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NATURAL LIFTINGS OF (0,2)-TENSOR
FIELDS TO THE TANGENT BUNDLE

MIrosLav DourPovEc*

ABSTRACT. We determine all first order natural operators transforming (0,2)—
tensor fields on a manifold M into (0, 2)—tensor fields on TM.

1. INTRODUCTION

There are classical constructions of tensor fields on the tangent bundle 7'M
from a tensor field on the base manifold M, namely the vertical and the complete
lifts, cf. [9] and [12]. Moreover, if M is endowed with a linear connection, then one
can also define the horizontal lift of a tensor field to TM. From a general point
of view, geometrical constructions are natural differential operators. Then the full
list of such operators gives the complete list of all possible geometric constructions.

The aim of this paper is to determine all first order natural operators T*QT™ ~
(T*® T™)T transforming (0, 2)-tensor fields on M into (0, 2)~tensor fields on T M.
For comparison’s sake, we point out that Kowalski and Sekizawa [7] determined
all natural operators transforming Riemannian metrics on M into metrics on T'M.
Recently Janyska [3] has classified all first order natural operators from Riemann-
ian metrics into 2-forms on the tangent bundle. In both of these examples the
regularity of the original (0, 2)-tensor field on the base manifold M is essential,
while we shall consider arbitrary (0,2)-tensor fields without any additional re-
quirement. In what follows we shall use the concept of a natural operator from
[6].

We remark that liftings of tensor fields to the tangent bundle play an important
role in the analytical mechanics, see e.g. [2]. All manifolds and maps are assumed
to be infinitely differentiable.
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2. THE CANONICAL LIFTINGS

Let M be a manifold of dimension m. We denote by py: TM — M the
tangent bundle and by gar: T*M — M the cotangent bundle of M. The canonical
coordinates (z') on M induce the additional coordinates y* = dz’ on TM and p; on
T*M. The coordinates on TT M will be denoted by (z*, y*, X = dz’, Y = dy*), on
TT*M by (2%, p;, & = dx', P; = dp;) and on T*T'M by (2°, w' = dz’, r;dz’ +5;dw?).

If f: M — R is a function, then the wvertical lift of f to T'M is a function
FV:TM — R defined by f¥ = fopar. The complete lift f© of f is defined by
FEy) = df (@) (y), © = pu(v)-

Let X = fl(x)% be a vector field on M. The wvertical lift of X to TM is a
vertical vector field XV on TM determined by the translations in the individual
fibres of 7M. The complete lift of X to TM is the flow prolongation X¢ of
X, X¢ = %|0T(exp tX), where exptX means the flow of X. In coordinates,
XV = fi(x)aiy,, X¢ = fl(x)% + 6g;(f)yjaiy,. Let us remark that XV and X¢
can also be defined by means of their actions on functions: XV (f¢) = (Xf)V,
XC(f9) = (X f) for every function f: M — R.

To define the vertical and the complete lift of a tensor field we shall use the
following assertion (see e.g. [2] and [9]).

Lemma 1. If G and G’ are (0,r)-tensor fields on TM such that for all vector
fields X1,..., X, on M we have

GXE, .. . X&) =G'(XF,..., X5,

then G = G'.

Definition 1. Let G be a tensor field of type (0,2) on M. The wvertical lift of
G to TM is a tensor field GV of type (0,2) on TM defined by GV (X, XS) =
(G(X1, X3))V for all vector fields Xy, X5 on M. The complete lift of G to TM is
a tensor field G¢ of type (0,2) on TM given by G (X, X§) = (G(X1, X3))¢ for
all vector fields Xy, X9 on M.

IfG = gijdxi(}b dz? is the coordinate expression of G, then

GvV = gijdxi(@ dl‘j,

oxk

Remark 1. Our concept of a complete lift to the tangent bundle coincides with
the definition due to Yano and Ishihara [12] and Morimoto [9]. Morimoto even in-
troduced liftings of tensor fields of type (p, ¢) to the bundle 77 M of 1-dimensional
velocities. Moreover, liftings of tensor fields to the bundle T} M = Jj (R* M) are
studied in [10].

IfG = aijdxi/\ dx’ is a 2-form on M, then GV = py G, i.e. the vertical lift
is exactly the pull-back of G to T M. Further, the vertical lift of a Riemannian
metric 18 a degenerated metric of rank m on T'M. One can easily prove

G¢ = <8glyk) de'® de’ + gijdxi(}b dy’ + gijdyi® da? .
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Lemma 2. Let G be a (0,2)—tensor field on M. We have
(1) If G has rank r, then G© has rank 2r.

