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EMBEDDING OF HILBERT MANIFOLDS WITH SMOOTH
BOUNDARY INTO SEMISPACES OF HILBERT SPACES

J. MARGALEF-RoIG AND E. OUTERELO-DOMINGUEZ

ABSTRACT. In this paper we prove the existence of a closed neat embedding
of a Hausdorff paracompact Hilbert manifold with smooth boundary into
H X [0,+00), where H is a Hilbert space, such that the normal space in
each point of a certain neighbourhood of the boundary is contained in H X
{0}. Then, we give a neccesary and sufficient condition that a Hausdorff
paracompact topological space could admit a differentiable structure of class
oo with smooth boundary.

0. INTRODUCTION

A generalization of Whitney’s embedding theorem was given by J. Mc Alpin
on 1965 [1] and [8]: “Every separable C"-manifold without boundary modeled
on a separable Hilbert space can be C"—embedded as a closed submanifold of a
separable Hilbert space”.

On 1970 J. Eells and K.D. Elworthy [4] proved the following immersion theorem:

“Let £ be a C*°-smooth Banach space of infinite dimension, with a Shauder
base. Suppose that X is a separable metrizable C*°—manifold without boundary
modeled on E. If X is parallelizable, then there is a C*°—embedding of X onto an
open subset of £”.

The purpose of this paper is to study embeddings in case that the infinite
dimensional manifolds have boundary. We shall prove the following two theorems:

Theorem A

Let X be a Hausdorff paracompact differentiable manifold of class p+1,p > 1.
Assume that X is a Hilbert manifold such that (X) # ¢ and §*(X) = ¢. Then
there are a real Hilbert space I, a closed embedding ¢ : H — H x [0,+00) of
class p with ¢7}(X x {0}) = 9(X), a collar neighbourhood (f, A) of 9(X) in
X of class p and an open set G of 9(X) x [0,4+00) such that 9(X) x {0} C G,
gf(x,t) = (prg(x),t) for every (z,t) € G, f(G) = Gy is an open set in X with
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9(X) C Gy and NJ(X) C H x {0} for every x € GGy, where N4(X) is the normal
space of ¢ at z.

Theorem B
Let X be a Hausdorff paracompact topological space. The following statements
are equivalent:

a) X admits a Hilbert differentiable structure of class oo with 9(X) # ¢ and
0*(X) = ¢.

b) There are a real Hilbert space I, an open set U of H x [0,400) with
UN(H x {0}) # ¢ and amap r : U — U of class oo such that r-r =r,
r(O(U)) C A(U), ker(D(r)(x)) C H x {0} for every » € »(U) N J(U) and
r(U) is homeomorphic to X.

1. PREREQUISITES

Along this paper manifolds may have boundary if otherwise is not specified.
Terminology and notation can be found in [6] but we explain here some of them.

Let E be a real Banach space and A a finite linearly independent system of
elements of L(F, R). Then the quadrant {# € E/A(z) > 0 for all A € A} will be
denoted by E} and the closed linear subspace {z € E/A(z) = 0 for all A € A} by
ER.

If X is a manifold, a chart of X will be denoted by (U, ¢, (E, A)), where U is
the domain of the chart, ¢ is the morphism, £ is the model space, ¢ : U — E;{'
is injective and ¢(U/) is an open set of E¥. For instance (£, Ap, E) is the natural
chart of £ and (E},j,(F,A)) is the natural chart of 7, where j is the inclusion
map.

Let E;{' be a quadrant, U an open set of E;{' and = € E;{' Then we call index
of # and denote ind(z), the cardinal of the set {é/A;(z) = 0,A; € A}. The set
{y € U| ind(y) > 1} will be called boundary of U and denoted &(U). The set
{y € U / ind(y) = 0} will be called interior of U and denoted by int(U/), the set
{x € U/ ind(x) = k} will be denoted by By (U) and the set {z € U/ ind(z) > k}
will be denoted by 9*(U), where k € NU{0}. From the local boundary invariance
theorem we can define, in a natrual way, the index and the boundary of manifolds.

If X is a manifold and a € X, we take the set {(c,v)/c = (U, ¢, (F,A)) is a
chart of X with a € U and v € E'} and we consider the binary relation, ~, on this
set defined by:

(c,0) ~ (¢,v) & D(¢' o™ (p(a))(v) =o'

Then this relation is an equivalence relation and the quotient set will be denoted
by To(X).

Let ¢ = (U,¢,(E,A)) be a chart of X and a € U. Tt is clear that the map
0¢ : E — Tu(X) defined by 0%(v) =~ ((¢,v)) is a bijective map. The class
of equivalence ~ ((c,v)) will be also denoted by [(¢,v)]. Via the map 6% the
space To(X) becomes a real Banach space that will be called tangent space of X
at @ and 8% becomes a linear homeomorphism. Moreover if ¢ = (U, ¢, (E, A)),



EMBEDDING OF HILBERT MANIFOLDS ... 147

¢ = (U@ (E' A") are charts of X with a € UNU’, then (6%)7! 6% = D(¢'p™1)
(o(a))

If f: X — X'is amap of class p and a € X, it is clear that there is a
unique continuous linear map T,(f) : Ta(X) — Tfa)(X') such that for every
chart ¢ = (U, ¢, (F,A)) of X at a and every chart ¢/ = (U, ¢/, (E',A")) of X' at
F(a), it holds T,(f) = 07" D(¢' fo™?) (p())(02)~".

If X is a manifold of class p we denote by T'(X) the set {(z,v)/z € X, v €
T:(X)} and by 7x the map 7x : T(X) — X defined by 7x(z,v) = z. Then for
every chart ¢ = (U, ¢, (F,A)) of X, the triplet d, = (T)}l(U), e, (F x E,Ap1)) is
a chart of T(X) where the map ¢, : T)}l(U) — B x F is defined by ¢ ((x,v)) =
(p(z), (0%)~1(v)). In this way we obtain an atlas for T(X) and T(X) with this
differentiable structure will be called tangent bundle manifold of X.

Let X be a manifold of class p and z € X. A curve of class r on X with origin
z,0<r <p,isamap «:[0,a) — X of class r such that «(0) = =.

If v is a curve of class r on X (1 < r < p) with origin # defined on [0, a), then
the element of T;,(X) defined by Ty()@2 (1), where ¢o = ([0,a),, (R, 1g)) is the
natural chart of [0,a) is called tangent vector to « at 0 and denoted &(0). We
note that if ¢ = (U, ¢, (E,A)) is a chart of X at @, then &(0) = Ty(a)0? (1) =

07 D(pa) (0)(1) = 62 lim, M = 07 (pa)' (0), where 6°. : R — Ty([0, a))

and 67 : E — T;(X) are the natural linear homeomorphism.

If v is a tangent vector of X at # given by a curve & : [0,a) — X of class 1 on
X with origin z, i.e. &(0) = v, then we shall say that v is an inner tangent vector
at z. The set of the inner tangent vectors at = will be denoted by (T} X)¢. It holds
that 7, X = L((T; X)"), where L is the linear operator.

If ¢ = (U,¢,(E,A)) is a chart of X such that @ € U and ¢(x) € EY, then
02 (ET) = (T, X) = (T, X)L, where A’ = A(6%)7L.

Let X be a manifold of class p and X’ a subset of X. We say that X’ is a
submanifold of class p of X if for every ' € X’ there are a chart ¢ = (U, ¢, (E, A))
of X with 2’ € U and ¢(z') = 0, a closed linear subspace E’ of E that admits a
topological supplement in E and a finite linearly independent system A’ of elements
of L(E', R) such that (U N X') = o(U) N EY; and this set is open in EF.

