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OSCILLATORY PROPERTIES OF SOLUTIONS OF SECOND
ORDER NONLINEAR NEUTRAL
DIFFERENTIAL INEQUALITIES

WITH OSCILLATING COEFFICIENTS

M. K. GRAMMATIKOPOULOS, P. MARUSIAK

ABSTRACT. This paper deals with the second order nonlinear neutral differential
inequalities (A, ): (=1)Yz(¢) {2 (t) + (—=1)"q(t) f(z(h(?)))} <0, t > tg > 0, where
v=0orv=1, 2(¢) = z(t)+ p(t)z(t—7), 0< 7= const, p,q,h:[tg,0) = R
f: R — R are continuous functions. There are proved sufficient conditions under
which every bounded solution of (A, ) is either oscillatory or litrgiolgf lz(¢)| = 0.

1. INTRODUCTION

Consider the second order nonlinear neutral differential inequalities
(Ay) (=D"x() {z"(t) + (=1)"q(t) f(x(h(1))} <0, t>t >0,

where v =0 or v =1, =z() = z{) + pl)z(t—7), 0 < 7 = const,
p,q,h: [t ,00) — R are continuous functions, tlir& h(t) = oo, q(t) it allowed
to oscillate on [t ,00) and p,q¢ Z 0 on any subinterval of half line [t ,o0),
f: R — R is continuous, u f(u)>0 for u#0.

Recently several authors have been studying the oscillatory properties of solu-
tions of neutral delay differential equations of the first and higher order. Among
numerous of interesting results of this type can be found in the papers [1—8] and
to the references obtained therein.

On the end of the paper [5] it is written: When ¢ is allowed to oscillate the
problem is far more difficult, and any results, even for linear equations, would be
of interest.

In this paper we give some new aspects in the study of the oscillatory properties
of solutions of the inequalities (A,) with the oscillatory coefficient ¢ .

Let T >t  besuch that T = min{infi>p, h(t), T —7} >t . A
function « : [T,00) — R is a solution of (A,) on [T ,o0) if x(t) is
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continuous on [T, 00), the function z(?) is two times continuously differentiable
on [T ,00) and x(t) satisfies (4,) on [T ,00) .

We consider solutions of (A4,) only such that sup{|z(t)|:¢ € [tz,00)} >0
for any ¢, > T . Such a solution is called nonoscillatory if it is eventually of
constant sign. Otherwise it is called oscillatory.

2. MAIN RESULTS

In addition we suppose that:

(C') There exits a sequence of intervals {(an, b))} such that
(o]
U (an,bn) Ct ,00), lim a, = o,
n n—oo
and forany n€ N : b, —a, > 7, by <an, , a, —a,<M<o.

(C) q(t) >0 forall te | (an,by) and litminfq(t) =0.

Denote J, = (an,by), Ar = |J Jo forany ke N.
n k

Let there exist constants p ,p such that the following holds:
(C)p <pt)<p, te]t 00).

Lemma 1. Let z(t) be a bounded solution of (A4,) on [T ,00) and let (C)
hold. Then the function z(t) = x(t) + p(t) x(t — 7) is bounded.

Proof. The proof of Lemma is evident. a

Theorem 1. Let (C' ), (C'), (C) hold. If

by
(C) lim q(s)ds = oo,

n—00
An

then every bounded solution of (A ) is either oscillatory or litm inf |z(¢)| = 0.

Proof. Let () be a nonoscillatory bounded solution of (A4 ) on [T, ),
Without loss of generality we suppose that z({ —7) > 0 and «(h(¥)) > 0 on
[t,00), t >T + 1. Let {Jo}2® be asequence of intervals defined by (C').
Since ¢(t) >0 forany t € A N[t ,00), then from (A ) we get that 2/(¢) is
decreasing and z(¢) is monotone on A N[t ,00).

In view of that x(¢) (> 0) is bounded on [t ,00) , there exist a constant K
and T >t such that |f(z(h(?)))| < K forall ¢t >T . With regard to (C')
for any 6 > 0 there exists a 7" > T such that

(1) qt) > =6/K M for t>T.
If #(t)>0 for t €[t ,o0), then from (A4,) we get

(Ay) (=" {"(0) + (=1)" q(t) f(x(h()} <0, ¢ >t
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Then from (A ) with regard to (1) we have z”(t) < §/M for t > T
Integrating the last inequality from b, to a, (by > T ,n € N) we have

(2) a, )<Z(by)+6 by,>T, neN.

I) Let there exists a n > 1 such that 2/(¢) < 0 for all t € A,, N [T, ).

Integrating (A ) from a,, to b,, n > n and using that z’(¢) < 0 we obtain

3) / " 4®) P () dt < #(an) = #/(ba) < —#'(bn).

n

a) Let  inf,>,,{2'(by)} > —oo , then from (3) we have

(4) / Ca) Fe(hO)) dt < 0o, an, > T, n>n.

n

The last inequality with regard to (C' ) and the property of the function f and
h implies litm infa(t) = 0.

b) Let  inf,>pn,{#'(by)} = —oco. Then in view of (2) and that 2/(¢) (< 0)
is decreasing on Ap, N [T ,00) , we get that z(¢) is unbounded below. Then
this, in view of (C') and of Lemma 1 we get that «(¢) is unbounded, which is a
contradition to the assumption that x(¢) is bounded on [T, c0).

