural operator. Then for

any w € QY(M) we have a section AM((.U) : M — T" M. This section can be

interpreted as a mapping Ay (w) : TUVOM — R, (Ay(w))(©) = @((AM(W))(JL‘)),

where © € Tx(T)M, z € M. The family of functions

(1.4) QHM) 5w — Ay (w) = d( Ay (w)) € Q(TTM) |
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where M is an n-manifold, is a linear natural operator 7% — T*T(") in the sense of
Definition 0.1. We apply this general construction to some linear natural operators
T* — T’I‘* .

(a) Applying this construction to A — 77 described in Lemma 1.1 we
get a linear natural operator A" : 7% — T*7) for 1-manifolds.

(b) Similarly, applying this construction to B . T* — T2 described in
Lemma 1.2 we get a linear natural operator B"") : T* — T*T'2) for n-manifolds .

(¢) Using the natural vector bundle isomorphism ips : T M — T* M ipr(jly) =
d;7v, we define a linear natural operator C) . * — T CN'J(\;)(W) = i;}
any n-manifold M and any w € Q'(M). Oving to the general construction de-
scribed above this operator induces a linear natural operator C(*) : 7% — 7*7(1)
for n-manifolds.

(IT) Let 4%, : TM — T M be the natural vector bundle isomorphism dual to
iag TV M — T*M. We define a linear natural operator D) : 7% — 7*7(1) by

ow, for

DY (w) = ((53) 71w — O (w)

for any n-manifold M and any w € Q*(M), where w” € QY (TM) denotes the
complete lift of w to TM in the sense of [9] and C?) is described above.

The main result of this paper is the following theorem corresponding to Theorem

0.1.

Theorem 1.1. (a) If n > 2 and r > 3, then the linear natural operator ©*
described in Example 1.1 forms a basis of the vector space of all linear natural
operators T* — T*T") for n-manifolds.

(b) If n > 2, then the linear natural operators ™ and B(") described in Ex-
amples 1.1 and 1.2 form a basis of the vector space of all linear natural operators
T* — T*T?) for n-manifolds.

(¢) If n > 2, then the linear natural operators 7, C") and D) described in
Examples 1.1 and 1.2 form a basis of the vector space of all linear natural operators
T* — T*TM) for n-manifolds.

(d) If r > 1, then the linear natural operators 7 and AU described in Examples
1.1 and 1.2 form a basis of the vector space of all linear natural operators T*" —
T*T) for 1-manifolds .

2. The linear natural operators described in Examples 1.1 and 1.2 have the
following properties.

Lemma 2.1. (a) Let r > 1. Then 7% and AU are linearly independent in the
vector space of all linear natural operators T* — T*T") for 1-manifolds.

(b) Let n > 2. Then @™ and B™) are linearly independent in the vector space
of all linear natural operators T* — T*T?) for n-manifolds.

(¢) Let n > 2. Then 7, ™, D) are linearly independent in the vector space
of all linear natural operators T* — T*T(Y) for n-manifolds.
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Proof. At first we make some preparations. Let VT M := ker(Tmar) C TT") M
be the vertical distribution. We see that:
(1) AL (dat)(v) # 0 for some v € VIIRA (TTM)oR.. For, (AL (dw?))(0) =
j5 (1) # 0, and hence Z(f:)(dxlﬂTér)R is not constant.
(2) Similarly, Bg,?(dxl)(v) # 0 for some v € VIR N (TT?) R,
and an)(dxl)(v) # 0 for some v € VIR N (TTW)R”.
(3) wi(w)(v) = 0 for any n-manifold M, any w € QY(M) and any v € VT M.
(4) Dgg)(w)(v) = 0 for any n-manifold M, any w € Q'(M) and any v €
VI,
For let us consider a vector field X on M, a point y € 1T, M, x € M, such that

XV (y) = v, where XV is the vertical lift of X to TM, cf. [9]. Then w®(XV)(y) =
(w(X))(x) and