We say that the submanifold X is a totally neat submanifold if indx/(z") =
indx (') for every z’' € X'.

If only 9(X') = 9(X) N X' we say that X’ is a neat submanifold.

Let (F,<,>g), (F,<,>p) be real Hilbert spaces and u : £ — F a linear con-
tinuous map. Then there is a unique map u* : ' — E such that < u(z),y >p=<
z,u*(y) >g forevery € F and y € F. The map u* will be called adjoint operator
of u. This operator has the following properties:

1) u* : F'— F is a linear continuous map and ||u*|| = [|u||.

2) The map o : L(F, F') — L(F, E) defined by a(u) = u* is a linear homeomor-
phism which is also an isometry.

3w =uforallue L(E,F).

4) If GG is a real Hilbert space and v : F' — (i is a linear continuous map, then
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(v.u)* =u*v*. If E = F then 1%, = 1g. Therefore if u € L(E, F) is an invertible
operator, then u* is also an invertible operator and (u*)~! = (u=1)*.

5) If (F,<,>) is a real Hilbert space, F' is a closed linear subspace of E and
u: E — E is a linear homeomorphism, then (u(F))* = (u*)71(F?1).

Lemma 1.1 (R. Godement)

Let U, M be Hausdorff topological spaces, g : U — M a local homeomorphism,
X a closed set of M and s : X — U a continuous section of g, i.e. gs = 1x.
Suppose that g(U) is a Hausdorff paracompact space. Then, there exists an open
neighbourhood W of X in M and there exists a prolongation of s to a continuous
section, §: W — U, of g such that §(W) = Uy is an open set of U. O

Corollary 1.2

Let Y and Y’ be Hausdorff differentiable manifolds, f : Y — Y a differentiable
map of class p and X a closed subset of Y. Suppose that:

1) Y’ is a Hausdorff paracompact space.

2) There exists a continuous map, s : X — Y, such that fs = 1x

3) For every z € X, f is a local diffeomorphism of class p at s(z).

Then there exists an open set Uy of Y and there exists an open set W of Y/ with
X C W such that fiy, : Uy — W is a diffeomorphism of class p and s = (f|UD)|_X1

2. THE NORMAL BUNDLE MANIFOLD OF AN IMMERSION WHICH RANGES OVER A
HILBERT SPACE.

Proposition 2.1
Let (H,<,>) be a real Hilbert space, Y a differentiable manifold of class p +
1, (p>1),and f: Y — H an immersion of class p+1. For every y € Y let us con-

-1
sider the sets Tyf(Y) = (9{“”) T,(f) T,(Y) C H, where ¢ = (H,1p, H) is the

natural chart of H and Hg(y) : H — Ty(y)(H) is the natural linear homeomorphism,
and NJ (V) ={z € H/ < z,u>=0for every u € TJ(Y)} = [T/ (Y)]* C H. Now

we take the sets 77 (Y ZTf ) = {(y, )EYXH/UETJ(Y)}CYxHand
yey
=Y N/(Y)={(y,v) €Y x Hlve NJ(Y)} CY x H.
yey

Then we have that:

a) T7(Y) and N/(Y) are closed totally neat submanifolds of class p of ¥V x
H, (N7(Y) will be called normal bundle manifold of f). In particular §(7T7 (V) =
THY)N[0Y x H] and (N7 (YV)) = N/ (V)N [8Y x H].

Moreover the map ¢ : T(Y) — T7(Y), defined by

o) = (o (0100) " 1,0 (0)).
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is a diffeomorphism of class p from T(Y') onto 77 (Y).

b) The maps 7, : T/(Y) — Y, 7 : NJ/(Y) — YV defined by m(y,u) =
y, Ta(y,u) = y are submersions of class p.

¢) The maps P : Y x H — T/(Y) and Q : Y x H — N/(Y) defined by
P(y,v) = (y,pTJ(Y)(v)), Qy,v) = (y,pNg(Y)(v)), where Pricy) is the orthogonal
projection of H onto Tyf (Y) and Pniy) is the orthogonal projection of H onto

NJ(Y), (we note that H = Tyf(Y) POr NJ(Y) and v = ij(Y)(U) + pNg(Y)(v)),
are maps of class p such that P.P = P, Q.(Q = @ and p2() = ps — p2 P, where
p2 Y x H — H is the 2—projection.

Q) THY) <y NI(Y) = {((5r ), (. 0)/ (5, 0) € TIY), (5,0) € NI(¥)} is a
submanifold of class p of T/ (Y') x N/(Y) and it is also a submanifold of class p of
(Y x H)yx (Y x H).

e) The map o : T/ (V) xy N/ (Y) — Y x H defined by a((y, u), (y,v)) = (y,u+
v) is a diffeomorphism of class p whose inverse is a=1(y,v) = (P(y,v), Q(y,v)).
Therefore, TY(Y) and N¥(Y) are closed submanifolds of Y x H.

f) If O(Y) = ¢, then the map e : N/ (V) — H of class p defined by e(y,v) =
f(y) + v is a local diffeomorphism of class p at (y,0) € N/ (V) for every y € Y.

Proof

a) Let yo be an element of Y. Since f is an immersion of class p+ 1 at yg, there
is a chart ¢; = (U, ¢, (F,A)) of Y with yo € U and ¢(yo) = 0 and there is a chart
e=(V,¥ H)of class p+ 1 of (H,<,>) with ¥ f(yo) = 0 and f(U) C V such that
FE is a closed linear subspace of H (hence it admits a topological supplement in
H), ¢(U)C¥(V)and ¥fip¢~t = j: ¢(U) — ¥(V) is the inclusion map.

Then we have that

1

() = (010) T (1) = (#£0) T 619 D e ) elw)) (62,)

_ (gg@))‘l 6{V)(E) = D) (¥ f(y))(E)

Ty(Y)

for every y € U and therefore D\I!(f(y))(Tyf (Y)) = E for every y € U. We note

that 7, (f) is an injective map and ¢m (7, (f)) admits a topological supplement in
Ty (H)-

Let 8 : U — GL(H) C L(H, H) be the map of class p defined by f(y) =
DU¥~1(¥f(y)) and let G be the orthogonal space of F in (H,<,>), (G = E*L).

Since the map v : GL(H) — GL(H) defined by v(u) = u~! is a map of class
00, then the map 371 : U — GL(H) defined by 8= (y) = (8(y))~t = D¥(f(y)) is
a map of class p. On the other hand the map * : L(H, H) — L(H, H) defined by
*(u) = u* is a linear continuous map and therefore is a map of class co. Moreover
*(GL(H)) = GL(H) and (u*)~! = (u=1)* for every u € GL(H). Thus the maps
B* : U — GL(H)) and (3*)~! : U — GL(H) defined by 3*(y) = (B(y))* and
(5)71(9) = (5 ()" = (Bu) )" are of class p.

Let us consider the map of class p
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S :¢(U)yx H—¢(U)x H
defined by ®(z, v) = (2, B(¢7" (2) (P (v)+(F") (67 (2) (P (v))), where pg, pa

are the orthogonal projections of H over F and (' respectively.

Then for every z € ¢(U) the induced map ®, : H — H is a linear homeomor-
phism. Since
] J_

L
B NEN] " = [T ()] = (3)7 67 ENG) = N ().
It is clear that ® is a bijective map of class p,

D&(z,v)(w, u) = (w, D' (p2®)(z, v)(w) + D*(p2®)(z, v)(u)),

D?(pa®)(z,v)(u) = @,(u), DP(z,v) is a linear homeomorphism for every (z,v) €
$(U) x H and ®(9(¢(U) x H)) = (¢(U) x H). Hence ® is a diffeomorphism of

class p and

7 (z,u) = (2, (B () Bacs-10im (W) + (67 (2)pam) -1 (61 (6) ()
=(z,(8(¢7"(2) "y (W) + 8 (67N (), (u)).

