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ARCHIVUM MATHEMATICUM (BRNO)Tomus 31 (1995), 55 { 58THE GENERALIZED BOUNDARY VALUE PROBLEMIS A FREDHOLM MAPPING OF INDEX ZEROBoris RudolfAbstract. In the paper it is proved that each generalized boundary value problemfor the n-th order linear di�erential equation generates a Fredholmmapping of indexzero.This contribution is a short note on the paper of V.�Seda [2].The main goal of this paper is to prove that each generalized boundary valueproblem for the n-th order linear di�erential equation(1) x(n)(t) + a1(t)x(n�1)(t) + � � �+ an(t)x(t) = 0;(2) li(x) = 0 i = 1; : : : ; n;where ai(t) 2 C([a; b]) and li : Cn([a; b]) ! R are continuous linear functionals,generates a Fredholm mapping of index zero.Functionals li; i = 1; : : : ; n are assumed to be linearly independent. Cf. [2,Lemma 10].The result is based on Nikol'skij's theorem.Theorem. (Nikol'skij) [3, p.233]. A linear bounded operator A : X ! Y is Fred-holm of index zero if and only if A = C + Twhere X and Y are Banach spaces, C is a linear homeomorphism of X onto Yand T : X ! Y is a linear completely continuous operator.We denote X = fx 2 Cn([a; b]); li(x) = 0 i = 1; : : : ; ng and Y = C([a; b]).1991 Mathematics Subject Classi�cation : 34B05.Key words and phrases: generalized BVP, Fredholm mapping.Received December 19, 1993.



56 BORIS RUDOLFTheorem. The operator A : X ! YAx(t) = x(n)(t) + a1(t)x(n�1)(t) + � � �+ an(t)x(t)is a Fredholm mapping of index zero.Proof. We shall �nd a suitable homeomorphism C and a completely continuousoperator T such that A = C + T .As the boundary conditions (2) are linearly independent no functional li isidentically equal to zero and for every i = 1; : : : ; n we can represent the factorspace Cn([a; b])�fli(x)=0gby the one dimensional subspace fc�i(t); c 2 Rg of Cn([a; b]), where �i(t) 2Cn([a; b]) is a suitable (not uniquely determined) function.Now we choose functions f�igni=1 by the induction.1. In the �rst step we choose �1 positive. If l1(1) 6= 0, then we set �1 = 1. Ifl1(1) = 0, we choose arbitrary ��1 such that l1(��1) 6= 0. Being from Cn([a; b]); ��1has a minimum on [a; b] and there is a constant k � 0 such that�1(t) = ��1(t) + k > 0 for t 2 [a; b]:Obviously l1(�1) = l1(��1) 6= 0:Functionals l1 and �l1 represent the same boundary condition. We choose be-tween them such, and denote it again l1, that l1(�1) > 0.2. Assume that we have found functions �1; : : : ; �k�1 associated with functionalsl1; : : : ; lk�1 such that the Wronskian(3) W (�1; : : : ; �i) > 0 for t 2 [a; b]li(�i) > 0; lj(�i) = 0holds for every i = 1; : : : ; k � 1 and every j < i.We �nd the function �k associted with the functional lk, such that (3) holds fori = 1; : : : ; k and j < i.At �rst we �nd a function ��k satisfying the conditionW (�1; : : : ; �k�1; ��k) = 1:As the function ��k is a solution of the above (k-1)-th order ODE it is��k(t) = y(t) + c1�1(t) + � � �+ ck�1�k�1(t):Now beginning by c1, we choose the coe�cients fcigk�1i=1 such that lj(��k) = 0for j = 1; : : : ; k� 1: The choice is possible while lj(�i) = 0 for j < i.



THE GENERALIZED BVP IS A FREDHOLM MAPPING OF INDEX ZERO 57If lk(��k) 6= 0, we set �k = ��k.If lk(��k) = 0, we choose the function ~�k arbitrary but such that lj(~�k) = 0 forj = 1; : : : ; k � 1 and lk(~�k) 6= 0, and we calculate the WronskianW (�1; : : : ; �k�1; ~�k) = d(t):The function d(t) is continuous. We set�k = ~�k + c��kwhere c 2 R, c > jmin d(t)j is a constant.Now it is easy to prove that W (�1; : : : ; �k) > 0and lj(�k) = 0 for j = 1; : : : ; k� 1 and lk(�k) 6= 0.At last we again choose between functionals lk; �lk such, denoting it again lk,that lk(�k) > 0:Thus we have found n linearly independent functions f�igni=1, �i 2 Cn([a; b])satisfying (3) for each i = 1; : : : ; n and each j < i. These functions generate thebasis of the set of solutions of the homogeneous linear di�erential equation(4) W (�1; : : : ; �n; x) = 0;or dividing by the �rst coe�cient, the equation(5) x(n)(t) + c1(t)x(n�1)(t) + � � �+ cn(t)x(t) = 0:That means, the boundary value problem (5), (2) has only the trivial solution.Then the operator C : X ! Y given byCx(t) = x(n)(t) + c1(t)x(n�1)(t) + � � �+ cn(t)x(t);i.e. the operator generated by the problem (5), (2) is continuous, invertible and ontoY . The Banach inverse function theorem means that C is also a homeomorphism.Then A = C + Twhere T : X ! YTx(t) = (a1(t) � c1(t))x(n�1)(t) + � � �+ (an(t)� cn(t)) x(t):Because X � Cn([a; b]) and the highest derivative is of the order n � 1, theArsela-Ascoli theorem follows that T is a completely continuous operator.



58 BORIS RUDOLFWe remark that the basis f�igni=1 of the set of solutions of the equation (5)has property (3) and especially W (�1; : : : ; �i) > 0 for each t 2 [a; b], and eachi = 1; : : : ; n.The property (3) implies that the equation (5) is disconjugate on [a; b]. (See[1]).Corollary. To each system of n independent generalized boundary coditions (2)there is a disconjugate on [a; b] ordinary di�erential equation of n-th order suchthat the boundary value problem has only the trivial solution.Lets consider the generalized boundary value problem(6) x(n)(t) + a1(t)x(n�1)(t) + � � �+ an(t)x(t) + f(t; x; : : : ; x(m)) = q(t);(2) li(x) = 0 i = 1; : : : ; n;where f 2 C([a; b] � Rm+1), m < n, q 2 C([a; b]) and li : Cn�1([a; b]) ! Ri = 1; : : : ; n is a linear continuous functional [2, p.11-12].The right side of the equation (6) de�nes an operator C + (T + B) : X ! Y ,where B : X ! Y is the completely continuous Nemickij's operator given by thefunction f .Obviously the restriction of li on Cn([a; b]) is a continuous linear functional.As the consequence of our theorem we obtain that the operator C + (T + B)is a completely continuous perturbation of a linear homeomorphism. (Confer [2,Lemma 10, 12, Theorem 5, 6] where an aditional assumption is supposed.)References[1] Hartman, P., Ordinary di�erential equations, JohnWiley & Sons, New York-London-Sydney,1964.[2] �Seda, V., Fredholm mappings and the generalized boundary value problem, Di�erential andIntegral Equations 8 (1995), 19{40.[3] Trenogin, V. A., Functional analysis, Nauka, Moscow, 1980. (Russian)Boris RudolfKatedra matematikyElektrotechnick�a fakulta STUMlynsk�a dolina812 19 Bratislava, SLOVAK REPUBLIC
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