(30" (O @NXN) = oly + X (@) = (X)) (x)

Hence Dgg)(w)(v) =0.
(5) D(Ig,z(xzdxl)(i*Rn(vo)) # 0, where v, = 01(0) € TyR” and 7%, : TM —

TW M is the natural vector bundle isomorphism (see Example 1.2 (IT)).
For, ((z2dz1)¢ (05))(ve) = ((z%d2')(92)) (v,) = 0 and

((FO(CR A ) (o) = (@A )T 00, ofve)less
= G0l =1,
where 70100y R" — R" is the translation by (0,¢,0,...,0) ( the flow of J )
and 95 is the complete lift of &5 to TR™, i.e. the vector field on TR” generated
by the flow T'r ¢ 0,....0). Hence D(rg,z(xzdxl) # 0 at i (vo).

(6) mha(zdr') =0 on the fibre Tél)R”.

Using these facts one can prove the lemma as follows. We prove only part (c).
Suppose that an™ + C™) 44 D) = ( for some o, 3,7 € R. Since T (dzt)(v) =
0, D(Ig,z(dxl)(v) =0 and an)(dxl)(v) # 0 for some v € VTR N (TT(l))oR”,
then 5 = 0. Next, since D(Ig,z(xzdxl) # 0 at . (v,) and 7h.(z%dz!) = 0 at
5w (vo), then v = 0. Then, since 7* £ 0, a = 0. O
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3. In this item we prove the following reducibility lemma.

Lemma 3.1. Let A, B : T* — T*T) be two linear natural operators for n-
manifolds. Suppose that Ar~(w,) = Brr(w,), where w, = z%dz', if n > 2, and
w, =dzl, ifn=1. Then A = B.

Proof. . At first we assume that n > 2. Consider a mapping f : R” — R. Let y €

R". There is 7 € R such that 6()‘;752)(3/) # 0. Using the assumption of the lemma
and the invariancy of A and B with respect to the local diffeomorphism (2!, f +
rz? 23, ... ") defined on some neighbourhood of y we deduce that A ((f +
r2?)dr') = Bre((f+72?)dz') over y. Then by the linearity of A and B we deduce
that Ag«(fdz') = Bre(fdzl) over y. Hence Arn«(fdxl) = Br«(fdz!) for any f:
R” — R. Next using the invariancy of A and B with respect to diffeomorphisms
which permute coordinates we deduce that Ar«(fdz') = Brn(fdz?) for any f :
R” — R and any ¢ = 1,...,n. Thus by the linearity of A and B we obtain that
Apn(w) = Bra(w) for any w € Q}(R™). Then A = B because of the invariancy
of A and B with respect to charts.

Now, let n = 1. Consider w € Q*(R) and y € R™. There is 7 € R such that
(w4 Tw,)(y) # 0. There is a local diffeomorphism defined on some neighbourhood
of y which transforms germ, (w + 1w, ) into germy(w,). By the assumption of the
lemma and the invariancy of A and B we deduce that Ag(w+7w,) = Br(w+7w,)
over y. Then by the linearity of A and B we get Ar(w) = Br(w) over y. Hence
A = B because of the invariancy of A and B with respect to charts. a

Remark 3.1. This lemma is true for every natural bundle F instead of 7).

4. Let S ={a = (a1,..,a,) € (NJ{0})" : 1 < fa| <7} On TIR™ we have
the coordinates (2, X%), i =1,....,n,a € S, given by

(4.0) w(©)=w,,  X(O) =00, ((r—x.,)")),
where © € Tx(Z)R” and z, = (z},...,27) € R”. We shall identify R"® x R® with
TR™ by these coordinates.

We prove the following lemma.

