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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 145 { 164EMBEDDING OF HILBERT MANIFOLDS WITH SMOOTHBOUNDARY INTO SEMISPACES OF HILBERT SPACESJ. Margalef-Roig and E. Outerelo-Dom��nguezAbstract. In this paper we prove the existence of a closed neat embeddingof a Hausdor� paracompact Hilbert manifold with smooth boundary intoH � [0;+1), where H is a Hilbert space, such that the normal space ineach point of a certain neighbourhood of the boundary is contained in H �f0g. Then, we give a neccesary and su�cient condition that a Hausdor�paracompact topological space could admit a di�erentiable structure of class1 with smooth boundary. 0. IntroductionA generalization of Whitney's embedding theorem was given by J. Mc Alpinon 1965 [1] and [8]: \Every separable Cr{manifold without boundary modeledon a separable Hilbert space can be Cr{embedded as a closed submanifold of aseparable Hilbert space".On 1970 J. Eells and K.D. Elworthy [4] proved the following immersion theorem:\Let E be a C1{smooth Banach space of in�nite dimension, with a Shauderbase. Suppose that X is a separable metrizable C1{manifold without boundarymodeled on E. If X is parallelizable, then there is a C1{embedding of X onto anopen subset of E".The purpose of this paper is to study embeddings in case that the in�nitedimensional manifolds have boundary. We shall prove the following two theorems:Theorem ALet X be a Hausdor� paracompact di�erentiable manifold of class p+ 1; p � 1.Assume that X is a Hilbert manifold such that @(X) 6= � and @2(X) = �. Thenthere are a real Hilbert space H, a closed embedding g : H ! H � [0;+1) ofclass p with g�1(X � f0g) = @(X), a collar neighbourhood (f;A) of @(X) inX of class p and an open set G of @(X) � [0;+1) such that @(X) � f0g � G,gf(x; t) = (p1g(x); t) for every (x; t) 2 G, f(G) = G1 is an open set in X with1991 Mathematics Subject Classi�cation : 57R40, 58C25, 58B10.Key words and phrases: neat embedding, Hilbert manifold, manifold with smooth boundary,normal bundle manifold, collar neighbourhood.Received April 3, 1992.



146 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZ@(X) � G1 and N gx (X) � H � f0g for every x 2 G1, where N gx (X) is the normalspace of g at x.Theorem BLet X be a Hausdor� paracompact topological space. The following statementsare equivalent:a) X admits a Hilbert di�erentiable structure of class 1 with @(X) 6= � and@2(X) = �.b) There are a real Hilbert space H, an open set U of H � [0;+1) withU \ (H � f0g) 6= � and a map r : U ! U of class 1 such that r � r = r,r(@(U )) � @(U ), ker(D(r)(x)) � H � f0g for every x 2 r(U ) \ @(U ) andr(U ) is homeomorphic to X.1. PrerequisitesAlong this paper manifolds may have boundary if otherwise is not speci�ed.Terminology and notation can be found in [6] but we explain here some of them.Let E be a real Banach space and � a �nite linearly independent system ofelements of L(E;R). Then the quadrant fx 2 E=�(x) � 0 for all � 2 �g will bedenoted by E+� and the closed linear subspace fx 2 E=�(x) = 0 for all � 2 �g byE0�.If X is a