(2) If G is symmetric (or skew-symmetric), then G is symmetric (or skew-
symmetric) as well.

(3) IfG is a Riemannian metric on M, then G© is a pseudoriemannian metric
on T'M of signature (m,m).

(4) If G is a 2—form on M, then G* is a 2—form on TM and we have dG° =
(dG)“.

(5) GYXY, Y9 =GYXC, YY) =GX, Y)Y, GYXV,YV) =0 for all vec-
tor fields X, Y on M.

(6) If G is a symplectic form on M, then G is a symplectic form on TM.

(7) GY(XY,YY) =0 for all vector fields X, Y on M.

Denote by kpr: TTM — TTM the canonical involution and by spr: T7T*M —
T*T'M the canonical isomorphism [8], [11]. The coordinate expression of sys is
w' =& r; = P, s; = pi. It is well-known that the complete lift X of a vector field
X can be described by X¢ = k3 o TX. We show that a similar characterization
holds also for the complete lift of (0, 2)-tensor fields to TM. There is a canonical
isomorphism ¢: A*® B* — Lin(A, B*), ¥(a*® b*)(c) = (b*,c¢)a*. Hence we can
identify every (0, 2)-tensor field G on M with a linear map Gr: TM — T*M over
the identity of M, which is defined by (Gr(y),z)s = Gz(z,y), v,z € TyM. The
coordinate expression of G’ is
Analogously, denote by G : TTM — T*TM the linear map over idpys corre-
sponding to a (0, 2)—tensor field G on TM.

Proposition 1. Let G be an arbitrary (0,2)—tensor field on M. Then the com-
plete Iift G¢ is the only tensor field G on TM satisfying

(1) GLISM OTGLOK?M.

Proof. The natural equivalence s can be distinguished among all natural trans-
formations TT* — T*T by the following geometric construction, [5]. If X is a
vector field and w: M — T*M is a 1-form on M, then {w, X): M — R. By [5],
s 18 the only natural transformation 77" — T™T over the identity of T satisfying
(sTw, X¢) = (w, X)¢. Then the assertion follows from the definitions of G and
G¢ and from Lemma 1. d

Let o = p;dz’ be the Liouville I-form on 7*M. Then the pull-back 3 := (G )%«
is a 1-form on TM, B = g;j3/ dz'. (We can also define 3 by 8(y) = (G(—,y))"".)

Definition 2. Let G be a (0,2)-tensor field on M. The antisymmetric lift of G
to T'M is a 2-form G4 on T M defined by G4 = dg.

Obviously, G# is the pull-back G% of the canonical symplectic form Q = da
on T*M . In coordinates,

GA = (65]:”3/ ) de' Adad — gijdxi Ady .
T
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The corresponding matrix expression of G4 is

DGim DGim
((a‘qéz —%)ym —%')

gji 0

If G is a Riemannian metric on M, then the antisymmetric lift G4 is exactly the
canonical symplectic 2—form on T'M defined by Janyska in [3]. In general, we have

Proposition 2. Let G be a regular (0,2)tensor field on M. Then TM, T{TM,
TTT M are symplectic manifolds.

Proof. Clearly, if G is regular, then Gp: TM — T*M is an isomorphism and
G4 is a symplectic form on TM. By [1], 77T*M is a symplectic manifold. If
w is the corresponding symplectic form on 77 T*M, then the pull-back (77 G )*w
is a symplectic form on T77T'M . Finally, the well-known identification 777TM ~
TTT M determined by the exchange homomorphism of Weil algebras, [6], defines
a symplectic structure on T77 M. a

Let T be a linear connection on M with the local Christoffel symbols F;k Then
the tangent space of TM at any point y € T'M splits into the horizontal and
vertical subspace with respect to I', T,TM = H, © V,, and we have a linear
isomorphism T, M — H,, = pp(y). This isomorphism defines the horizontal lift
of a vector field X on M into a vector field X on 7M.

Definition 3. Let G be a (0,2)-tensor field on M. The horizontal lift of G
to TM is a tensor field G of the same type on TM given by GH(XV YY) =
GHXH yHYy = 0, GH(XH YY) = GE(XV,YH) = (G(X,Y))V for all vector
fields X, Y on M.