¢—1( ) ¢_1(z)(Y)
Then we can take the chart ¢* = (U x H,® (¢ x 1) = ¢*,(E x H, Apy)) of class
p of Y x H and we have that ¢*(U x H)NT (Y)) = ¢*(U x H)N(Ef x E) =
o(U) x B, ¢ (U x HYN N/ (Y)) = ¢*(U x H)n(EX x G) = ¢(U) x G and
*(UxH)y=¢(U)x H.
Thus we have that 77(Y) and N/(Y) are submanifolds of class p of Y x H and
&t ={(UxH)NTIH(Y), ¢7 = (E x E,Apy)) is a chart of T7(Y) and

1
s =(UxH)NNI(Y), ¢35 = ¢|(UxH)ﬁNf(Y)’ (E x G, Ap})) is a chart of N/(Y). It

is clear, using these charts, that 77(Y) and N/(Y') are totally neat submanifolds
of Y x H.

b) and c¢) are easily checked by localization.

d) We take the charts ¢} and ¢} constructed in the statement a). Then ¢} x ¢ =
(5 = (U< )T (V) (U x F)ANY (V). 65 %3, ((F x ) x (E % G), Api UAp3 )
is a chart of T/(Y) x N/ (Y), H = {(u,v),(v,w))/u € E, v € E, w € G} is a
closed linear subspace of (E x F) x (E x () that admits topological supplement in
(Ex E)x(Fx(G)and A(p’{lH,) is a finite linearly independent system of elements
of L(H', R). Since (67 x 63)(5 1 (T (¥) xy NT(Y)) = (6 x 63)(8) 1 Hyh

H
and H’;'\'p*l C[(ExE)x(Exa]f it happens that 77(Y) xy N/(Y)
1 H!
is a submanifold of class p of 77(Y) x N/(Y) and it is also a submanifold of
(Y x H)yx (Y x H).

e) It is clear that « is a bijective map of class p and a=! = (P, Q). Moreover,

from ¢) and d), a=! is a map of class p, hence « is a diffeomorphism of class p.

¢|(U><H)r1Tf(Y) ’

ApTUApY)
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f) We have that (yo,0) € (U x H)NN7(Y) and (e|(UXH)an(y)) (¢;_1|¢(U)><G) =
7, where y(z,u) = (8*(¢71(2))) " (u) + ¥ (2).
Since

Dy(0,0)(u1, uz) = D(T™1)(0)(u1) +(8(y0)) ™" (u2) = Alyo)(u) + (6" (30)) ™ (u2),

Dy(0,0) : E x G — H is a linear homeomorphism and therefore e is a local
diffeomorphism of class p at (yo,0) € N/ (Y), because of I(N/(Y)) = ¢.

In fact we have the more general situation:

Proposition 2.2
Let (H,<,>) be a real Hilbert space, Ay a finite linearly independent sys-
tem of elements of L(H,R), Y a differentiable manifold of class p + 1, (p >
H, f:7V — HX'H an immersion of class p+ 1, ¢ = (HX'H, 1H2r , (H,Am))
H

the natural chart of HX'H and ¢ = (H, 1y, H) the natural chart of I, (We note
that jf : Y — H is also an immersion of class p + 1, where j : HX'H — H

-1 -1

is the inclusion map, (Hf(y)) Ty (f) = (Hf(y)) T,(jf) for every y € Y and
T,(INT,Y) C [Tf(y) ( )] for every y € Y). For every y € Y let us consider
the sets T4 (V) = (ag‘(y)) Ty(HT,(Y) C H and NJ (V) = [T (V)][* C H, (We

note that Hg(y) s H — Ty (HX'H) is the n?tural isomorphism, T, (f) is an injec-
tive map, N (Y) @& TS (Y) = H, (eg‘ <y>) T, (DT, (V)] = [T] (Y )], for every

y €Y, where [Tf (Y)]M is a quadrant of Tf(Y), (9{“”) ' (Tf(y)HX'H)Z = HX'H
for every y such that f(y) € HAH and Tyf( ) C HRH for every y € int (V) such
that f(y) € HR, ).

Now we take the sets 7/(Y) = {(y,v) € Y x H/v € TJ(Y)} C Y x H and
NI(Y) = {(y,v) € Y x Hlv € NJ(Y)} CY x H, (Of course we have that
(V)= TI(Y), Nf(Y) = N (V), TH(Y) = T9(¥) and NI (¥) = N3T ().

Then we have that

a) T7(Y) and N/(Y') are closed totally neat submanifolds of class p of Y x H.
Moreover the map £ : T(Y) — T/(Y) defined by £(y, v) = (y, (9{“”) ' T,(f)(v))
is a diffeomorphism of class p from T(Y) over 77 (Y).

b) The maps 7 : TH(Y) — YV, 7 : N/(Y) — Y defined by 7(y,u) =
y, Ta(y,u) = y are submersions of class p.

¢) The maps P : Y x H — T/(Y) and Q : Y x H — N/(Y) defined by
P(y,v) = (y,pTg(Y)(v)), Qy,v) = (y,pNg(Y)(v)) are maps of class p such that
PP=P Q.Q=Q and psQ = po—p2 P, where py : Y xH — H 18 the 2—projection.

d) T/(Y) xy NI(Y) = {(y,w), (y,v)/(y,u) € TH(Y), (y,v) € N/(Y)}is a
submanifold of class p of T¥(Y) x N/ (V) and it is also a submanifold of class p of
(Y x H)yx (Y x H).
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e) The map o : T/ (V) xy N/ (Y) — Y x H defined by a((y, u), (y,v)) = (y,u+
v) is a diffeomorphism of class p whose inverse is a=1(y,v) = (P(y,v), Q(y,v)).
Therefore 77 (Y') and N/(Y') are closed submanifolds of Y x H.

f) Suppose that 9(Y) = f~1(0 (HX'H)) and that there is an open neighbourhood
G of 9(Y) in Y and there is an open neighbourhood V° of 0 in H, such that
[Von NJ(Y)] + fly) C HX'H for every y € G and [V° N NJ )]+ fly) C 3HIH
for every y € 9Y".

Then there is an open neighbourhood A of {(y,0)/y € Y} in N/(Y) such
that the map e : A — HX'H of class p defined by e(y,v) = f(y) + v is a local
diffeomorphism of class p at (y,0) € A for every y € Y.

©) I8 0(Y) = /=1 (2(H,,)), then

T, (A(T,Y) C [Ty (H7,)] = K3 Ty(F)(O(T,(YV)))) € O(K)

and Ty (f) (int (T, (Y))")) C int (K) for every y € Y. d

3. CLOSED EMBEDDINGS INTO HILBERT SPACES. TUBULAR NEIGHBOURHOODS.

Proposition 3.1

Let (H,<,>) be a real Hilbert space, Ay a finite linearly independent system
of elements of L(H, R), Y a differentiable manifold of class p4+1 (p > 1), and f :
Y — HX'H a closed embedding of class p + 1. Suppose that 9(Y) = f~1(9 (HX'H))
and that there is an open neighbourhood G of (V) in ¥ and there is an open
neighbourhood V? of 0 in H such that [V° ONJ WM+ fly) C HX'H for every y € G
and [VON NJ M)+ fly) Cco (HX'H) for every y € 9Y".