manifold, a chart of X will be denoted by (U;'; (E;�)), where U isthe domain of the chart, ' is the morphism, E is the model space, ' : U ! E+�is injective and '(U ) is an open set of E+� . For instance (E;�E; E) is the naturalchart of E and (E+� ; j; (E;�)) is the natural chart of E+� , where j is the inclusionmap.Let E+� be a quadrant, U an open set of E+� and x 2 E+� . Then we call indexof x and denote ind(x), the cardinal of the set fi=�i(x) = 0; �i 2 �g. The setfy 2 U j ind(y) � 1g will be called boundary of U and denoted @(U ). The setfy 2 U / ind(y) = 0g will be called interior of U and denoted by int(U ), the setfx 2 U= ind(x) = kg will be denoted by Bk(U ) and the set fx 2 U= ind(x) � kgwill be denoted by @k(U ), where k 2 N [f0g. From the local boundary invariancetheorem we can de�ne, in a natrual way, the index and the boundary of manifolds.If X is a manifold and a 2 X, we take the set f(c; v)=c = (U;'; (E;�)) is achart of X with a 2 U and v 2 Eg and we consider the binary relation, �, on thisset de�ned by: (c; v) � (c0; v0), D('0'�1)('(a))(v) = v0:Then this relation is an equivalence relation and the quotient set will be denotedby Ta(X).Let c = (U;'; (E;�)) be a chart of X and a 2 U . It is clear that the map�ac : E ! Ta(X) de�ned by �ac (v) =� ((c; v)) is a bijective map. The classof equivalence � ((c; v)) will be also denoted by [(c; v)]. Via the map �ac thespace Ta(X) becomes a real Banach space that will be called tangent space of Xat a and �ac becomes a linear homeomorphism. Moreover if c = (U;'; (E;�)),



EMBEDDING OF HILBERT MANIFOLDS : : : 147c0 = (U 0:'0; (E0;�0)) are charts of X with a 2 U \U 0, then (�ac0 )�1 �ac = D('0'�1)('(a)).If f : X ! X0 is a map of class p and a 2 X, it is clear that there is aunique continuous linear map Ta(f) : Ta(X) ! Tf(a)(X0) such that for everychart c = (U;'; (E;�)) of X at a and every chart c0 = (U 0; '0; (E0;�0)) of X0 atf(a), it holds Ta(f) = �f(a)c0 D('0f'�1) ('(a))(�ac )�1.If X is a manifold of class p we denote by T (X) the set f(x; v)=x 2 X, v 2Tx(X)g and by �X the map �X : T (X) ! X de�ned by �X (x; v) = x. Then forevery chart c = (U;'; (E;�)) of X, the triplet dc = (��1X (U ), 'c; (E �E;�p1)) isa chart of T (X) where the map 'c : ��1X (U ) ! E � E is de�ned by 'c((x; v)) =('(x); (�xc )�1(v)). In this way we obtain an atlas for T (X) and T (X) with thisdi�erentiable structure will be called tangent bundle manifold of X.Let X be a manifold of class p and x 2 X. A curve of class r on X with originx; 0 � r � p, is a map � : [0; a)! X of class r such that �(0) = x.If � is a curve of class r on X (1 � r � p) with origin x de�ned on [0; a), thenthe element of Tx(X) de�ned by T0(�)�0c0(1), where c0 = ([0; a); i; (R; 1R)) is thenatural chart of [0; a) is called tangent vector to � at 0 and denoted _�(0). Wenote that if c = (U;'; (E;�)) is a chart of X at x, then _�(0) = T0(�)�0c0 (1) =�xcD('�)(0)(1) = �xc limt!0+ '�(t) � '�(0)t = �xc ('�)0(0), where �0c0 : R! T0([0; a))and �xc : E ! Tx(X) are the natural linear homeomorphism.If v is a tangent vector of X at x given by a curve � : [0; a)! X of