We have

G = (g5 050" + g Thy)de' @ dad + gijda’ © dy + gijdy’ @ da?.

Proposition 3. Let G be a (0,2)—tensor field on M. Then G = G© if and only
if G = 0.

Proof. A direct calculation gives s7G = 0 iff gi’,ﬁ = gisfzj + 9515, O

It is interesting to point out that the same assertion holds also for the horizontal
and complete lift of (0, 1)-tensor fields (i.e. 1- forms) provided we define the
horizontal lift by o (XH#) = 0, o (XV) = («(X))V for every vector field X on
M.

3. INVARIANT FUNCTIONS ON JY(T*@ T*) & T'T

The aim of this section is to determine all first order natural operators trans-
forming (0, 2)-tensor fields on M into functions on TTM. Such functions will
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then play the role of coefficients of natural transformations TTM — T*T'M (see
Proposition 6 in the next section).

Denote by Q@ = @B™* x @3R™ x x3R™ the standard fibre of the bundle
functor J(T*® T*) & TT and by G7, the group of all invertible r—jets of R™
into R™ with source and target zero. We shall denote by (a;:,a;k) the canon-

ical coordinates in G2, and by tilde the coordinates of the inverse element. If
(9, 9ij 6 = ag”(x),y X% V") are the canonical coordinates on (), then the ac-
tion of G2, on @ is given by

— =kt — _ ~m=n=p ~m =~ ~T ~n

(2) 9ij = @; Qi gke;,  Gijk = @ Q5 Apmnp + (aika]' + a; a]’k)gmna
I S Vi o 0 j VoI V4 ] 4 k
v =dqy, X'=aX, Y _a]»Y]—aZamn ]aky]X

Denote further

L=gyy, L=g;X'X', Izy=g¢;X'y, L=g;yX,
(3) Is = gij x ' X5+ 0iy' YT 4 g1 Y
Is = gijp X' X7y + g5 XY + g5 V' X

The geometrical construction of I, ..., Is is straightforward. Denote by G(u,v)
the full contraction of G with u,v € T M. On the iterated tangent bundle we
have two canonical projections prar, Tpar: TTM — TM. Then IT = G(pra(A),
pry(A)), I = G(Tpm(A), Trm(A)), Is = G(Tpm(A), pru(A)), Is = Glprm(A),
Tpam(A)), A € TTM. Further, differentiating I, we get Is, and Is = I5 o sy,

where &kpr: TTM — TTM 1s the canonical involution. Obviously, 1, ..., I are
invariants of GZ,. Now we prove that Iy, ..., Is generate all GZ,—invariants defined
on .

Proposition 4. For m = dimM 2 3, all first order natural operators transform-
ing (0, 2)—tensor fields on M into functions on TTM are of the form

gD(Il,...,I6)

where ¢ is an arbitrary smooth function of six variables.

Proof. According to the general theory of natural operators, [6], we have to
determine all G2 —invariant maps f: @ — R, f = f(y', X", Y" ¢ij,¢9ij.x). Using
the tensor evaluation theorem from [6] we get f = ¢(Py, ..., Psg), where ¢ is an
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arbitrary smooth function of 36 variables

Pr=gijy' s, Po= gy X' XT Py = g5 Y'V7 Py = g5jy' X7, Ps = gi; X'y,

Ps = gi;y'Y?, Pr = g;;Y'y) | Py = ¢;; X'Y7 Py = ¢;; Y X7 Pro = gijxy' v v,
Pii= gij 1) X' XIXF Pry = gy pY'YIYR Pig = gij oy XOXF, Pra = g4 py/YIYF,
Pis = gij 1y XF, P = gij ey’ X4%, P = gij oy ' YF, Prs = gij 5y Y7
Pro = gijpy' XIY¥, Pog = gij py YIX®, Poy = g3 1 X'y, Pon = g 1 XTYIYF,
Poz = gijp X 0 X*, Pog = gij 1 X' X7 y*, Pos = gij i X'y Y, Pos = gij p XYy,
Par = gij ks X' XIYF, Pog = g5 1 X'YI X Pog = g;5 5 Yy y¥, Pag = g4 Y X7 XF,
Pay = gij kY0 X*, Pay = gij 1Y X Pag = gij kY'Y YF, Pag = gi; 1 Y'Y,
Pss = gij V' XY, Pag = gij n V'Y X",

Replace (Pys, Ps, Pr) by anew triple of independent variables P/5 := Pj5— Ps— Pr,

Is = Pis + Ps + P7, P, := Ps — P7. Analogously, we replace (Pa4, Ps, Py) by
P}y = Poy — Ps— Py, Is = Pou + Ps+ Py, P{:= Ps — Py. Then ¢ is of the form

(4)  @(h,...,1s, Ps, Py, PS5, Pro, ..., Pia, P{5, Pig, ..., Pos, Py, Pas, . .., Psg).