Consider the totally neat submanifolds 7/(Y) and N/ (Y) of class p of Y x H
and the map e : A C N/(V) — HX'H of class p defined by e(y,v) = f(y) + v,
(we know, from Proposition 2.2 that e is a local diffecomorphism of class p at
(y,0) € A for every y € Y. Moreover [Tyf (Y)]J‘I\'/Iy = Tyf Y)yn HX'H for every y with
fly) € HY,).

Then we have that:

a) There is an open set Q4 of A C N/(V) with Y x {0} C Q4 and there is an
open set W of HX'H with f(Y) C W such that ejq, : Q4 — W is a diffeomorphism
of class p and e = f, where £ : Y — NJ(Y) is defined by &(y) = (y,0).

b) f(Y) is a neat submanifold of HX'H and the map 7 : W — W defined by

-1
T = e.f.pHQA (6|0A)

is a map of class p such that #(W) C f(V) and wf(y) = f(y) for every y € Y.
Hence w : W — f(V') is a submersion of class p at every f(y) € f(Y). Lastly
7(O(W)) C 9(f(Y)) and there is an open set Wy of W such that f(Y) C W; and
Tw, : W1 — f(Y') is a submersion of class p.

¢) Suppose that for every y € 9(Y') there is an open neighbourhood W; of 0 in
H such that
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Wy O[T ()i, + f(v) € HE,

and 0 (W; N [Tyf(Y)]Ly) + fly) C 0O (HX'H). Then for every y € Y, there is an
open neighbourhood U of 0 in (7, (Y))? and there is an open neighbourhood V¥

-1
of y in Y such that f(y) + (Hg(y)) T, (f)(u) € W1 for every u € U; and the

map ey : U; — V¥ defined by e,(u) = f~1x[f(y) + (9{<y>)_1 T,(f)(u)], is a

diffeomorphism of class p, where ¢ = (HX'H, i,(H,Am)) is the natural chart.
d) Suppose that there is an open neighbourhood W?° of 0 in H such that for all

y € 0(Y),

WO T (V)4 + f(v) C HY,
and O(W° N [Tyf(Y)]J"‘}y) + fly) C 6(HX'H). Then there exists an open set
Ay of Z (TyY)i and there exists an open set A} of Bp(Y) x Y such that

y€Br(Y)
Ap, vy C A, {(y,0)/y € Br(Y)} C Ag and the map Ey(y,v) = (y, f~'7(f(y) +

-1
(Hg(y)) T, (f)(v)) is a diffeomorphism of class p from A onto A}, k> 0.

e) If H = R?, then there exists an open set Ws of Wy, such that HX'H ODWD
Wi D Wy D Wa D f(Y) and Tl © Wy — f(Y) is a proper map.

Proof
a) For every y € Y, there is an open neighbourhood V¥ of (y,0) in A C N/ (Y)
and there is an open neighbourhood VW) of e(y,0) = f(y) in HX'H such that
e : VWO — VI i a diffcomorphism of class p. Let us consider the open
sets M = U, ey VOO c AcC N(Y)and U = Uyey Vi ¢ HY . Then the
map el : M — U is a local diffecomorphism of class p and therefore a local
homeomorphism. On the other hand f(Y) is a closed set in U, € : Y — A defined
by &(y) = (y,0) is a map of class p and the map s : f(Y) — M defined by
s(z) = £.f71(2) is a section of class p of ejpr. Then using Godement’s Lemma
there is an open neighbourhood W of f(Y") in U and there is a prolongation of s
to a continuous section, 5 : W — M, of ¢|y such that 5(W) = Q4 is an open set
of M C A. Thus ejq, : Q4 — W is a bijective local diffeomorphism of class p and
therefore a diffeomorphism of class p, which fulfils that e.£ = f and £(Y) C Q4.

b) Let z € W. Then there is a unique (y,,v,) € Q4 such that e(y,,v,) = z =
f(y:) +v,. Hence n(z) = f(y.) € (V).

On the other hand if z = f(y), then (y.,v,) = (y,0) and #(2) = f(y;) = fly) =
z.

c¢) Let y be an element of ¥ and let o, : T,(Y) — H be the map defined

-1
by ay(u) = f(y) + (Hg(y)) Ty (f)(u). It is clear that o, is a continuous map
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and oy (0) = f(y) € Wi. We note that if y € int(Y') then f(y) € int(W1) and
if y € 9(Y) then f(y) € (W) and there is an open neighbourhood W; of 0 in
. ~ -1 ~
(T,Y)' such that oy, (W?) C HY  and (ag‘(y)) T, (F)W9) € WO A [T (V)]
Then there is an open neighbourhood Vyo C W; of 0 in (7,(Y))’ such that
ozy(VyO) CW, CW C HX'H. Moreover if y € int(Y), then ozy(VyO) C int(WWy).
Thus we have the map ey : Vyo C (Ty(YV))! — Y of class p defined by e,(u) =

-1
Falt) + (000) T
Let us consider the map of class p defined by:

Ty(NIVy o)™ -1 1
peve P gy vy VD (o) T ) 22

Then we have that e, = f~ mu, To(ey) = Tf(y)(f_l). Ty (y)(m). To(pe) and
ulVy = Tpy (L9 T (OIV)).

_ gl (o ! _ (o (gl /
Therefore Ty(p) = 6 <0c1) , where ¢; = (V/, {6z Ty (), (T (Y),
My)).
On the other hand f~!7f = 1y, Tf(y)(f_l)Tf(y)(w)Ty(f) = lp,y) and

To(ey) = Tf(y)(f_l)Tf(y)(ﬂ') gl (921)_1. Hence if w € To(VyO), then

-1

Toley)(w) = Tyyy (F ) Ty (0L (02,) 7 (w)

= Ty (™) Tpi(m)o! ) (619) 1, (F)(w) = w,

where (9£<y>)_1 Ty (f)(u) = (921)_1 (w), and Ty(ey) =

T -1 gg(y) .
7 ()
Finally one has that ey(ﬁ(VyO)) C (YY) for all y € 9Y and €,(0) € int(Y) for
all y € int(Y') which, using the inverse mapping theorem, ends the proof of ¢).
d) The set Hy = Z (TyY)i is a submanifold of T(Y) and a submanifold of

y€Br(Y)

Y. LY.
y€Br(Y)

Let us consider the continuous map € : T(Y) — H defined by e(y,v) = f(y) +

-1

(9{“”) Ty (f)(v). Forall k > 0 we take an open neighbourhood G* of {(y,0)/y €
B(Y)} in Hy, such that e(G*) C HX'H.

Then there exists an open neighbourhood G¥ of {(y,0)/y € Br(Y)} in G* such

that e(G%) c Wy C HX'H, k > 0. If k = 0 there exists an open neighbourhood
GY of {(y,0)/y € Bo(Y)} in Hy such that é(G9) C intW;. Now we take the

—1. . .
(9?1) is a linear homeomorphism.
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map Ej, : G¥ — Bp(Y) x Y of class p defined by Ey(y,v) = (y, f~ 7(f(y) +
—1
(1) Ty (D)), k> 0.

From the statement c) one has that E} is a local diffeomorphism of class p at
(y,0) for all y € Br(Y), k£ > 0.

Since the map 7 : Ap,(y) — G* defined by 7(y,y) = (y,0) is a continuous
section of E}, using Godement’s Lemma we have that there exists an open neigh-
bourhood G¥% of A, (v) in By (Y) x Y and there exists a prolongation of 7 to a
continuous section, 7 : G5 — G¥, of Ej such that 7(G%) = B* is an open set of
G%. Thus By, : B¥ — G% is a bijective local diffeomorphism of class p at (y, 0) for
all y € Bi(Y), k > 0.

e) We have that p; : ¥ x Bf(0) — Y is a proper map. Hence the map y =
p1|(YXBII(D))an o (Y x Bf(0))N N/(Y) — Y is also a proper map, because of

N/ (Y) is a closed set in Y x RY.