class 1 onX with origin x, i.e. _�(0) = v, then we shall say that v is an inner tangent vectorat x. The set of the inner tangent vectors at x will be denoted by (TxX)i. It holdsthat TxX = L((TxX)i), where L is the linear operator.If c = (U;'; (E;�)) is a chart of X such that x 2 U and '(x) 2 E0�, then�xc (E+� ) = (TxX)i = (TxX)+�0 , where �0 = �(�xc )�1.Let X be a manifold of class p and X 0 a subset of X. We say that X 0 is asubmanifold of class p of X if for every x0 2 X 0 there are a chart c = (U;'; (E;�))of X with x0 2 U and '(x0) = 0, a closed linear subspace E0 of E that admits atopological supplement inE and a �nite linearly independent system �0 of elementsof L(E0; R) such that '(U \X0) = '(U ) \E0+�0 and this set is open in E0+�0 .We say that the submanifold X 0 is a totally neat submanifold if indX0 (x0) =indX(x0) for every x0 2 X 0.If only @(X0) = @(X) \X0 we say that X 0 is a neat submanifold.Let (E;<;>E); (F;<;>F ) be real Hilbert spaces and u : E ! F a linear con-tinuous map. Then there is a unique map u� : F ! E such that < u(x); y >F=<x; u�(y) >E for every x 2 E and y 2 F . The map u� will be called adjoint operatorof u. This operator has the following properties:1) u� : F ! E is a linear continuous map and ku�k = kuk.2) The map � : L(E;F )! L(F;E) de�ned by �(u) = u� is a linear homeomor-phism which is also an isometry.3) u�� = u for all u 2 L(E;F ).4) If G is a real Hilbert space and v : F ! G is a linear continuous map, then



148 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZ(v:u)� = u�:v�. If E = F , then 1�E = 1E . Therefore if u 2 L(E;F ) is an invertibleoperator, then u� is also an invertible operator and (u�)�1 = (u�1)�.5) If (E;<;>) is a real Hilbert space, F is a closed linear subspace of E andu : E ! E is a linear homeomorphism, then (u(F ))? = (u�)�1(F?).Lemma 1.1 (R. Godement)Let U;M be Hausdor� topological spaces, g : U !M a local homeomorphism,X a closed set of M and s : X ! U a continuous section of g, i.e. gs = 1X .Suppose that g(U ) is a Hausdor� paracompact space. Then, there exists an openneighbourhood W of X in M and there exists a prolongation of s to a continuoussection, �s :W ! U , of g such that �s(W ) = U0 is an open set of U: �Corollary 1.2Let Y and Y 0 be Hausdor� di�erentiable manifolds, f : Y ! Y 0 a di�erentiablemap of class p and X a closed subset of Y 0. Suppose that:1) Y 0 is a Hausdor� paracompact space.2) There exists a continuous map, s : X ! Y , such that fs = 1X3) For every x 2 X, f is a local di�eomorphism of class p at s(x).Then there exists an open set U0 of Y and there exists an open set W of Y 0 withX � W such that fjU0 : U0 !W is a di�eomorphism of class p and s = (fjU0)�1jX :�2. The normal bundle manifold of an immersion which ranges over aHilbert space.Proposition 2.1Let (H;<;>) be a real Hilbert space, Y a di�erentiable manifold of class p +1; (p � 1), and f : Y ! H an immersion of class p+1. For every y 2 Y let us con-sider the sets T fy (Y ) = ��f(y)c ��1 Ty(f) Ty(Y ) � H, where c = (H; 1H;H) is thenatural chart ofH and �f(y)c : H ! Tf(y)(H) is the natural linear