Lemma 4.1. Let n > 2. Let GG be a local diffeomorphism defined on some

2

neighbourhood U of 0 € R™ by GG = ((«! — %(1‘1)2, T, z3, ..., x"). Then:

(4.1) X 000) o PG = (1 = 1) X (100)
(4.2) x(0,1,0,...,0) o (D) — LX(LO,...,O)_F ! x(0,1,0,...,0)
(1—zt)? 1— 2t

over U, if r = 1;

2
x X(20,,0) 4 x(1,1,0,..,0)

(1,1,0,...,0) , 7(2) ¢y —
(4.3) X SMASHE 1

— 2l :
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1
(1,0,.,0) o (v — (1 — 21y v (1,0,,0) _ L v (2,0,..,0)
(1.4) X o TG = (1— )X 5 X ,
2
(0.1,0,.,0) o ()7 — 00y ! KO0
_— -
e (1—z1)? 1
- L yeoo g, # (1,1.0,...0)
(1—21)3 =)™

over U, if r = 2; and
(46) (17 0, )O T(S)G X(lv Mo 70) + 2X(27 )My )
on the fibre over 0 € R”, if r = 3.

Proof. Let z, = (z},...,27) € U and © € Tx(f)R”. We see that

(1) RGN G = 10— ) — )~ S — ) and

. . QL‘O
Jio[Gz - Gz(l‘o)] = Jio[m(l‘l x})) + - (xz — xi)
2
xO
(4.8) + (1_x1)3($1 _l’}))z

Ja [(GH = G 2o))(G? = G*(x,))]
(4.9)

(4.10) Jo(G1G2) = jo(z'a” + ;l’z(l’l)z) ,

where G = (G1,G?,...,G™). Then for © € Tx(f)R” we have

(X100 o TRIGYO) = (THG(O)) (s, (@) — G (@) (a? = G¥(2,))])
= 0L [(G" = G2 )(E* = G*(2)))
= 02, [T (! — wl) + (2! — ) (@® — 2))])

o

= (T X0 )() 4 X (-0 e)
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because of (4.9). It implies (4.3). Similarly, from (4.7) and (4.8) it follows (4.1),
(4.4) and (4.2), (4.5) respectively. From (4.10) it follows (4.6). O

5. Proof of Theorem 1.1. Let A : T* — T*T(") be a linear natural operator.
After the identification T"R"” = R” x R® (see Ttem 4) we can write

(5.0) Apn(wo) = Y fidae' + 3 foadX®
i=1

a€ES

for some mappings fi, fo : R?” x R® — R, where w, is as in Lemma 3.1. We
consider two cases.

(T) At first we assume that n > 2. Using the invariancy of A with respect to the
diffeomorphisms ¢ id, (z!,tz? ... ta™), (tzl 2% t23 . ta™), (z1, 22 t23, .. t2")
and (2! +1,2? ..., 2") and the linearity of A we obtain

(5.1) 2 fa(x?, Xy = 1ol g (tad #P1XPY

(5.2) tfa(l‘j,X*@) = tlal_alfa(tl_éljxj,tlﬁl_ﬁlXﬁ) ’
(53) tfa(l‘j,X*@) — t|a|—a2fa(t1—62jxj’t|ﬁ|—ﬁzXﬁ) ’
(5.4) fa(l‘j,X’@) — t|a|—a1—azfa(t1—61j—5zjxj’t|ﬁ|—ﬁl—ﬁzXﬁ) ’
(55) fa(l’j,Xﬁ) == fa(l‘j + (Slj,Xﬁ) s

(5.6) tzfi(xj’)(ﬁ) :tfi(txj,tlﬁl)(ﬁ) ’

(5.7) thi(ad, XP) = ¢ =t ¢t~ hugd fIPl=P Xy

(5.8) thi(xd | XY = ¢1=bai (1020 g y1P1=02 x By

(59) fi(xj,Xﬁ) = t1_61'_62’fi(t1_61j_62jl‘j,tlﬁl_ﬁl_ﬁQXﬁ) ’

(5.10) fi(x?, XP) = fi(ad 4 615, X7,
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for any t € R — {0}, any (27, XP) = (2/, XP);21 _npes ER" xR any a € S
and any ¢ = 1,...,n, where §;; is the Cronecker delta. ( For example,