It suffices to deduce that ¢ is independent of all P’s. Consider the equivariance
of (4) on the kernel of the jet projection G2 — G}, which is characterized by

aé :6]2:, and put y = (1,0,...,0), X =(0,1,0,...,0), Y = (0,0,1,0,...,0). We

obtain

@(Ila"'aI6aP3aP'§aPéaP10a"'aP14aP1/5aP16a"'aP23aP2/4aP25a~"aP36)
IgD(Il,...,16,p3,p'§,pé,P10,...,p14,p1/5,P16,...,ng,P2/4,p25,...,P36)

where P3 = g33, Ps = gas(1+a3,)(14+a3,), ..., Pss = 9332, Pss = (g33.2+ a8 gms +
%0930 ) (1 + a3,)(1 + a3,). Setting a3, = —1 we get that ¢ does not depend on all
P’s except Pig, P11, P13, P{s, Pis, P21, Pos, Pss. By the choice of af} we prove
that ¢ is independent of Pig, Pig, P21. Analogously, by means of a3} we get that
¢ does not depend on Py, Pi3, P»s and the choice of af} yields the independence
of ¢ on P{; and Pj,. O

In the case m = 2, the same result holds if we restrict ourselves to tensor fields
which are either symmetric or antisymmetric.

Proposition 5. For m = 2, all first order natural operators transforming sym-
metric or antisymmetric (0, 2)—tensor fields on M into functions on TTM are of
the form

(5) gD(Il,...,I6)

where ¢ is an arbitrary smooth function of six variables.

Proof. Consider the function f(y*, X', Y, ¢ij, ¢ij.x) from the proof of Proposi-
tion 4 and define ¢ by the formula ¢(z1,...,25) = f(1,0;0,1;0,0; 911 = 21, 922 =
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Zo, 012 = 3,021 = Za;§11.2 = %5,4221 = %6,0,0,0,0,0,0). There is a linear trans-
formation transforming independent vectors y and X into (1,0) and (0,1). Next,
(2) with aé = 6]2: vields Y = Y =@y, gijx = gij 5+ gmj +aj; gin- By the choice
of a}, and @, we obtain Y* = 0. Further, for g;; # 0 the choice of a}; and @}, gives
gi1,1 = 0, gi2,1 = 0. Analogously, using El%z and El%z we get gao 2 = 0, gi22 = 0.
By symmetry or antisymmetry we have g211 = g12,1 = 0, g21,2 = g12,2 = 0. Then
Il = q11, Iz = {29, 13 = 192, I4 = g21, I5 = g11,2, I6 = g221- Thus [¥e) 1s of the form
(5) on an open dense subset. d

4. THE CLASSIFICATION THEOREM

We first prove the following auxiliary assertion, which has also a number of
interesting features in its own right (see Remark 2).

Proposition 6. For m 2 3, all first order natural operators T*QT* ~» (TT,T*T)
transforming (0, 2)—tensor fields on M into morphisms TTM — T*TM are of the
form
w' = Ay’ + A, X7,
si = Asgjiy) + Asgijy + Augyi X7 + Augi; XV,
ri = (A1 As 4 AsAz)g;i Y7 4 (A1 Ay + Ay As)gi; Y7 4 A Asgyi ry X*
+ AsAsgi; 1k XF + A1 Asgys 5 X0y + ArAugy n X0y
(6) + Asgiiy + Asgijy + Aegyi X! + Asgi; X7
— B1gjiY? — BagjiY? — Bi1gijY? — Bag;; Y7
— Bigji 1 X¥ — Bogij 1y X* — Bagji 1 X7
— Bigij e X7y + Bigjef X* + Bagje,i X0
+ Crgjeit y" + Cogjp i X9 XF

where AZ',ZZ' and B; are arbitrary smooth functions of the invariants I, ..., Is and

Cl = A1A3 = Alzg, Cz = A2A4 = AQZ4.