IT) Let there exists a sequence {my;}7° , my € N such that 2/(f) >0 and
Z/(t) is decreasing for all t € A,,,, C [t ,00). Then integrating (A ) from an,
to bm, , k>1, we have

() / a0 S dE < P am,) — 2 (by) < 2 ().

mg

Because x(t) (> 0) is bounded on [T ,00), by Lemma 1 we get that z(?)
is bounded on [T ,00) . Therefore with regard to (2) and the monotonicity of
z(t), Z'(t) we have sup,, s, {#'(am,)} < co. Thus from (5) we get (4), which
implies as in the case Ta) that litrgglfx(t) =0.

The proof of Theorem 1 is complete. a

Theorem 2. Let (C' ), (C ), (C') and (C ) hold. Then every bounded solution
of (A ) is either oscillatory or litm inf|z(t)] = 0.

Proof. Let z(t) be a nonoscillatory bounded solution of (A ) on [T, 00), Without
loss of generality we suppose that #(t — 7) > 0 and z(h(¢)) > O on [t ,0), 1 >
T 4 7. Let {J,}>° be a sequence of intervals defined by (C ). If ¢(t) > 0 for
any t € A N[t ,00), then from (A ) we get that 2/(¢) is increasing and z(t) is
monotone on A N[t ,00).
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Analogously as in the proof of Theorem 1 we have (1). Then from (A ) in view
of (1) we have 2”(t) > —6/M for t > T'. Integrating the last inequality from b, to
an, , by >1T,n € N, we obtain

(6) Zan )>Z(bn)+6 te€A N[T, 00).
I) Let there exist a n > 1 such that z/(¢) > 0 for all ¢t € A,,, a,

Integrating (A4 ) from ay, to by, for any n > n  we obtain

> T

o

br
(7) / q(t) f(x(h(0)) dt < 2'(bn) = 2'(an) < +2"(bn).
a) Let sup,, >, . {#'(bn)} < oo, then from (7) in view of (C' ) and the property of
the functions f and h, we have litm infz(t) = 0.
b) Let sup, s, .12/ (bn)} = oo, then in view of (6) and the fact that 2/(¢) (> 0)
is increasing for all t € A,,,, we have that z(t) is unbounded above. Then in view
of (C') and of Lemma 1 we get that z(¢) is unbounded, which is a contradition.

IT) Let there exists a sequence {my}3° , my € N such that 2/(t) < 0 and 2'(?)
is increasing for all t € A,,, C [T ,0). Then integrating (A ) from am, to bm,,
k > 1, we obtain

(8) / g0 F@h®))) dt < 2 (by) = #amy ) < —(dm,)-

mg

In view of Lemma 1 and that z(¢) (> 0) is bounded on [T, o), we have that z(¢)
is bounded on [T, 00). Then with regard to (6) and the monotonicity of z(¢), z’(t)
we get that sup,,, 5, {—%"(@m,)} < co. Therefore from (8) we get

/ " () fa(h()) dt < co.

mp
The last relation in view of (C' ) and the property of the function f and h we get
that litm infz(t) = 0.
The proof of Theorem 2 is complete. a

Now denote
(9) ¢ (t) =max{0,q(1)}, ¢-(t) =max{0,—q(t)}, e[t o0).
Then q(t) = ¢ () — ¢-(1).
Lemma 2. [6, Lemma 1.5.2] Let f,¢,p € C([t ,o0), R) and ¢ € R be such that
f@t) = gt)+pt)gt —e), t >t + max{0,c}. Assume that there exist numbers
p,p,p,p € R such that p(t) is one of the following ranges:
i) p <pt) <0,
i) 0<p(t)<p <1,
i) 1<p <pt)<p.
Suppose that g(t) > 0 fort >t , litminfg(t) = 0 and that tlim f@)=L€R
exists. Then L = 0.
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Lemma 3. Let f.g,p € C([t ,©),R) and ¢ € (0,00) be such that f(t) =
g()+p(t)g(t—c) fort >t +c. Assumethat 0 < g(t) <g < oo, tlim f(t) =0.