12 Arn(wo) = A (t2w,) = Arn((t id)*w,) = (T (t id))* (A (w,))

and X% o TU)(t id) = t1*1X* for any a € S and any t € R — {0}. Tt implies (5.1)
and (5.6). Similarly one can prove (5.2) — (5.5) and (5.7) — (5.10). )

From (5.1),(5.2), (5.3) and (5.4) it follows that f, = 0,if || > 3 or |a| — vy > 2
or la] —az > 2or |a|—a; —ay > 1, ie if o € S —{(1,1,0,...,0),(1,0,...,0),
(0,1,0,...,0)}.

From (5.1) we get that J(1,1,0...,0) does not depend on 2/ and X? for any j =
1,..,nand any § € 5.

By (5.1) and the homogeneous function theorem, cf. [4], we obtain that f1 0. o)
and f(o1,0,...,0) are linear in zJ and X? with |8| = 1 and they are independent of
XP with |8] > 2. Next, using (5.4) and (5.5) we see that they are independent of
ot 2, e and X(00.1,0,.50) - x (0,01 Using (5.3) we deduce that fi10,.. 0
is independent of X109 Similarly, J(0,1,0,...,0) 1s independent of X (0,1,0,..,0)
and z?, because of (5.2).

Using similar arguments it folows from (5.6) — (5.10) that fs = ...= f, =0, f
depends linearly on z? and X (%599 and it is independent of the other #/ and
X? and f, depends linearly on X199 and it is independent of the other X7
and 27 .

Hence

Apn(w,) = /JldX(l’l’O""’O)—i— (/izl‘z +ﬂsX(O’1’0"”’0))61)((1’0"”’0)
(5.11) —|—/,L4X(1’0’""O)dX(O’l’O"”’O) + (usl‘z +/J6X(0’1’0"”’0))d961
—|—/17X(1’0""’0)dl‘2

for some i1, ..., 7 € R. Obviously, if 7 = 1 then the term g1 dX 109 does not
exist.
It is clear that 7. (w,) = ?dx’. Thus replacing A by A — us7* one can assume

(in (5.11)) that ps = 0.
We consider four subcases:

(a) At first we assume that » = 1. The local diffecomorphism G described in
Lemma 4.1 preserves germg(w,). Hence by the invariancy of A with respect to G
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and by (4.1) and (4.2) from (5.11) we obtain

NSX(O,1,0,...,0)dX(1,0,...,0)_|_ﬂ4x(1,0,...,O)dX(O,l,O,...,O)
—|—/,L6X(0’1’0"”’0)dl‘1 + /,L7X(1’0"”’0)dl‘2
— NS(X(O,LO,...,O) OT(l)G)d(X(l,O,...,O) OT(l)G)
+/«L4(X(1707'H70) OT(l)G)d(X(O,l,O,...,O) OT(l)G)
—|—/,L6(X(0’1’0"”’0)OT(l)G)d(l‘l OT(I)G) —|—/,L7(X(1’0"”’0)OT(l)G)d(l‘z OT(I)G)
— NSX(O,l,0,...,0)(dX(1,0,...,0) _X(l,O,...,O)dxl)
_|_ﬂ4x(1,0,...,0)(X(1,0,...,0)dx2 + dx(O,l,O,...,O)_i_X(O,l,O,...,O)dxl)
—|—/,L6X(0’1’0"”’0)dl‘1 + /,L7X(1’0"”’0)dl‘2

on the fibre (T(l)R")o of TWR" over 0. (For example, by (4.1)

d(X(l’O’”"O) OT(l)G) — d((l _ l‘l)X(l’O""’O))
— _x (100 gl (1 xl)dX(l,O,...,O)
— g x(1,0,,0) _ x(1,0,...,0) 7,1

on the fibre (T(WR?)g as 2! = ... = #” = 0. Similarly we analyse the other
terms.) Tt implies that pus = pq4 = 0. (We analyse the coefficients corresponding
to (X(01020)2 g2 and X (010 X (1,0::,0) gol )