homeomorphism,and N fy (Y ) = fz 2 H= < z; u >= 0 for every u 2 T fy (Y )g = [T fy (Y )]? � H. Nowwe take the sets T f (Y ) = Xy2Y T fy (Y ) = f(y; v) 2 Y �H=v 2 T fy (Y )g � Y �H andN f (Y ) = Xy2Y N fy (Y ) = f(y; v) 2 Y �H=v 2 N fy (Y )g � Y �H.Then we have that:a) T f (Y ) and N f (Y ) are closed totally neat submanifolds of class p of Y �H; (N f (Y ) will be called normal bundle manifold of f). In particular @(T f (Y )) =T f (Y ) \ [@Y �H] and @(N f (Y )) = N f (Y ) \ [@Y �H].Moreover the map ` : T (Y )! T f (Y ), de�ned by`(y; v) = (y;��f(y)c ��1 Ty(f)(v)) ;



EMBEDDING OF HILBERT MANIFOLDS : : : 149is a di�eomorphism of class p from T (Y ) onto T f (Y ).b) The maps �1 : T f (Y ) ! Y; �2 : N f (Y ) ! Y de�ned by �1(y; u) =y; �2(y; u) = y are submersions of class p.c) The maps P : Y � H ! T f (Y ) and Q : Y � H ! N f (Y ) de�ned byP (y; v) = (y; pTfy (Y )(v)), Q(y; v) = (y; pNfy (Y )(v)), where pTfy (Y ) is the orthogonalprojection of H onto T fy (Y ) and pNfy (Y ) is the orthogonal projection of H ontoN fy (Y ), (we note that H = T fy (Y ) �T N fy (Y ) and v = pTfy (Y )(v) + pNfy (Y )(v)),are maps of class p such that P:P = P; Q:Q = Q and p2Q = p2 � p2P , wherep2 : Y �H ! H is the 2{projection.d) T f (Y ) �Y N f (Y ) = f((y; u); (y; v))=(y; u) 2 T f (Y ); (y; v) 2 N f (Y )g is asubmanifold of class p of T f (Y )�N f (Y ) and it is also a submanifold of class p of(Y �H)� (Y �H).e) The map � : T f (Y )�Y N f (Y )! Y �H de�ned by �((y; u); (y; v)) = (y; u+v) is a di�eomorphism of class p whose inverse is ��1(y; v) = (P (y; v); Q(y; v)).Therefore, T f (Y ) and N f (Y ) are closed submanifolds of Y �H.f) If @(Y ) = �, then the map e : N f (Y ) ! H of class p de�ned by e(y; v) =f(y) + v is a local di�eomorphism of class p at (y; 0) 2 N f (Y ) for every y 2 Y .Proofa) Let y0 be an element of Y . Since f is an immersion of class p+1 at y0, thereis a chart c1 = (U; �; (E;�)) of Y with y0 2 U and �(y0) = 0 and there is a chart�c = (V;	;H) of class p+ 1 of (H;<;>) with 	f(y0) = 0 and f(U ) � V such thatE is a closed linear subspace of H (hence it admits a topological supplement inH); �(U ) � 	(V ) and 	fjU��1 = j : �(U ) ,! 	(V ) is the inclusion map.Then we have thatT fy (Y ) = ��f(y)c ��1 Ty(f)Ty (Y ) = ��f(y)c ��1 �f(y)�c D(	f��1)(�(y)) ��yc1��1 Ty(Y )= ��f(y)c ��1 �f(y)�c (E) = D(	�1) (	f(y))(E)for every y 2 U and therefore D	(f(y))(T fy (Y )) = E for every y 2 U . We notethat Ty(f) is an injective map and im(Ty(f)) admits a topological supplement inTf(y)(H).Let � : U ! GL(H) � L(H;H) be the map of class p de�ned by �(y) =D	�1(	f(y)) and let G be the orthogonal space of E in (H;<;>), (G = E?).Since the map � : GL(H) ! GL(H) de�ned by �(u) = u�1 is a map of class1, then the map ��1 : U ! GL(H) de�ned by ��1(y) = (�(y))�1 = D	(f(y)) isa map of class p. On the other hand the map � : L(H;H)! L(H;H) de�ned by�(u) = u� is a linear continuous map and therefore is a map of class 1. Moreover�(GL(H)) = GL(H) and (u�)�1 = (u�1)� for every u 2 GL(H). Thus the maps�� : U ! GL(H)) and (��)�1 : U ! GL(H) de�ned by ��(y) = (�(y))� and(��)�1(y) = (��(y))�1 = ((�(y))�1)� are of class p.Let us consider the map of class p