Proof. Let S = R x R™* x R™* be the standard fibre of T*7T with the canonical
coordinates (wi, s;,7i). Then we have to determine all GZ,—equivariant maps Q —
S,
w' = w' (Y, XY, g, 9 k),

si = sy, XY i, i ),

ri = ri(y', XY g3, 9ig k)
Using standard evaluations we find that the action of G2, on S is

TS S | . — 2d e, 5o— . il ~m k
W= aw, S = aysy, T = aprj — QpdipQy Smw
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while the action of G2, on @ is given by (2). First we discuss w'(y*, X', Y g/, ¢ij 1)
Let us introduce new variables u; € R™* u; = Elf:uj. Then ¢ = Wi, is a anf
invariant function, ¢ = @(y*, X*, Y, g5, gij k, wi) and Iz = y'u;, Is = X'u; are
further GZ —invariants. In the same way as in the proof of Proposition 4 we de-
duce ¢ = (I, ..., 1Is), so that wiu; = o(I1,..., Is, y'u;, X*u;). Differentiating
with respect to u; and then setting uw; = 0 we obtain w® = Ay(Iy,..., Is)y’ +
As(Iy, ..., Ig)X?. This corresponds to the first equation of (6). Using a similar
procedure for s;(y*, X%, Y, gij, gij k) we deduce the second equation of (6).
Finally, assume r;(y*, X%, Y, g;;, ¢ij ) in the form

ri = gy Y + @195 Y7 + gt XF + @gij ny XF + asgjin X0y
+ @390 1 XY+ Brgjuat’ XF+ Bagin i XD Y* + 1900 ¥ + v29i5 6 X XF
+ v3g5i 68 V* 4+ 729506 X7 X + 5050007 0 + vegin i X XF
+ 7y XY gis 9 n)-

Applying equivariance on the kernel of the jet projection G2, — Gl we get the
fOHOWiIlg relations: A2A3 = s + 61, AQZB = az + 62, A1A4 = a3+ 62, Alz4 =
a3+, 01 =asFag oy =as+a3, 1 =7 =73=7=0 443 = A1 Az =
vs, AsAs = A Ay = 76. Then the full equivariance reads al7;(y', ..., gij5) =
#(Yi, ..., Gij,x) so that # has the same transformation law as s;. Thus # =
Asgiit) + Asgijyf + Aegyi X7 4 Asgi; X7 O

Let G = g5 dz'®dx? be a (0,2)-tensor field on M. Then (i induces a symmetric
tensor field S = S;; dz'® dz’ and an antisymmetric tensor field R = Rijdxi(}b dxd
by Sij = %(gzj +95:), Rij = %(glj — g;i). Denote further

G = gjidxi(@ dl‘j.

Clearly, G = S+ R, G' = S — R. Now we prove the main result of this paper.

Theorem. For m 2 3, all first order natural operators T*® T ~» (T*® T*)T
transforming (0, 2)—tensor fields on M into (0, 2)-tensor fields on TM are of the
form

(7 G — Ki1(GYY + K2G° 4 K3(GNYY 4 K4GY + K5(G)* + KsGA

where K; = Ki(gijyiyj) are arbitrary smooth functions of the invariant I, and
GY, GV and G4 denote the canonical liftings.

Proof. Taking into account an identification of every (0, 2)-tensor field G on TM
with a linear map Gr: TTM — T*TM over the identity of TM, it suffices to
choose suitable morphisms (6) from Proposition (6). Clearly, all such linear maps
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are of the form
wi =y
si = Aagpi X7+ Augij X7,
ri = Aa(g5Y7 + 95 1 X79") + Aal95 Y7 + 951 X70")
+ Bi(gjri — 95i0)9 X* 4+ Ba(guji — 9ij0)y X"
— B1g;; 1 X7 y" — Bagji n X7y
— B19jiY? — BagjiY7 — Bigi;Y? — Bagij Y7 4 Agg;i X7 + Aggi; X7

(8)

