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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 271 { 275SOME NOTES ON THE COMPOSITE G{VALUATIONSAngeliki KontolatouAbstract. In analogy with the notion of the composite semi-valuations, we de�nethe composite G-valuation v from two other G-valuations w and u. We considera lexicographically exact sequence (a; �) : Au ! Bv ! Cw and the composite G-valuation v of a �eld K with value group Bv. If the assigned to v set Rv = fx 2K=v(x) � 0 or v(x) non comparable to 0g is a local ring, then a G-valuation wof K into Cw is de�ned with its assigned set Rw a local ring, as well as anotherG-valuation u of a residue �eld is de�ned with G-value group Au.1. PreliminariesIt is our main aim to show that under some di�erentiations and some adjust-ments it is possible to transfer the theory of the composite semi-valuations as itis exposed by Ohm in [2], to the case of the G-valuations. So an appropriatehomomorphism is introduced, the composite G-valuations are de�ned by analogyto the former ones and similar conditions are stated under which an ordered exactsequence splits.1.1. As it is known (e.g.[1]) a G-valuation is a function v of the multiplicativegroup K� of a �eld K, in an ordered group G such that for all x; y in K�:(i) v(xy) = v(x) + v(y)(ii) if v(x) > 
 and v(y) > 
, then v(x + y) > 
, for each 
 2 G(iii) v(�1) = 0We can extend v on K by specifying that v(0) = 1, where 1 is a symbol suchthat a <1 and a+1 =1 for all a 2 G.Relation (ii) may be written as(ii)0 v(x+ y) � inf ~Gfv(x); v(y)g:In fact, the inf ~G means the in�mum in a concrete order- completion, wherethe relation a � inf ~G(a1; a2) gives that a is larger than or equal to the smaller ofa1; a2, but it would be parallel to the smaller or to both of them.1991 Mathematics Subject Classi�cation : 13A18, 20K30.Key words and phrases: composite semi-valuation, ordered group, G-homomorphism of or-dered groups.Received October 13, 1993.



272 ANGELIKI KONTOLATOU1.2. As usual a short exact sequence of ordered groups(1) 0! A!� B !� C ! 0is called lexicographically exact if B+ = fb 2 B : �(b) > 0 or b 2 �(A+)g, A+and B+ are the positive cones of A and B, respectively.The notation (�; �) : A! B ! C will also be used for the short exact sequence(1).1.3. The G-homomorphism. If B and C are ordered groups and � is a homo-morphism of B into C, then � is said to be a G-homomorphism if for every b1; b2;:::; bn inB the relation b0 � inf ~Bfb1; :::; bng implies �(b0) � inf ~Cf�(b1); :::; �(bn)g.It is not di�cult for one to prove the following:Propositions.(1) If v is a G-valuation de�ned on a �eld K, ranging over an ordered group Band if � : B ! C is a G-homomorphism, then � � v is a G-valuation.(2) If, in the short exact sequence (�; �) : A ! B ! C;� and � are G-homomorphisms, then � � � is also a G-homomorphism.(3) If the sequence (�; �) : A! B ! C is lexicographically exact, then � is aG-homomorphism.(4) If B and C are lattice groups, the homomorphism � : B ! C is a G-homomorphism i� � preserves the positiveness of the positive elements and more-over infBfb1; :::; bng = infCf�(b1); :::; �(bn)g for every subset fb1; :::; bng of B.1.4. The rings of a G-valuation. Let K be a �eld and v a G-valuation of it.The set R = fx 2 K : v(x) � 0g is not in general a ring, but as long as it is a ring,the set M = fx 2 k : w(x) > 0g is a maximal ideal.It is possible to be de�ned some rings of K via a G-valuation, for instance theset R1 = fx 2 K : w(x) is larger than all the negative elements of Ggis a ring.On the other hand there holds the following (the non-comparable elements arecalled parallel):Proposition. Given a G-valuation w of a �eld K, if the positive elements of thevalue group are larger than the parallel to zero elements, then the set R = fx 2 K :w(x) � 0 or w(x) parallel to zerog is a ring and the set M = fx 2 K : w(x) > 0gis a maximal ideal.In the sequel, given a G-valuation w of a �eld K we symbolize by Rw the set(2) Rw = fx 2 K : w(x) � 0 or w(x) parallel to zerog



SOME NOTES ON THE COMPOSITE G{VALUATIONS 2732. The composite G-valuationsThroughout the text we �x the following notation: K is always a �eld, w is a G-valuation ofK and assume that the set Rw is a quasi- local ring with maximal idealmw and residue �eld k = Rw=mw . We note by h the canonical homomorphism ofRw onto k. Let u be a G-valuation of k, and let v be a G-valuation of K assignedto the subset Rv = h�1(Ru).If Ru and Rv are rings, then v is said to be composite with w and u.Let, furthermore, Au; Bv and Cw denote the respective G-value groups of u; vand w and let Uu; Uv and Uw be the respective multiplicative groups of units ofRu; Rv and Rw.2.1. Proposition. Suppose that Rv and Rw are rings; then there exist G-homomorphisms � and � which complete commutatively the diagram below andmake the bottom row lexicographically exact (i the identity, h0 the restriction ofh to Uw). Uw i�! K�uh0 # v # & w0 �! Au a�! Bv ��! Cw ! 0The proof follows as in [2]. The de�nition of � and � becomes as follows:Ker� = Imvjfx2Rv :w(x)=0gand Ker� = Imuh0jUv :2.2. The case of Cw being a totally ordered group. In such a case Rw is aring and given w and v we de�ne v : K� ! Au �Cw by(4) v(x) = (uh(x); w(x)) :Then it is true the following:Proposition. If Au is a G-value group and Cw a totally ordered group, thenAu � Cw is a G-value group.Proof. It follows from a well-known statement of Krull (cited in [3], p.31). Wede�ne a G-valuation w with value group Cw, while (by the de�nition of Au) aG-valuation u is de�ned on the set k.In that case the short exact sequence (�; �) : Au ! Bv ! Cw splits, that is0 ����! Au a����! Bv �����! Cw ����! 0??yi1 ??yi3 ??yi20 ����! Au a����! Au � Cw �����! Cw ����! 0where i1; i3 are the identity maps and i2 is an order-isomorphism. �



274 ANGELIKI KONTOLATOU2.3. Theorem. Let (�; �) : Au ! Bv ! Cw; Au 6= f0g be a lexicographicallyexact sequence and v a G-valuation of a �eld K with G-value group Bv and itsassigned set Rv a local ring. Then, (1) a G-valuation w of K into Cw is de�nedwith Rw a local ring, (2) the ideal mw is maximal and (3) a G-valuation u of theresidue �eld Rw=mw is de�ned with G-value group Au and for which the knowncommutative diagram (3) is valid.Proof (1). Put w(x) = �v(x). Then �v(xy) = �v(x) + �v(y), or w(xy) =w(x) + w(y):Let now be w(x1) > 
;w(x2) > 
 or �v(x1) > �v(b) (where (�v(b) = 
) and�v(x2) > �v(
) or �(v(x1) � v(b)) > 0; �(v(x2) � v(b)) > 0, that is v(x1) >v(b); v(x2) > v(b), hence v(x1+x2) > v(b). We examine whether v(x1+x2)�v(b)belongs also to �(A+u ). Since Au 6= f0g, there exists an element a in Au neither zeronor smaller than zero; thus v(x1 + x2) � v(b) + �(a) 2 �(Au) and v(x1)� v(b) >v(x1 + x2) � v(b) + �(a) (since �(v(x1) � v(b) � v(x1 + x2) � v(b) + �(a)) =�(v(x1)� v(b)) � �(v(x1 + x2) � v(b) + �(a)) = �(v(x1)� v(b)) > 0):Similarly, v(x2)�v(b) > v(x1+x2)�v(b)+�(�), hence v(x1+x2)�v(b) > v(x1+x2)�v(b)+�(a) or �(a) < 0, which is absurd, and thus v(x1+x2)�v(b) 62 �(Au)and v(x1 + x2)� v(b) > 0, that is w(x1 + x2) > �(v(b)) = 
 .If Rv is a ring,mv is a maximal ideal. Let be w(x); w(y) 2 Rw; ifw(x+y) 62 Rw,then w(x + y) < 0; �v(x + y) < 0: But then v(x + y) < �(Au); which is absurd(because, if w(x); w(y) 2 �(Au), then v(x + y) would be smaller than both ofthem, if v(x) 62 �(Au); v(y) 62 �(Au), then v(x+ y) � 0 or parallel to zero, that is�v(x+ y) = 0 if it belonged to �(Au) or � 0 or parallel to zero if it didn' t belongto �(Au)) . It remains the case v(x+ y) 62 �(Au) and one of v(x); v(y) belongs to�(Au). But then, one of v(x); v(y); say v(x) 62 Au, is parallel to zero, thus it isnot possible v(x + y) < 0:(2) As usual mw � Rv. If x 2 Rv, then, either v(x) 2 �(Au) or not, it is�v(x) = w(x) 2 Rw. Since Au 6= f0g contains positive elements, then there isan a 2 Au with �(a) < 0; ��(a) = 0; that is Rv 6= Rw. Besides, there holdsUv +mw � Uv .(3) De�nition of u: let h denote the canonical homomorphism of Rw ontok = Rw=mw and h0 the restriction of h into Uw. The homomorphism (uh0) isde�ned by ��1vi. It is kerh0 = 1 +mw � Uv = ker(��1vi): So, u is well de�ned.It is a G-valuation because h0 preserves the addition and the (uh0) is a G-valuation. If x and y are elements of Uw(modmw), then v(x) = v(y). It means thatthe equivalent elements have equal values ��1vi(x); ��1vi(y); hence correspond toan element of Au and so u can be de�ned. There holds: let be u(x) > 
; u(y) > 
and 
 = ��1(
0): Then, �(u(x)�
) = v(x)�
0 > 0; v(y) > 
0; hence v(x+y) > 
0and thus ��1(v(x + y) � 
0) > 0 ) ��1v(x + y) > ��1(
0) = 
 ) uh0(x + y) =��1v(x + y) > 
:We also have uh0(xy) = ��1vi(xy) = ��1(vi(x) + vi(y)).



SOME NOTES ON THE COMPOSITE G{VALUATIONS 2752.4. The non-archimedean character of Bv.Suppose there exists an element a 2 Au neither parallel nor equal to zero. Let�(a) = a�. Observe that na�, for every n 2 N , must not be larger than anypositive or parallel to zero element of Bv � �(Au). In fact, at that case we willhave for some b� 2 Bv ��(Au) that �(a� � b�) > 0 or �(a�) > �(b�) or �(b�) < 0,which is absurd. References[1] Kontolatou, A., Stabakis, J., Embedding groups into linear or lattice structures, Bull. Cal.Math. Soc. 82 (1987), 290-297.[2] Ohm, J., Semi-valuations and groups of divisibility, Canad. Journ. of Math. 21 (1969),576-591.[3] Ribenboim, P., Theorie des valuations, Les presses de l' Universite de Montreal (1968).Angeliki KontolatouUniversity of PatrasDepartment of Mathematics26110, Patras-Greece
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