Next using the invariancy of A with respect to G and (4.1) and (4.2) from (5.11)
we have

ﬂzxde(l’O’“"O)—|—u6X(0’1’0"“’0)dx1 —|—u7X(1’0""’0)dx2

2
= ”21 f " (_X(l,O,...,O)dl,l +(1- l‘l)dX(l’O""’o))
x 1
P x(1,0,.0) L 0 (01,000 _ plygel
Tl oy S (1= a)do
1 1,0,...,0 9 1
+ﬂ7(1—x)X( )(1—x1dx +(1—x1)2dx)

over some neighbourhood of 0 € R™. Tt implies that ps = ps + p7. (We multiply
booth sides of the equality by 1 — ! and next we analyse the coefficients on
22X (100) gt )

On the other hand by Lemma 3.1 the mapping A — Ag~(2%dz!) is a linerar mo-
nomorphism. Hence the vector space of all linear natural operators 7% — T*7(1)
has dimension < 3. (This vector space depends eventually on ps, us and pr.)
Since 7%, ¢ D) 7 — 7*T(1) described in Examples 1.1 and 1.2 are linearly
independent (see Lemma 2.1), we end the proof in this subcase.

(b) Now we assume that » = 2.



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 109

In general, for r; < ry we have a natural vector bundle monomorphism I3} :
TUOM — TUDM | (13272(0))(j727) = O(jiy), where M is a manifold, © €
TEYM, @ € M and jo2y € TP M = (TS M)*.

The natural vector bundle monomorphism I = 152 : 7 — 72 induces a
linear natural operator I*A : T* — T*T() | (I* A)pr(w) := T3 (Apr(w)), for any
n-manifold M and any w € QY(M). We see that X% o Iga = X° for any « € S
with |a] = 1, and X® o Ig» = 0 for any « € S with |o| = 2. Therefore it follows
from subcase (a) that we have the formula (5.11) with g4 = gz = ps = 0 and
Ho = pe + p7. By the invariancy of A with respect to G and by (4.3), (4.4) and
(4.5) from (5.11) we obtain

i dX 10000 Ly 3 (01,0,000) gl 4y x(1,0,00,0) gy 2
= ﬂl(X(Z,O,...,O)dl,z + dX(l,l,o,...,O))

+ pg(XO100) 4 x(L10,0)y gl 4y (10,,0) %X(z,o,...,o))dl,z

on the fibre (T(Z)R”)o. It implies that pug = 0 and p; = %pw. (We consider the
coefficients corresponding to XH10,50) gl and X(2:0,-50) dz?.) Hence by Lemma
3.1 the vector space of all linear natural operators 7 — T*T(?) has dimension
< 2. Since 7, B . 7% — T*T(2) described in Examples 1.1 and 1.2 are linearly
independent (see Lemma 2.1), we end the proof in this subcase.

(c) Let r = 3. Using similar arguments as in subcase (b) with the natural vector
bundle monomorphism T* — T®) instead of T(*) — T2 we have the formula
(5.11) with py = fp7, po = p7 and ps = pg = ps = pg = 0. Using the invariancy
of A with respect to G and (4.6) from (5.11) we obtain

1 1 1
§u7dX(1’1’0"“’0) _ 5/17(dX(1’1’0"“’0) + §dX(2,1,0,...,0))

on the vertical space VO(T(B)R”) with 0 € (T(S)R”)o. Then pu7; = 0. Hence
by Lemma 3.1 the vector space of all linear natural operators 7% — T*7T) has
dimension < 1. Since 7* : 7% — T*T®) described in Example 1.1 is not zero, we
end the proof in this subcase.

(d) Let » > 4. Using similar arguments as in subcase (c) with the natural
vector bundle monomorphism 7 — T instead of T®) — T®) we have the
formula (5.11) with g1 = ... = 7 = 0. Hence by Lemma 3.1 the vector space of all
linear natural operators 7" — T*7") has dimension < 1. Since 7* : T* — T*T(")
described in Example 1.1 is not zero, we end the proof in this subcase.