This can be rewritten as

w' =y,

si = (A4 — B2)gji X! + (A4 — B1)gi; X7 + Bagji X' + Bigij X7,

ri = (Aa = Bo) (957 + gji x X7 y") + (Aa = B1)(g5;Y7 + 95,6 X7 y")
+ Bi(gjki — 950.0)¥ X* + Bo(grji — 9i.0)y XF
— B1gjiY? — Bagi; Y7 4 Asgji X7 + Asgi; XY

which is nothing but the coordinate form of (7), where K1 = Ay — By, Ko =
Ay — Bi, K3 = Ag, K4 = Ag, Ks = By, K¢ = B». Finally, on the standard
fibre V = @?R™* x @3R™ x R™ of JY(T*® T*) & T we have only one invariant
I = gijyiyj, so that the coefficients K; are smooth functions of I; only (this also
follows from the linearity of GL) |

Using the symmetric tensor field S and antisymmetric tensor field R one can
also express (7) in the form

G— K15 + K3RC + K38V + K4RY + K582 + KeR™.

Corollary 1. Form 2 3, all first order natural operators transforming symmetric
or antisymmetric (0, 2)—tensor fields on M into (0, 2)—tensor fields on TM are of
the form

G — K1G° + K2GY 4 K3G4
where K; = K;(I1) are arbitrary smooth functions of the invariant I.

Corollary 2. For m 2 3, all first order natural R—linear operators T* @ T* ~~
(T*@ T*)T are of the form (7), where K; are arbitrary real numbers.

Remark 2. Janyska, [3], has described some natural transformations TTM —
T*T M on a Riemannian manifold M. He has in fact constructed certain first order
natural operators RegS?T* ~» (TT,T*T), where RegS*T™* denotes the bundle
functor of Riemannian metrics. In Proposition 6 we have determined the analytical
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form of all first order natural operators 7" @ T* ~ (TT,T*T), provided dimM =
3. Such operators were then essentially used in the proof of our classification
theorem. By Kolaf and Radziszewski [5] there is no natural equivalence TTM —
T*T M. This is due to the essentially different character of natural transformations
TTM — TTM and T*TM — T*TM. On the other hand, from (6) we can see
that a (0,2)-tensor field on M induces a ’wide‘ class of natural transformations
TTM — T*TM. Now we give the geometrical construction of some morphisms
TTM — T*TM from Proposition 6.

1. The choice Ay = 0, A3 = 1, A3 = 0, A3 = 0, C; = 0, C3 = 0 in (6)
gives (8). Then A4 or Ay correspond to the complete lift of G = gijdxi® dxd or
G' = gjide@ dxd | respectively. Analogously, Ag and Ag correspond to the vertical
lift and By and By correspond to the antisymmetric lift.

2. Each map f: TM — T*M defines a function f: TM — R given by f(y) =
(f(y),y), sothat a (0, 2)— tensor field G on M determines a function Gr: TM — R,
éL(y) = ¢s; y'y . Its exterior differential déL is a 1-form on T'M, in coordinates
dGp = gik i yEdet + (gij97 + 9ji9 )dy'. Then the morphisms dGr o pry and
déL oTppy: TTM — T*TM correspond to the terms with C; and Cs in (6).

3. All the morphisms TTM — T*TM from (6) with By = Bo = C; = C2 =0
can be constructed as follows. Denote by t3;: T"TM — T*TM any natural
transformation over the identity of T'M determined by Kolaf and Radziszewski
in [5]. Further, let hpr: TTM — TTM be any natural transformation by Kolaf
[4]. Moreover, we denote by spr: TT* M — T*TM the canonical isomorphism [8],
[11]. Take the map Gr: TM — T*M which canonically corresponds to a (0,2)-
tensor field G on M and evaluate the composition tjrospyroTGr: TTM — T*T M.
Quite similarly, the tensor field G’ induces a map tarospro TG, : TTM — T*TM.
Next, for Z € TTM the sum of (tar o spyr o TGL)(Z) and (tar o sy 0o TG )(Z)
with respect to the vector bundle structure T"TM — TM determines a map
F:TTM — T*TM. Then fohy is exactly (6) with By = By =Cy = Cy, = 0. If
(' 1s symmetric or antisymmetric, then the whole construction is much easier. In
fact, in this case it suffices to evaluate sy o TG pohpr (compare with sproTGrokpy

in (1)).
Remark 3. The proof of our classification theorem was based on the identification
of (0, 2)-tensor fields with linear maps TM — T*M. A similar procedure can be

used for liftings of (1, 1)-tensor fields to TM which we identify with linear maps
™M —TM.
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