On the other hand N/(Y) D (Y x Bf(0)) N Q4 D (Y x B1(0)) N Qa4 N
(ej0.) ' (W1) DY x {0} and from the normality of N/(Y") we have that there
exists an open set V of N/ (Y), such that (Y x B1(0)) N Q4 N (6|QA)_1(W1) D
VOV DY x{0}. Then ¢, : V — e(V) C Wi is a homeomorphism and
HX'H DW D Wi De(V)De(V)D f(Y). Again by the normality of HX'H, there
exists an open set Wy of HX'H, such that

e(VYD Wz D Wa D f(Y).
Now it is clear that T, = e|yX{0}€'yj(e|7)_1 : Wao — f(Y), where j :

(e|7)_1(W2) — (Y x B5(0)) N N/(Y) is the inclusion map, is a proper map.
(I

4. COLLAR NEIGHBOURHOOD OF J(X) IN X. EMBEDDED AND COLLARED
MANIFOLDS

Proposition 4.1
Let X be a Hausdorff paracompact Hilbert differentiable manifold of class p.
Then there is a real Hilbert space, (H,<,>) and there is a closed embedding f
of class p from X into H. Therefore the manifold X is diffecomorphic of class
p to a closed submanifold of H. Moreover, for every x € X there is an open
neighbourhood W¥ of z in X, there is a closed vector subspace H; of H and there
is a quadrant (Hl)j\'l of Hy such that f,, : W* — (Hl)j\'l is an embedding of
class p which fulfils that f(W?) is a totally neat submanifold of (Hl)j\'l, (see [2]).
O

Lemma 4.2

Let X be a Hausdorff paracompact Hilbert differentiable manifold of class p
with (X)) # ¢. Then there exists a function ¢ : X — R of class p such that

1) g(x) > 0 for all € X.
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g=1(0) = 9(X).
0*(X) =g Y (0)n{z € X/Tg = 0}. Hence T,.(g) = 0 for all z € 9?(X).

If 9%(X) = ¢, then Ty(g) # 0 for all z € (X) and Ty, jT, B1 X = ker T;:(g) =
(T, X)) for all x € By (X), where j: BiX — X is the inclusion map.

Proof

The manifold X admits partitions of unity of class p. Let us consider the atlas
A= {ci = (Ui’ v, = (\Ij?’ \Ijzl’ cee ’\Ij?l)’ (EZ X R™, (P;)jeJ,:{l,... ﬂz}))/i € I} of
class p of X, where pj» (29,21, ...  2") = 7. Then there exists a partition of unity
{0;}ier of class p in X which is subordinated to the open covering {U; }ier.

For every ¢ € I let us consider the function g; : X — R of class p defined by

o [ @) ey, Vi) if 2 €U;
9i(2) = { 6 if e & U

Then g = Zgi : X — R is a function of class p that fulfils the following
i€l
properties:

1) g(x) > 0 for all € X.

2) ¢g71(0) = 9(X). Indeed, if x € d(X) and x € U, there is j € J; such that
p;\I!Z(a:) = ¥l(z) = 0 and g;(x) = 0 and therefore g(z) = 0. If z € g=1(0), then
there is ég € I such that 6;,(x) # 0 and there is jy € J;, such that \Ilig(x) = 0.
Hence z € 0X.

3) Let  be an element of (X) and let ¢ = (U, ¥ = (¥° Wl . . ¥") (E ><
R™ (pj)jer={12,. n})) be achart of X with x € U and ¥(x) = 0, where pj(z°

Lam) = 2. Then for all jo € {0,1,2,...,n} = JU{0}, one has that 6(9:91’;(0)) =
ZJ—M’(,;I;I 9 and for all i € 1, ﬂ%QDI()ifJL‘EX—UZ’ C X —sup(f;) and

i€l

A(g¥~1(0))  0((0i-Tley, vHw1)(0)

61‘]'0 - 61‘]'0

=0:x) [ D | JI ¥ RCHLIOF IFFerA

Oz
ked; \jedi—{k} Jo

Thus if ind (z) > 2, then %ﬁl = 0 and §°X C ¢g=1(0) N C(g), where
Clg) ={z € X/Tog = 0}. ,

If # € Bi(X) and # € Uj;, there is a unique jo € J; such that ¥°(z) = 0.
Moreover J = {1}, p1(2,t) =¢ and

Mg ¥~ )(0) _ Jeoy | QT
= = 0 jejgjo}wi<x> = (0).
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Since D(¥,;¥~1)(0) is a linear homeomorphism, it holds that D(\I{g”\ll_l)(O) +
0. On the other hand ¥°¥~!(y) > 0 for all y € ¥(U N U;) and ¥°¥~1(0) =0

and therefore %;)(0) =0 and w > 0. Then we have that T,¢ # 0,
that is = € C'(g), and §*(X) = ¢=+(0) N C(g).

4) If 92(X) = ¢, then g71(0)N C(g) = ¢ or H(X)NC(g) = ¢. O

We note that the Lemma 4.2 1s also true if X is a differentiable manifold which
admits partition of unity of class p.

Corollary 4.3

Let X be a Hausdorff paracompact differentiable manifold of class p whose
charts are modelled over real Banach spaces which satisfy the Urysohn condition
of class p (In particular, X can be a Hausdorff paracompact Hilbert differentiable
manifold). Suppose that (X) # ¢ and §*(X) = ¢. Then there exists a real
Banach space (E, || ||) (or there exists a real Hilbert space (£, <,>), if X is a
Hausdorff paracompact Hilbert manifold) and there exists a closed embedding ¢
of class p from X into the quadrant £ x (RT U{0}) of E' x R such that g(9(X)) =
g(X)N(E x{0}) and g(X) is a closed totally neat submanifold of (£ x R);’Q, where
pa(z,t) = t. Moreover for all ¥ € X there is an open neighbourhood W7 of # in
X, there is a closed vector subspace F1 of E and there is a quadrant E}\T of By
such that p1g : W% — E}\T is an embedding of class p and p1g(W¥) is a totally
neat submanifold of E}\'ll'

Proof

There exists a real Banach space, (E, || [|), and there exists a closed embedding
f of class p from X into E such that for every # € X there is an open neigh-
bourhood W7 of « in X, there is a closed vector subspace E; of £ and there is a
quadrant (El)j\'l of By which fulfil that fj,. : W% — (El)j\'l is an embedding of
class p and f(W7) is a totally neat submanifold of (El)j\'l (see [2]). In particular,
there exists a real Hilbert space, (F, <, >), and there exists a closed embedding
f of class p from X into F with the same local property if X is a Hausdorff
paracompact Hilbert differentiable manifold).

From Lemma 4.2 it follows that there exists a function A : X — R of class
p such that A(z) > 0 for all z € X, A71(0) = 9(X) and T, (A) # 0 for all
z € 9(X) = A7H0) and Ty (5)T: B1(X) = ker(T:())) = 9((T:(X))?) for all = €
B1(X), where j : B1(X) — X is the inclusion map. Let us consider the map,
g=(f,A): X — Ex(RTU{0}). Obviously g is an injective map. Moreover g is a
closed map. Indeed, if C'is a closed subset of X and {g(x,) = (f(2n), A(2n)) }nen
is a sequence in g(C') which converges to (ug, ) in E x (RTU{0}), then z,, € C' for
all n € N and the sequence {f(z,)}nen converges to ug in E. Hence the sequence
{&nnen converges to g € C'in X. Thus (ug, o) = g(x0) € ¢(C) and ¢(C) is a
closed set in £ x (Rt U {0}).