150 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZ� : �(U )�H ! �(U )�Hde�ned by �(z; v) = (z; �(��1(z))(pE(v))+(��)�1(��1(z))(pG(v))), where pE ; pGare the orthogonal projections of H over E and G respectively.Then for every z 2 �(U ) the induced map �z : H ! H is a linear homeomor-phism. Since��(��1(z))(E)�? = hT f��1(z)(Y )i? = (��)�1(��1(z))(G) = N f��1(z)(Y ):It is clear that � is a bijective map of class p,D�(z; v)(w; u) = (w;D1(p2�)(z; v)(w) +D2(p2�)(z; v)(u));D2(p2�)(z; v)(u) = �z(u); D�(z; v) is a linear homeomorphism for every (z; v) 2�(U ) �H and �(@(�(U ) �H)) = @(�(U ) � H). Hence � is a di�eomorphism ofclass p and��1(z; u) = (z; (�(��1(z)))�1p�(��1(z))(E)(u) + ��(��1(z))p(��)�1(��1(z))(G)(u))= (z; (�(��1(z)))�1pTf��1(z)(Y )(u) + ��(��1(z))pjNf��1 (z)(Y )(u)) :Then we can take the chart c� = (U �H;��1(��1H) = ��; (E�H;�p1)) of classp of Y �H and we have that ��((U �H) \ T f (Y )) = ��(U �H) \ (E+� � E) =�(U ) � E; ��((U � H) \ N f (Y )) = ��(U � H) \ (E+� � G) = �(U ) � G and��(U �H) = �(U )�H.Thus we have that T f (Y ) and N f (Y ) are submanifolds of class p of Y �H andc�1 = ((U �H)\T f (Y ); ��1 = ��j(U�H)\Tf (Y ) ; (E�E;�p1)) is a chart of T f (Y ) andc�2 = ((U �H)\N f (Y ); ��2 = ��j(U�H)\Nf (Y ) ; (E�G;�p01)) is a chart of N f (Y ). Itis clear, using these charts, that T f (Y ) and N f (Y ) are totally neat submanifoldsof Y �H.b) and c) are easily checked by localization.d) We take the charts c�1 and c�2 constructed in the statement a). Then c�1�c�2 =(S = ((U�H)\T f (Y ))�((U�H)\N f (Y )); ��1���2; ((E�E)�(E�G);�p�1[�p�3))is a chart of T f (Y ) � N f (Y ), H0 = f(u; v); (u;w))=u 2 E; v 2 E; w 2 Gg is aclosed linear subspace of (E�E)� (E�G) that admits topological supplement in(E�E)� (E�G) and �(p�1jH0) is a �nite linearly independent system of elementsof L(H0; R). Since (��1 � ��2)(S \ (T f (Y ) �Y N f (Y ))) = (��1 � ��2)(S) \H 0+�p�1jH0and H0+�p�1jH0 � [(E � E) � (E � G)]+�p�1[�p�3 , it happens that T f (Y ) �Y N f (Y )is a submanifold of class p of T f (Y ) � N f (Y ) and it is also a submanifold of(Y �H)� (Y �H).e) It is clear that � is a bijective map of class p and ��1 = (P;Q). Moreover,from c) and d), ��1 is a map of class p, hence � is a di�eomorphism of class p.



EMBEDDING OF HILBERT MANIFOLDS : : : 151f) We have that (y0; 0) 2 (U �H)\N f (Y ) and (ej(U�H)\Nf (y)) (���12 j'(U)�G) =
, where 
(z; u) = (��(��1(z)))�1(u) + 	�1(z).SinceD
(0; 0)(u1; u2) = D(	�1)(0)(u1)+(��(y0))�1(u2) = �(y0)(u1)+(��(y0))�1(u2) ;D
(0; 0) : E � G ! H is a linear homeomorphism and therefore e is a localdi�eomorphism of class p at (y0; 0) 2 N f (Y ), because of @(N f (Y )) = �.In fact we have the more general situation:Proposition 2.2Let (H;<;>) be a real Hilbert space, �H a �nite linearly independent sys-tem of elements of L(H;R), Y a di�erentiable manifold of class p + 1; (p �1); f : Y ! H+�H an immersion of class p + 1, c = (H+�H ; 1H+�H ; (H;�H))the natural chart of H+�H and c0 = (H; 1H;H) the natural chart of H, (We notethat jf : Y ! H is also an immersion of class p + 1, where j : H+�H ,! His the inclusion map, ��f(y)c ��1 Ty(f) = ��f(y)c0 ��1 Ty(jf) for every y 2 Y andTy(f)(TyY )i � �Tf(y) �H+�H��i for every y 2 Y ). For every y 2 Y let us considerthe sets T fy (Y ) = ��f(y)c ��1 Ty(f)Ty (Y ) � H and N fy (Y ) = [T fy (Y )]? � H, (Wenote that �f(y)c : H ! Tf(y) �H+�H� is the natural isomorphism, Ty(f) is an injec-tive map, N fy (Y )�T T fy (Y ) = H; ��f(y)c ��1 Ty(f)[Ty(Y )]i = [T fy (Y )]+My for everyy 2 Y , where [T fy (Y )]+My is a quadrant of T fy (Y ); ��f(y)c ��1 �Tf(y)H+�H�i = H+�Hfor every y such that f(y) 2 H0�H and T fy (Y ) � H0�H for every y 2 int (Y ) suchthat f(y) 2 H0�H ).Now we take the sets T f (Y ) = f(y; v) 2 Y � H=v 2 T fy (Y )g � Y � H andN f (Y ) = f(y; v) 2 Y � H=v 2 N fy (Y )g � Y � H, (Of course we have thatT fy (Y ) = T jfy (Y ); N fy (Y ) = N jfy (Y ); T f (Y ) = T jf (Y ) and N f (Y ) = N jf (Y )).Then we have that:a) T f (Y ) and N f (Y ) are closed totally neat submanifolds of class p of Y �H.Moreover the map ` : T (Y )! T f (Y ) de�ned by `(y; v) = (y; ��f(y)c ��1 Ty(f)(v))is a di�eomorphism of class p from T (Y ) over T f (Y ).b) The maps �1 : T f (Y ) ! Y; �2 : N f (Y ) ! Y de�ned by �1(y; u) =y; �2(y; u) = y are submersions of class p.c) The maps P : Y � H ! T f (Y ) and Q : Y � H ! N f (Y ) de�ned byP (y; v) = (y; pTfy (Y )(v)), Q(y; v) = (y; pNfy (Y )(v)) are maps of class p such thatP:P = P; Q:Q = Q and p2Q = p2�p2P , where p2 : Y �H ! H is the 2{projection.d) T f (Y ) �Y N f (Y ) = f((y; u); (y; v))=(y; u) 2 T f (Y ); (y; v) 2 N f (Y )g is asubmanifold of class p of T f (Y )�N f (Y ) and it is also a submanifold of class p of(Y �H)� (Y �H).



152 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZe) The map � : T f (Y )�Y N f (Y )! Y �H de�ned by �((y; u); (y; v)) = (y; u+v) is a di�eomorphism of class p whose inverse is ��1(y; v) = (P (y; v); Q(y; v)).Therefore T f (Y ) and N f (Y ) are closed submanifolds of Y �H.f) Suppose that @(Y ) = f�1(@ �H+�H�) and that there is an open neighbourhoodG of @(Y ) in Y and there is an open neighbourhood V 0 of 0 in H, such that[V 0 \ N fy (Y )] + f(y) � H+�H for every y 2 G and [V 0 \N fy (Y )] + f(y) � @H+�Hfor every y 2 @Y .Then there is an open neighbourhood A of f(y; 0)=y 2 Y g in N f (Y ) suchthat the map e : A ! H+�H of class p de�ned by e(y; v) = f(y) + v is a localdi�eomorphism of class p at (y; 0) 2 A for every y 2 Y .g) If @(Y ) = f�1(@(H+�H )), thenTy(f)(TyY )i � �Tf(y) �H+�H��i = K; Ty(f)(@(Ty (Y ))i) � @(K)and Ty(f) (int ((Ty(Y ))i)) � int (K) for every y 2 Y: �3. Closed embeddings into Hilbert spaces. Tubular neighbourhoods.Proposition 3.1Let (H;<;>) be a real Hilbert space, �H a �nite linearly independent systemof elements of L(H;R), Y a di�erentiable manifold of class p+ 1 (p � 1), and f :Y ! H+�H a closed embedding of class p+ 1. Suppose that @(Y ) = f�1(@ �H+�H�)and that there is an open neighbourhood G of @(Y ) in Y and there is an openneighbourhood V 0 of 0 in H such that [V 0\N fy (Y )]+f(y) � H+�H for every y 2 Gand [V 0 \N fy (Y )] + f(y) � @ �H+�H� for every y 2 @Y .Consider the totally neat submanifolds T f (Y ) and N f (Y ) of class p of Y �Hand the map e : A � N f (Y ) ! H+�H of class p de�ned by e(y; v) = f(y) + v,(we know, from Proposition 2.2 that e is a local di�eomorphism of class p at(y; 0) 2 A for every y 2 Y . Moreover [T fy (Y )]+My = T fy (Y ) \H+�H for every y withf(y) 2 H0�h).Then we have that:a) There is an open set 
