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SOME NOTES ON THE COMPOSITE G-VALUATIONS

ANGELIKI KONTOLATOU

ABSTRACT. In analogy with the notion of the composite semi-valuations, we define
the composite G-valuation v from two other (G-valuations w and u. We consider
a lexicographically exact sequence (a,3) : Ay — By — C4y and the composite G-
valuation v of a field K with value group B,. If the assigned to v set Ry, = {z €
K/v(z) > 0 or v(x) non comparable to 0} is a local ring, then a G-valuation w
of K into 'y, is defined with its assigned set R, a local ring, as well as another
G-valuation u of a residue field is defined with G-value group A,,.

1. PRELIMINARIES

It is our main aim to show that under some differentiations and some adjust-
ments it is possible to transfer the theory of the composite semi-valuations as it
is exposed by Ohm in [2], to the case of the G-valuations. So an appropriate
homomorphism is introduced, the composite (G-valuations are defined by analogy
to the former ones and similar conditions are stated under which an ordered exact
sequence splits.

1.1. As it is known (e.g.[1]) a G-valuation is a function v of the multiplicative
group K* of a field K, in an ordered group G such that for all z,y in K*:
(i) v(zy) = v(x) + o(y)
(ii)  if v(x) >y and v(y) > v, then v(z + y) > v, for each y € G
(i)  w(=1)=0
We can extend v on K by specifying that v(0) = oo, where oo is a symbol such
that @ < co and a + co = oo for all @ € G.

Relation (ii) may be written as

(i) v(x 4+ y) > infa{v(z), v(y)}.

In fact, the infs means the infimum in a concrete order- completion, where
the relation a > infz(a1, as) gives that a is larger than or equal to the smaller of
a1, as, but it would be parallel to the smaller or to both of them.
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1.2. As usual a short exact sequence of ordered groups
(1) 0—A>BL =0

is called lezicographically exzact if BT ={be B:3(b) >0o0rbe a(AT)}, AT
and BT are the positive cones of A and B, respectively.

The notation («, 3) : A — B — C will also be used for the short exact sequence
(1).
1.3. The G-homomorphism. If B and C are ordered groups and 3 is a homo-
morphism of B into C, then [ is said to be a G-homomorphism if for every by, bs,
..., bp in B the relation by > infz{b1, ..., by} implies 3(bo) > infz{B3(b1), ..., B(bn)}.

It 1s not difficult for one to prove the following:

Propositions.

(1) If v is a G-valuation defined on a field K, ranging over an ordered group B
and if §: B — C' is a G-homomorphism, then [ o v is a G-valuation.

(2) If, in the short exact sequence («,3) : A — B — C,« and § are G-
homomorphisms, then o « 1s also a G-homomorphism.

(3) If the sequence (o, 3) : A — B — (' is lexicographically exact, then « is a
G-homomorphism.

(4) If B and C are lattice groups, the homomorphism f : B — C' is a G-
homomorphism iff § preserves the positiveness of the positive elements and more-

over infp{by, ....bn} = infc{B(b1), ..., B(bn)} for every subset {b1,...,b,} of B.

1.4. The rings of a GG-valuation. Let K be a field and v a G-valuation of it.
The set R = {x € K : v(z) > 0} is not in general a ring, but as long as it is a ring,
the set M = {x € k : w(x) > 0} is a maximal ideal.

It is possible to be defined some rings of K via a GG-valuation, for instance the
set

Ry ={x € K : w(x) is larger than all the negative elements of G}

is a ring.
On the other hand there holds the following (the non-comparable elements are
called parallel):

Proposition. Given a G-valuation w of a field K, if the positive elements of the
value group are larger than the parallel to zero elements, then the set R = {& € K :
w(x) > 0 or w(x) parallel to zero} is a ring and the set M = {z € K : w(x) > 0}
is a maximal ideal.

In the sequel, given a G-valuation w of a field K we symbolize by R,, the set

(2) Ry ={2 € K :w(z) > 0 or w(x) parallel to zero}
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2. THE COMPOSITE (G-VALUATIONS

Throughout the text we fix the following notation: K is always a field, w is a G-
valuation of K and assume that the set R, is a quasi- local ring with maximal ideal
my, and residue field k = Ry, /m,, . We note by h the canonical homomorphism of
Ry, onto k. Let u be a G-valuation of k, and let v be a G-valuation of K assigned
to the subset R, = h=1(Ry).

If R, and R, are rings, then v is said to be composite with w and u.

Let, furthermore, Ay, B, and C, denote the respective G-value groups of u, v
and w and let U,,U, and U, be the respective multiplicative groups of units of

R, R, and R, .

2.1. Proposition. Suppose that R, and R, are rings; then there exist G-
homomorphisms « and 8 which complete commutatively the diagram below and
make the bottom row lexicographically exact (i the identity, h' the restriction of

h to Uy ).

i .
Uy — K~
!
uh v w

0— Au = B, 2 Cy —0
The proof follows as in [2]. The definition of & and 5 becomes as follows:

Kerf = Imv|{zer, w(z)=0yand Kera = Imub/|y, .