Then it occurs that g : X — g(X) is a homeomorphism, ¢(X) is a closed set in
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B x (R U{0}) and g(8(X)) = ¢(X) 0 (E x {0)).

Let 2 be an element of X. Since Ty, (f) is a linear injective map and im (T, (f))
admits a topological supplement in T}, (#), we have that T} (g) =
(To(£), Tpo(A)) is a linear injective map and im (Ty,(¢)) admits a topological
supplement in T s(po),a(zo)) (£ X RT U {0})).

On the other hand ¢g=1(d((F x R);’Q)) = 9(X), and ind (v) = ind (Ty,(9)(v))
for all v € (Ty, (X))}, because of ker(T,,(A)) = (T, X)?) for all = € By(X).
Then, by Theorem 2.3 of [2], the map ¢ is an immersion at zo and therefore
g is a closed embedding of class p of X into F x (Rt U {0}) which fulfils that

g~ (E x {0)) = 9(X). O

Definition 4.4

Let X be a differentiable manifold of class p with X # ¢ and 9?°X = ¢. We
say that (f, A) is a collar neighbourhood of 9X in X of class p if A is an open
neighbourhood of (X) in X and f: 90X x (Rt U{0}) — A is a diffeomorphism
of class p such that f(z,0) =« for all x € 9(X).

Lemma 4.5

Let X be a differentiable manifold of class p which admits partitions of unity of
class p (In particular X could be a Hausdorff paracompact Hilbert manifold), let
M = {M;/i € T} be a locally finite family of subsets of X such that X = U;er M;

and ¢ = {g;}ier a family of positive real numbers. Then there exists a map
§: X — R* of class p such that §(z) < ¢; for all i € I and all x € M;. |
Theorem 4.6

Let X be a Hilbert Hausdorff paracompact differentiable manifold of class p +
1, p > 1, such that 9(X) # ¢ and §*(X) = ¢. Then there exists a collar
neighbourhood (f, A) of 9(X) in X of class p. Moreover there are a real Hilbert
space H, a closed embedding 4 : 9(X) — H of class p+ 1 and an open set A*
in NP(9(X)) such that {(y,0)/y € d(X)} C A* and e : A* — H, defined by
e(y,v) = fly) + v is a local diffeomorphism of class p at (y,0) € A* for every
y € 0X.

Proof

By Proposition 4.1, there is a real Hilbert space (H, <, >), and there is a closed
embedding g of class p+1, from X into H. Obviously, gja(x) : 9(X) = Bi(X) — H
is also a closed embedding of class p + 1.

Moreover, for every € X there 1s an open neighbourhood W< of z in X, there
is a closed vector subspace Hy of H, and there is a quadrant (Hl)j\'l of Hq, such
that g,,. : W® — (Hl)j\'l is an embedding of class p 4+ 1 which fulfils that g(W?)
Is a totally neat submanifold of (Hl)j\'l.

Then, by Proposition 3.1, we have that ¢(9(X)) is a submanifold without
boundary of H and there are an open set W of H and a map # : W — W of class
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p such that ¢g(d(X)) C W, «#(W) C g(9(X)), m g(y) = g(y) for every y € 9(X)
and 7 : W — ¢(9(X)) is a submersion of class p at every g(y) € ¢(9(X)). Thus
U =g~ ' (W) is an open set in X such that §(X) C U and r = (gja(x)) " - m.g1v :
U — 9(X) is a retraction of class p.

On the other hand, from Lemma 4.2, there exists a function « : X — RT U{0}
of class p + 1 such that o=1(0) = 9(X) and T,(a) # 0 for all z € I(X) and
To(§)(Tp(B1(X))) = ker(Tp(a)) = 6((Tx(X))Z) for all © € B1(X), where j :
B1(X) — X is the inclusion map.

Let us consider the map h = (r,app) : U — 8(X) x (Rt U{0}) of class p.
Then it is clear that h(O(U)) = h(9(X)) = [0(X)] x {0} = 9[O(X) x (RT U{0})]
and T, (h) is a linear homeomorphism for every zy € 9(X). Indeed, we have
that Toy(h) = (Toy (1), Tay (@0)) ey (U) — (Tuy(D(X))) x (To(R* U {0})) and
Too(X) = Tpo () (T (B1(X))) &1 L{v1}, where T, («)(v1) # 0. Then for every
u € Ty (X)), there exists uy € Ty, () (Ty, (O(X)) and there exists us € L{v1} such
that © = wy 4+ ug and Ty (R) = (w1 + Ty (r)(u2), Tie () (uz2)) which proves that
Ty, () is a linear homeomorphism. Thus there exists an open neighbourhood V¥°
of zg in U there exists £, > 0 and there exists an open neighbourhood W of
xo in X, such that Ay, ., : V7 — (W NI(X)) x [0,e4,) is a diffeomorphism
of class p for all g € 9(X). Clearly the map s : 9(X) x {0} — U, defined by
s(x,0) = z, is a continuous section of h and using the Godement’s lemma we have
that there are an open neighbourhood G4 of (X) x {0} in d(X) x (Rt U{0}), an
open set Uy in U with 9(X) C U; and a prolongation of s to a continuous section,
5:G1 — Uy of hyy, such that 5(G'1) = Up is an open set of Uy with 9(X) C Us.
Hence by, : Uy — Gy is a diffeomorphism of class p.

By the Lemma 4.5 there exists a function v : d(X) — RY of class p+1 such that

{x}x[0,v(x)) C Gy for every & € I(X). Then the set G5 = U {e}x[0,~v(x)) C

z€I(X)
(1 is an open set in (X ) x (R* U{0}) and the map pu : Go — 9(X) x (Rt U{0}),
defined by p(z,t) = (x, W , 18 a diffecomorphism of class p + 1 whose inverse

map is p~1(y,u) = (y, %(31’)) Thus the set A = (h|UD)_1 (G'3) is an open set
of Uy C Uy such that 9(X) C A and f* = phy4 is a diffeomorphism of class p of
A onto 9(X) x (Rt U{0}), which verifies that f*(z) = (z,0) for all z € 9(X).
Finally we take f = (f*)~*. d

Proof of Theorem A

By Theorem 4.6, there exists a collar neighbourhood (f,U) of d(X) in X of
class p. Then f(9(X) x [0,+00)) = U is an open set in X with d(X) C U and
f:0(X) x [0,400) — U is a diffeomorphism of class p such that f(x,0) = x for
every z € 9(X).

Since X is a normal topological space and J(X) is a closed set in X, there is an
open set V in X, such that X D U DV D V D d(X). Therefore (f)~'(V) is an
open set in (X)) x [0, +00) and, from Lemma 4.5, there exists a map v : (X)) —
R* of class p+ 1, such that {z} x [0,7(x)) C (f)~'(V) for every x € O(X).
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We consider the maps of class p

o U 9(X) % [0, +o00) 24 0(X),
G:0 22 0(X) % [0, +00) L2 [0, 400)

and 1 =va:U — RT.