In addition we suppose that there exists constant p ,p such that either

(10) —l<p <p(t)<0,0or 0<p(t)<|p|<1,
or
(11) p(t)<p < -1

Then tlir& g(t) =0.
Proof. i) Let (10) hold. Then
g() =) —pM) gt —c) < f(O) +1p gt —c), t>1 +ec
By iteration for sufficiently large ¢ we have
g(t) < f(W)+lp | fE=c)+lp | f(E=2c)+-+|p [T ft=(n=1)c)+[p ["g(t—nc).
The last relation we can writte in the form
O<git+na)<fl+ne)+lp|fE+n—-De)y+1p| fE+n=2)c)+ -+

Hp "7 A+ +p " g(),
for sufficiently large ¢. In view of tlim f(t)=0, forany e >0 there exists
sufficiently large T such that |f(¢)] <e for t>7T. Then

(12) gt +ne)| <e

1
+lpl"g, t>T.
1—|p |

Therefore for any € >0  there exist ¢ and n=mn such that
€

1+p
Then from (12) in view of the last relation we have tlim g(t) =0.
ii) Let (11) hold. Then from  p(¢)g(t — ¢) = f(t) — ¢(t)  with regard to (11)

we get

+lp "y <e.

1

o0 < - (JE+ 0 —gli+e)). 121 +20

By iteration for sufficiently large ¢ we have
1 1 1 1
) € - J(E )= - (20 b (1) (ko) (<1 gt ),

In view of tlim f(t)=0, forany e >0 there exists sufficiently large T
such that |f(¢)| <e , for t >T. Then

3 q
g()] < + .
Ol s pT=1 T B

Then analogously as in case i) we obtain tlim g(t) =0. O
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Lemma 4. [9, Lemma 2] Let w e C([t ,o)), v € C ([t ,o)) and there exists
tlim [w(t)v'(t) + v(t)] in the extended real line R . Then tlim v(t) exists

in R .

Theorem 3. Let (C') hold. In addition we suppose that

(12) /00 q (t)dt = o0 and

(13) /Oo (1) di < .

Then every bounded solutions of (A ) is oscillatory, or liminf|x(t)| = 0.

t—o0

Proof. Let x(t) be a bounded nonoscillatory solution of (A ) on [T ,00).
Without loss of generality we suppose that =z(( — 7) > 0, z(h(¢))) > 0 on
[t ,00),t >T +7. Analogously as in the proof of Theorem 1 there exist K > 0
and ¢ >t such that |f(z(h(?)))] < K forall ¢t >t . Then the inequality
(A ) in view of (9) we can writte in the form

(14) () +q () f(z(h(t)) = Kq-(t) <0, for t>t.

With regard to (13) there exists a L > 0 such that ftzo q_(t)dt = L. Then
(14) via the estimation (9) we have 2/(¢) < 2'(t )+ K L, i.e. z/'(t) is bounded
above. If ftzo q () f(x(h(?))) dt = oo, then the estimation (14) implies that

tlim Z'(t) = —oo and therefore tlim z(t) = —oo. This in view of Lemma 1 and

(C') contradicts the fact that «(¢) is bounded on [T ,00). Therefore

(15) [0 @ st e < .
Then (15) in view of (12) and the properties of functions f and h implies that
(16) litrgglfx(t) =0.

The proof of Theorem 3 1s complete. |

Now we consider the equation
(£) Z'(t) +q(t) f(2(h(1))) =0, t=1 >0,

as a special case of (A4 ).
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Theorem 4. Let either (10) or
(17) —co<p <p)<p <1

hold. In addition we suppose that

(18) /tootq (t)dt =00 and

(19) /tootq_(t) dt < .

Then every bounded solutions of (F) is either oscillatory, or tlim z(t) =0 and
tlimzk (t)=0, k=0,1.

Proof. Let () be a bounded and positive solution of (F) on [T ,o0).
Without loss of the generality we suppose that (¢t —7) >0 and z(h(¢)) > 0 on

[t ,00),t >T + 7. Multiplying (E) by ¢t and then integratimg from ¢ to s, we
have

(20) u(s) = / i = / g () f((h(1))) di — / Ctg () Fa(h(t))) dr.

If ftzo tq () f(z(h(1)))dt = oo, then in view of (19) and the boundedness of (1),
from (20) we get lim u(s) = —oo. By Lemma4 there exists lim z(s) =z € R .

§—00 §—00
Let |z | < oo. Then lim u(s) = —oo implies lim s2z/(s) = —oo. From this
§—00 §—00
relations we get that lim z(s) = —oo, which contradicts the fact that |z | < .
§—00

Therefore lim |z(s)| = oco. This in view of Lemma 1 gives a contradiction to the
fact that x(¢) is bounded. Therefore

(21) / Ty (1) f(h(0)) dt < oo,

Then (21) in view of (18) and the property of f and h implies that (16) holds.
Now, letting s — oo in (20), then using the boundedness of z(¢), (19),(21)
and the property of f, we have

(22) lim (s2'(s) —2(s)) = L, |L|<oo.

§— 00

With regard to Lemma 4 and the fact that z(¢) is bounded we obtain that
tlim z(t) = L, |L| < oo. Then if we use either (10) or (17), (16) and Lemma 2 we

obtain that L = 0. From (22) in view of L = 0 we get that tlim Z'(t) = 0.
We proved that tlim z¥ () =0, k=0,1. Then if we use Lemma 3 we hawe
tlim z(t) = 0.

The proof of Theorem 4 is complete. a
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