2.2. The case of (), being a totally ordered group. In such a case R, is a
ring and given w and v we define v : K* — A, ¢ Cy, by

(4) v(e) = (uh(z), w(z)).

Then it is true the following:
Proposition. If A, is a G-value group and Cy, a totally ordered group, then
Ay @ Cy is a G-value group.

Proof. Tt follows from a well-known statement of Krull (cited in [3], p.31). We
define a G-valuation w with value group Cy,, while (by the definition of A,) a
G-valuation u is defined on the set k.

In that case the short exact sequence («, 3) : A, — B, — Cy, splits, that is

0 A, —° B, F .o, 0
0 Ay —*— A8 C, —2— Oy 0

where i, i3 are the identity maps and i, is an order-isomorphism. a
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2.3. Theorem. Let (o, 3) : Ay — B, — Cy, Ay # {0} be a lexicographically
exact sequence and v a (G-valuation of a field K with (G-value group B, and its
assigned set R, a local ring. Then, (1) a G-valuation w of K into C), Is defined
with Ry a local ring, (2) the ideal m,, is maximal and (3) a G-valuation u of the
residue field Ry, /m,, is defined with G-value group A, and for which the known
commutative diagram (3) is valid.

Proof (1). Put w(z) = PBu(x). Then Bu(zy) = Fuv(x) + Bu(y), or w(xy) =
w(z) + w(y).

Let now be w(x1) > v, w(z2) > 7 or fv(x1) > [u(b) (where (fo(b) = 7) and
Bu(ze) > Po(y) or Blu(zr) — v(b)) > 0, B(v(x2) — v(b)) > 0, that is v(xy) >
v(b),v(x2) > v(b), hence v(zy +x2) > v(b). We examine whether v(x1 4+ x2) —v(b)
belongs also to a(A}). Since A, # {0}, there exists an element a in A, neither zero
nor smaller than zero; thus v(zy + z2) — v(b) + a(a) € a(Ay) and v(zy) — v(b) >
v(ey + z2) — v(b) + a(a) (since fAlv(z1) — v(b) — v(zy + z2) — v(b) + a(a)) =
Blo(er) — v(B)) — Blu( +3) — v(b) + a(a)) = A(o(e1) — o(8) > 0).

Similarly, v(z2)—v(b) > v(x14+x2)—v(b)+a(a), hence v(zy+x2)—v(b) > v(x1+
z2) —v(b)+a(a) or a(a) < 0, which is absurd, and thus v(x1 + z2) —v(b) € a(Ay)
and v(z1 + #2) — v(b) > 0, that is w(z1 + z2) > B(v(b)) = 7.

If R, is aring, m, is a maximalideal. Let be w(z), w(y) € Ry; if w(z+y) ¢ Ry,
then w(x + y) < 0, Bv(xz + y) < 0. But then v(z + y) < a(A4y), which is absurd
(because, if w(z), w(y) € a(Ay), then v(x 4+ y) would be smaller than both of
them, if v(2) € a(A4y), v(y) € a(Ay), then v(z + y) > 0 or parallel to zero, that is
Bu(xz+y) = 0if it belonged to a(Ay) or > 0 or parallel to zero if it didn’ t belong
to a(Ay)) . Tt remains the case v(z + y) € a(Ay) and one of v(z), v(y) belongs to
a(Ay). But then, one of v(x),v(y), say v(x) € Ay, is parallel to zero, thus it is
not possible v(z +y) < 0.

(2) As usual my, C Ry,. If © € Ry, then, either v(x) € a(Ay) or not, it is
Bu(z) = w(x) € Ry. Since A, # {0} contains positive elements, then there is
an a € A, with a(a) < 0, fa(a) = 0, that is R, # Ry. Besides, there holds
Uy +my, CU,.

(3) Definition of u: let h denote the canonical homomorphism of R, onto
k = Ry/m, and A’ the restriction of i into U,. The homomorphism (uh') is
defined by a~lvi. It is kerh’ = 1 4+ my, C U, = ker(a=tvi). So, u is well defined.

It is a G-valuation because h' preserves the addition and the (uh') is a G-
valuation. If z and y are elements of Uy, (modm,, ), then v(z) = v(y). It means that
the equivalent elements have equal values o~ lvi(x), a~1vi(y), hence correspond to
an element of A, and so u can be defined. There holds: let be u(z) > v, u(y) > v
and vy = a~1(y/). Then, a(u(x)—7) = v(z)—y" >0, v(y) > 7/, hence v(z+y) >+
and thus a7 Y(v(z +y) =) > 0= a vz +y) > a YY) =v = uh(z+y) =
a~to(z +y) >y
We also have uh/(zy) = a~lvi(zy) = o= (vi(z) + vi(y)).
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2.4. The non-archimedean character of B,.

Suppose there exists an element a € A, neither parallel nor equal to zero. Let
a(a) = a*. Observe that na*, for every n € N, must not be larger than any
positive or parallel to zero element of B, — a(A4,). In fact, at that case we will
have for some b* € B, —a(A4y) that f(a* —b*) > 0 or F(a*) > G(b*) or 5(b*) < 0,

which 1s absurd.
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