Then it is clear that o, 3 are surjective maps, (f)~!(z) = (a(z), 3(x)) for all
x €U, Uy ={z € U/B(z) < 2ya(x)} is an open set of U, U, = { € U/B(z) <
2ya(x)} is an open set of U, Uy = {z € U/B(x) < 2ya(x)} is a closed set of
U, U; ={z € U/B(x) < Iya(x)} is a closed set of U, 9(X) C Uy C U7,9(X) C
Uy CUFCU CUFandd(X) CUy CV CV CUC X. Hence Uy, Uj are closed
sets of X and there exists amap of class p+1, p: X — [0, 1], such that u(U;) = {1}
and p(X — V) = {0} and there exists a map of class p+ 1, v : X — [0, 1] such
that v(Us) = {0} and v(X —Uy) = {1}.

Let us consider the map 7: X — [0, 4+00) of class p, defined by

_ ) p@)Bx)+v(x) if xeU
T(l‘)—{y(l‘) if zeX-U,

the open set of U, U’ = {z € U/B(x) < $ya(z)} and the open set of (X) x
[0, +00), Wi = {(x,t) € d(X) x [0,400)/t < $¥(2)}. Then we have that I(X) C
U/ C U2 C U1 C U, 8(X) X {0} C Wl, T(a(X)) = {0}, T|U’ = 6|U’a T|X_V:V|X—V
and 7 is a submersion at # for every z € 9(X).

Hence T3 (j)T5(0(X)) = ker(Ty(7)) for every x € 9(X), where J IX)— X
is the inclusion map. Moreover T, (j)T:(0X) = (T X)° = 0(T, X)) = ker (T, (7))
for every x € 9(X).

On the other hand €} = {(2,t) € 3(X) x [0,400)/t < 27(2)} and O = {(, )
€ 9(X) x [0,+0) /g’y(x) <t< %'y(x)} are disjoint closed sets of 9(X) x [0, +00)

such that 0(X) x {0} C C;, C1 C Wi and Ch= {(z,t) € 9(X) x [0,40)/t <
(@)}

There is a map r : [0,%] — [0,1] of class oo such that r(t) = 0 for every
te0,1], r(t)=1forallt € [3, 1] and r(t;) < r(ts) for all t,t5 € (1/4, 3/8) with
1 < 1.

Let us consider the map @ : Wy — [0, 1] defined by ®(x,t) = (%) Then

we have that ® is a map of class p+ 1, ®=1(0) = C1, ®~1(1) = 2 N Wi and
O(x,t1) < P(x,t2) for every (z,11), (=, tz) € Wy with 41,15 € (%'y(l‘) ¥(z)) and
t; < ta. Hence for every z € 9(X), @, : (47( z), S’y( z)) — (0,1) is a bijective

map.
Now we consider the map u : W7 — 9(X) x [0,400) of class p + 1, defined by
u(z,t) = (z,t.9(x,1)) and the map, ¢ : X — X, defined by

q(x):{ iu(f) (x) ; i;g/cvzcm
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(Note that for every x € U’, (f)~'(x) = (a(x), B(x)) € W1). Since the set C' =
{x e U/B(x) < 3ya(x)} CUF C Visaclosedset of X, C CU', X = U'U(X=C)
and f(a(x), 8(x)®(a(x), () = fla(x),5(x)) = x for every x € U' N (X = C),
we have that ¢ is a map of class p.

By Proposition 4.1, there exists a real Hilbert space (H,<,>) and there exists
a closed embedding & of class p + 1, from X into H. Let g be the map of class
p, g =(hq,7): X — H x [0, 400).

Then the map ¢ has the following properties:

a) g(0X) = g(X) N (H x {0}),0(X) = 7710).

b) g o (pley) = ((Proglace)) X Lo +00))le,
and h(z) = p1g(x) for all x € 9(X). Indeed, for all (z,t) € Cy, we have that

ﬁf(x,t) =t< %'y(l‘) < %'ya(f(x,t)),f(x,t) € U’ and

gf(x,) = (hqf(x, 1), 7f(x, 1)) = (hfu(x, 1), Bf(x,1))
= (hf(x,0),t) = (h(x),1) = (prg(x),1) .

In particular gf(z,0) = g(x) = (h(x),0) for every x € d(X).

¢) The map ¢ is an injective map. Indeed,

1) For ally ¢ X — {x € U/B(x) < %’ya(r)} = M, we have that g(y) =
(hq(y), 7(y)) = (h(y), 7(y)).

2) For every y € {z € U/4'yoz(x) < B(x) < %’ya(r)} = M, we have that
9(y) = (hfula(y), A), ).

3) For every y € {z € U/B(x) < %’ya(r)} = M3 C U’ it occurs that g(y) =
(ha(y), 7(y)) = (hfu(f)~H(y), 7(v) = (haly), B(y)).

Obviously X = My U My U M3z and My, M3 are closed sets of X. Let x,y be
elements of X with « # y such that g(z) = g(y).

e1) Wa,y € My, then g(x) = (h(x), 7(x)) = (h(y), 7(y)) = ¢9(y) and h(z) = h(y)
which is a contradiction.

o) ifw € My and y € {z € U/B(2) < %:yoz(z)}, then g(x) = (h(x), 7(x)) and
9(y) = (ha(y), B(y)) if y € Ms or g(y) = (hfu(a(y), (), By)) if y € M>.

In the first case # = a(y) € I(X) which is a contradiction. In the second case
we have that © = f(a(y), B(y)®(a(y), B(y)) which implies that a(z) = a(y) and
Sva(z) < B(x) = By)@(aly), By)) < By) < 2va(y) which is a contradiction.

e3) If e,y e {z e U/B(2) < 87(1( z)}, then B(x) = B(y) and it happens that
ha(z) = ha(y) if 2,y € Ms, fu(a(z),B(x)) = fula(y), B(y)) if 2,y € My and

a(w) = Fu(aly), Bw) = F(s), B)@(aly), Ay)) if ¢ € My and y € Ma. Al
these cases give us that o(#) = a(y), which is a contradiction.

d) The map ¢ : X — ¢(X) is a homeomorphism and g(X) is a closed set of
H x [0, 4+00).

Indeed,

d1) The map g5, : M1 — g(M1) is a homeomorphism whose inverse map is
o) = h_1p1|g(M1). Indeed, we note that p1g(My) = h(My),prg(x) = h(x) for
all z € My and aig(z) = ai(h(z), 7(z)) = h=th(z) = z for every x € M; and
gn(3,1) = ga1g(:) = gas(h(2), 7(2)) = 9(=) = (3,1) for all (1) € g(M).
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dz) The map g, : M3z — g(Ms) is a homeomorphism whose inverse map
Is ag = f(9_1)|g(M3) : g(M3) — Ms, where 0 = <h|a(X)X1[0’+OO))|c1 O —
(h|a(X)f1[0,+oo)) (C1). Indeed, we mnote that g(M3) C 6(Cy) fO'g(M3) =
Ms, f0=tg(x) = x for every x € M3, ¢f0~tg(z) = g(z) for all z € M3 and
f0~tg(x) = x for every x € Ms.

d3) Let My be the closed subset of X, {x € U/%'ya(x) < Bx) < %’ya(r)} cu.
Then the map g|,,, : M5 — g(MJ) is a homeomorphism.