(IT) Now we assume that n = 1. Using the invariancy of A with respect to ¢ id
and the linearity of A we deduce that

tfo(e!, X¥) = tlalfa(txl,tlﬁlXﬁ) and

tf (et XY = tfy (et 1P XP)
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for any a € S and any (z*, X?) € R” x R®. Then f, = 0, if |a| > 2, and Jay h
are constants. Hence
Ar(w,) = /JldX(l) + podzt

for some pq, pio € R. Thus the vector space of all linear natural operators T* —
T*T0) has dimension < 2. Since 7%, A" . 7% — T*T(") described in Examples
1.1 and 1.2 are linearly independent, we end the proof in this case. a

6. We have the following simple corollary of Theorem 1.1.

Corollary 6.1. (a) If n > 2 and r > 3, then the vector space of all linear natural
operators T* — T for n-manifolds is the zero vector space.
(b) Ifn > 2, then the vector space of all linear natural operators T* — T?* for
n-manifolds is generated (over R) by B™) . T* — T?* described in Lemma 1.2.
(¢) Ifn > 2, then the vector space of all linear natural operators T* — T* for
n-manifolds is generated (over R) by C™) . 7% — T described in Example 1.2.
(d) If > 1, then the vector space of all linear natural operators T* — T™* for
1-manifolds is generated (over R,) by A" described in Lemma 1.1.

Proof. Let ,n € N. Let A : T* — T"* be a linear natural operator for n-
manifolds. Using Example 1.2 we have the induced linear natural operator A :
T* — T*T) given by (1.4). We see that if A A7 - T* — T"™ are two linear
natural operators such that for the induced operators A’, A7 : T* — T*T() we
have A%, (w) = A”y(w) on the vertical distribution VT M for any n-manifold

M and any w € Q'(M), then A’ = A”. On the other hand 7 (w) and Dgg)(w)
are zero on V1) M (see Proof of Lemma 2.1). Using Theorem 1.1 we end the
proof. a

REFERENCES

[1] Doupovec, M., Kurek, J., Liftings of covariant (0,2)-tensor fields to the bundle of k-dimen-
stonal 1-velocities, Suppl. Rend. Circ. Mat. Palermo (in press).

[2] Gancarzewicz, J., Mahi, S., Liftings of 1-forms to the tangent bundle of higher order, Czech.
Math. J. 40 (115) (1990), 397-407.

[3] Janyska, J., Natural operations with projectable tangent valued forms on fibered manifolds,
Annali di Math. CLIX (1991), 171-184.

[4] Kolak, I., Michor, P. W., Slovdk, J., Natural Operations in Differential Geometry, Sprin-
ger-Verlag, Berlin, 1993.

[5] Kurek, J., On the first order natural operators transforming 1-forms on a manifold to linear
frame bundle, Demonstratio Math. 26 (1993), 287-293.

[6] Kurek, J., On the first order natural operators tramsforming 1-forms om a manifold to the
tangent bundle, Ann. UM.C.S. 43 (1989), 79-83.



LIFTINGS OF 1-FORMS TO THE LINEAR r-TANGENT BUNDLE 111

[7] Mikulski, W. M., The natural operators lifting 1-forms on manifolds to the bundles of
A-velocities, Mh. Math., 119 (1995), 63-77.

[8] Mikulski, W. M., The geometrical constructions lifting tensor fields of type (0,2) on manifolds
to the bundles of A-velocities, Nagoya Math. J., 140 (1995) (in press).

[9] Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker, INC. , New York,
1973.

W. M. MIKULSKI

INSTITUTE OF MATHEMATICS
JAGELLONIAN UNIVERSITY
REYMONTA 4

Krakow, POLAND



		webmaster@dml.cz
	2012-05-10T11:15:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