A of A � N f (Y ) with Y � f0g � 
A and there is anopen set W of H+�H with f(Y ) � W such that ej
A : 
A !W is a di�eomorphismof class p and e� = f , where � : Y ! N f (Y ) is de�ned by �(y) = (y; 0).b) f(Y ) is a neat submanifold of H+�H and the map � :W !W de�ned by� = e:�:p1j
A �ej
A��1is a map of class p such that �(W ) � f(Y ) and �f(y) = f(y) for every y 2 Y .Hence � : W ! f(Y ) is a submersion of class p at every f(y) 2 f(Y ). Lastly�(@(W )) � @(f(Y )) and there is an open set W1 of W such that f(Y ) � W1 and�jW1 :W1 ! f(Y ) is a submersion of class p.c) Suppose that for every y 2 @(Y ) there is an open neighbourhood W 0y of 0 inH such that



EMBEDDING OF HILBERT MANIFOLDS : : : 153W 0y \ [T fy (Y )]+My + f(y) � H+�Hand @ �W 0y \ [T fy (Y )]+My� + f(y) � @ �H+�H�. Then for every y 2 Y , there is anopen neighbourhood U0y of 0 in (Ty(Y ))i and there is an open neighbourhood V yof y in Y such that f(y) + ��f(y)c ��1 Ty(f)(u) 2 W1 for every u 2 U0y and themap ey : U0y ! V y de�ned by ey(u) = f�1�[f(y) + ��f(y)c ��1 Ty(f)(u)], is adi�eomorphism of class p, where c = (H+�H ; i; (H;�H)) is the natural chart.d) Suppose that there is an open neighbourhood W 0 of 0 in H such that for ally 2 @(Y ), W 0 \ [T fy (Y )]+My + f(y) � H+�Hand @(W 0 \ [T fy (Y )]+My) + f(y) � @ �H+�H�. Then there exists an open setAk of Xy2Bk(Y )(TyY )i and there exists an open set A�k of Bk(Y ) � Y such that�Bk(Y ) � A�k; f(y; 0)=y 2 Bk(Y )g � Ak and the map Ek(y; v) = (y; f�1�(f(y) +��f(y)c ��1 Ty(f)(v)) is a di�eomorphism of class p from Ak onto A�k; k � 0.e) If H = Rq, then there exists an open set W2 of W1, such that H+�H � W �W1 � �W2 �W2 � f(Y ) and �j �W2 : �W2 ! f(Y ) is a proper map.Proofa) For every y 2 Y , there is an open neighbourhood V (y;0) of (y; 0) in A � N f (Y )and there is an open neighbourhood V f(y) of e(y; 0) = f(y) in H+�H such thate : V (y;0) ! V f(y) is a di�eomorphism of class p. Let us consider the opensets M = Sy2Y V (y;0) � A � N f (Y ) and U = Sy2Y V f(y) � H+�H . Then themap ejM : M ! U is a local di�eomorphism of class p and therefore a localhomeomorphism. On the other hand f(Y ) is a closed set in U; � : Y ! A de�nedby �(y) = (y; 0) is a map of class p and the map s : f(Y ) ! M de�ned bys(z) = �:f�1(z) is a section of class p of ejM . Then using Godement's Lemmathere is an open neighbourhood W of f(Y ) in U and there is a prolongation of sto a continuous section, �s : W !M , of ejM such that �s(W ) = 
A is an open setof M � A. Thus ej
A : 
A !W is a bijective local di�eomorphism of class p andtherefore a di�eomorphism of class p, which ful�ls that e:� = f and �(Y ) � 
A.b) Let z 2 W . Then there is a unique (yz ; vz) 2 