Indeed, we have that the map u, : [%'y(l‘), %’y(m)] — [0, %’y(r)] is a bijective
map for every x € 9(X), the map uj., : C3 = {(y,t) € 9(X) x [0,—1—00)/%7(3/) <
t < %'y(y)} — (% is a homeomorphism, where

i} 3
C3 ={(y,1) € 9(X) x [0, +00)/t < g'y(y)} cC W,
prg(M3) C im (h), My C U h= prg(M3) Cc U C U, (f) " *h™tprg(M3) C C3,

W) TR pg(ME) € Cs € Wh, F(Cs) € M3

and fu='(f)"*h~'p1g(M3) C Mj. Thus the inverse map of Iins is the continuous
map fu™t fT AT prygoars.

dy) g(My), g(Ms), g(M3) are closed sets of H x [0, +00) and therefore g(X) =
g(M1) U g(M3)U g(M3) is a closed set and g : X — ¢(X) is a homeomorphism.

e) The map T (g) : To(X) — Tye)(H x [0,400)) is an injective map, for every
reX.

e1) First we note that My = {a € U/B(z) > 3ya(z)} and that the map
A:0(X) x [0,400)) — R, defined by A(y,t) = —t + %'y(y), is a map of class p+ 1
such that /\_1(0) (0(X) x {0}) = ¢ and T(, y(A) # 0 for every (z,t) € A=1(0).
Then the set A™1((—o0, 0]) is a closed submanifold of class p+1 of 9(X) x [0, +00)
such that d(A71((—o0,0])) = A=H0) U (((X) x {0}) N A7 ((=00,0))) = A7L(0).
But A~ ((—50,0]) = {(5,1) € B(X) x [0, +20)/t > S(y)} and [A~ ((~o0,0]) =
{e € U/B(z) Z Sya(x )} = M;. Hence it follows that M; is a submanifold of
class p 4+ 1 of X such that d(My) = f(O(A"1((—o0,0]))) = F(ATL(0)) = {z €
U/B(x) = 3vya(x)}, int(My) = {x € U/B(x) > Zva(x)} is an open set of X and
T(j) : To (M) — T (X) is a bijective map for every € My, where j : M} — X
1s the inclusion map.

Moreover for every y € M it occurs that g(y) = (h(y), 7(y)), Ty(g|ar,) is an
injective map and 7y (g) is an injective map.

e2) I y € My, then g(y) = (hfu(f)~ (), B(y)).

On the other hand Uy, :6’3—>é’3 is a diffeomorphism of class p + 1 and

C3
(F)~ Y (M) = 6’3. Therefore T, (g) is an injective map for all y € M.
e3) We have that M3 is a submanifold of class p+ 1 of X such that 9(Ms) =
{ € U/B(z) = 3va(x)} and int(Ms) = {z € U/B(x) < Lya(z)} is an open set of
X. Then for every # € Mz, Ty(j) : To(Msz) — Tp(X) is a bijective map, where
j : M3 — X is the inclusion map. Moreover (f)~'(M3) = C; and for every y € M3



EMBEDDING OF HILBERT MANIFOLDS ... 163

it occurs that g(y) = (ha(y), 5(y)) = (h|a(X)x1[07+oo))|Cl(f)_l(y), Ty(9)nm,) is an
injective map and 7y (g) is an injective map.

Then using the formula T, ()7, (0X) = (T:X)? = 0((Tx X)*) C ker T,,(7) for
every z € 9(X), we have that ind(v) = ind (T;:(g)(v)) for every v € (T, X)" and
all z € X and ¢ 1s an immersion of class p. Hence g is a closed embedding of class
p.

Lastly it is straighforward to check that for every « € f(Co’l) Ti(X)=Hy xR,
where H is closed linear subspace of H. Hence NJ(X) C H x {0} for every

z € F(Ch). 0

Proposition 4.7

Let f: X — X be a differentiable map of class p such that f.f = f. Suppose
that f(9(X)) C 9(X) and ker(Ty,(f)) C (Ti,X)* for every o € f(X) N I(X).
Then we have that:

1) f is asubimmersion at every zg € f(X), i.e. f localizes as a linear continuous
map whose kernel and image admit topological supplements.

2) f(X) ={z € X/f(x) = z} is a totally neat submanifold of class p of X.
Moreover, if X is a Hausdorff manifold, then f(X) is a closed set of X (see [7]).

Proof of Theorem B

a) = b). From 4.7 we have that there are a real Hilbert space (H, <, >), a closed
embedding ¢ : X — H x [0,400) of class oo with ¢(9(X)) = ¢(X) N (H x {0}),
a collar neighbourhood (f, A) of 9(X) in X of class oo and an open set GG in
9(X) x [0,400), such that 9(X) x {0} C G, ((Plg|a(X)) X 1[07+00))|G = glao f/G,
f(G) = Gy is an open set in X with (X)) C Gy and for every # € Gy, NJ(X) C
H x {0} =(H x R);,

Using 3.1 we have that there is an open set Q of A C N9(X), with X x {0} C Q
and there is an open set W of H x [0, +00), with ¢(X) C W such that ¢ : @ — W
is a diffecomorphism of class oo and e.§ = ¢, where £ : X — N9(X) is defined by
E(y) = (y,0), A is an open set of NI(X) with (2,0) € A for every € X and
e:A— H x [0, +00) defined by e(x,v) = g(x) + v is a local diffeomorphism of
class oo at (z,0) € A for every z € X.

Moreover the map 7 : W — W defined by 7 = efplm(em)_l is a map of class
oo such that (W) = g(X), (A1) C A(g(X)) = 9(0(X)) = ¢(X) 1 (H x {0})
and wg(z) = g(x) for all z € X.

Lastly the map m : W — ¢(X) is a submersion of class oo at every g(z) € g(X).

Let (zo,ty) € W such that m(zg,t0) € (W). Then w(xo,t0) = (¥o,0),
(em)_l(xo,to) = (#1,u1,v1) w(xo,t0) = g(x1) and z1 € (X)), (xo,t0) = g(z1) +
(u1,v1), (u1,v1) € N{ (X)), (30,0) € g(G).

Let us consider open neighbourhoods V¥ C Gq1,Vs C R, V¥ C H and V° C
[0, +00) such that V¥ x VO C W, V2 C VY, N9(X)n (V™ x BE(0) x V) C ©,

G).

VI gy C BI,(0) and [V¥ N pi(g(@(X)] x VO C g(V=) C g(Ga) = g
Then if (y,t) € V¥ x VY we have that (y,0) € d(W), w(y,0) € g(d(X))
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§(X) (1 (H  {0}) and 7(3,0) = gl2) = (mg1acx) * 1po.400))(#2,0) = (prg(2),0)
with x4 € d(X). Since 7(yo,0) = (yo,0), there are open neighbourhoods V,’°
VP C [0, +00) such that m(VY° x V%) C V¥ x V? and V¥° x V> C V¥ x VO,
Now, if (y,t) € V¥ x V| then pig(x2) € V¥ N p1g(d(X)), (prg(x2),t) €
§(V1), (prg(2),0) = (=) with = € V7, g(2)+(0,2) = (=) and (3,0) = g(e2)+
(u,0), where (eja)™(y,0) = (22, (u,0)), 7(y,0) = g(x2) and (u,0) € NZ (X).
Hence (y,€) = (3,0) + (0,0) = g(e2) + (1,0) + (0,1) = (=) + (4, 0). On the
other hand, from the formula g. fj¢ = (p1g|a(X) X 10,400 ))|G, it 1s stralghtforward
to check that 79 (X) =T/(X) and therefore NJ (X) = NJ(X), (u,0) € NI(X),

(7,(u,0)) € N9(X), prg(x2) +u=y, u=(y— yo) (p1g(xz) Yo), [ly—wo lI< 5,
| prg(z2) — yo ||< €/2 and || u [|< €. Finally u € B¥(0), (z,u,0) € Q,7(y,t) =
g(2) = (p1g(x2),1t) and ker(Dn(yo,0)) C H x {0}.

b) = a) By 4.8, »(U) is a totally neat submanifold of class oo of U, which is
homeomorphic to X. Thus X admits a Hilbert differentiable structure of class oo

with 9(X) # ¢ and 9*(X) = ¢.
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