A such that e(yz ; vz) = z =f(yz) + vz . Hence �(z) = f(yz) 2 f(Y ).On the other hand if z = f(y), then (yz ; vz) = (y; 0) and �(z) = f(yz) = f(y) =z. c) Let y be an element of Y and let �y : Ty(Y ) ! H be the map de�nedby �y(u) = f(y) + ��f(y)c ��1 Ty(f)(u). It is clear that �y is a continuous map



154 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZand �y(0) = f(y) 2 W1. We note that if y 2 int(Y ) then f(y) 2 int(W1) andif y 2 @(Y ) then f(y) 2 @(W1) and there is an open neighbourhood ~W 0y of 0 in(TyY )i such that �y( ~W 0y ) � H+�H and ��f(y)c ��1 Ty(f)( ~W 0y ) � W 0y \ [T fy (Y )]+My .Then there is an open neighbourhood V 0y � ~W 0y of 0 in (Ty(Y ))i such that�y(V 0y ) � W1 � W � H+�H . Moreover if y 2 int(Y ), then �y(V 0y ) � int(W1).Thus we have the map ey : V 0y � (Ty(Y ))i ! Y of class p de�ned by ey(u) =f�1�[f(y) + ��f(y)c ��1 Ty(f)(u)].Let us consider the map of class p de�ned by:� : V 0y Ty(f)jV 0y�! Ty(f) (V 0y ) (�f(y)c )�1�! ��f(y)c ��1 Ty(f)(V 0y ) �f(y)�! W1Then we have that ey = f�1��; T0(ey) = Tf(y)(f�1): Tf(y)(�):T0(�) and�jV 0y = �f(y)((�f(y)c )�1Ty(f)jV 0y ):Therefore T0(�) = �f(y)c �00c1��1, where c1 = (V 0y ;��f(y)c ��1 Ty(f); (T fy (Y ),My)).On the other hand f�1�f = 1Y ; Tf(y)(f�1)Tf(y)(�)Ty(f) = 1Ty(Y ) andT0(ey) = Tf(y)(f�1)Tf(y)(�) �f(y)c ��0c1��1. Hence if w 2 T0(V 0y ), thenT0(ey)(w) = Tf(y)(f�1)Tf(y)(�)�f(y)c ��0c1��1 (w)= Tf(y)(f�1)Tf(y)(�)�f(y)c ��f(y)c ��1 Ty(f)(u) = u ;where ��f(y)c ��1 Ty(f)(u) = ��0c1��1 (w), and T0(ey) =Ty(f))�1 ��f(y)c �jTfy (Y ) : ��0c1��1 is a linear homeomorphism.Finally one has that ey(@(V 0y )) � @(Y ) for all y 2 @Y and ey(0) 2 int(Y ) forall y 2 int(Y ) which, using the inverse mapping theorem, ends the proof of c).d) The set Hk = Xy2Bk(Y )(TyY )i is a submanifold of T (Y ) and a submanifold ofXy2Bk(Y )Ty(Y ).Let us consider the continuous map �e : T (Y )! H de�ned by �e(y; v) = f(y) +��f(y)c ��1 Ty(f)(v). For all k > 0 we take an open neighbourhood Gk of f(y; 0)=y 2Bk(Y )g in Hk, such that �e(Gk) � H+�H .Then there exists an open neighbourhood Gk1 of f(y; 0)=y 2 Bk(Y )g in Gk suchthat �e(Gk1) � W1 � H+�H ; k > 0. If k = 0 there exists an open neighbourhoodG01 of f(y; 0)=y 2 B0(Y )g in H0 such that �e(G01) � intW1. Now we take the



EMBEDDING OF HILBERT MANIFOLDS : : : 155map Ek : Gk1 ! Bk(Y ) � Y of class p de�ned by Ek(y; v) = (y; f�1�(f(y) +��f(y)c ��1 Ty(f)(v)); k � 0.From the statement c) one has that Ek is a local di�eomorphism of class p at(y; 0) for all y 2 Bk(Y ); k � 0.Since the map � : �Bk(Y ) ! Gk1 de�ned by � (y; y) = (y; 0) is a continuoussection of Ek, using Godement's Lemma we have that there exists an open neigh-bourhood Gk2 of �Bk(Y ) in Bk(Y ) � Y and there exists a prolongation of � to acontinuous section, �� : Gk2 ! Gk1, of Ek such that �� (Gk2) = Bk is an open set ofGk1. Thus Ek : Bk ! Gk2 is a bijective local di�eomorphism of class p at (y; 0) forall y 2 Bk(Y ); k � 0.e) We have that p1 : Y � B=1 (0) ! Y is a proper map. Hence the map 
 =p1j(Y�B=1 (0))\Nf (Y ) : (Y � B=1 (0)) \ N f (Y ) ! Y is also a proper map, because ofN f (Y ) is a closed set in Y � Rq.On the other hand N f (Y ) � (Y � B=1 (0)) \ 
A � (Y � B1(0)) \ 
A \(ej
A)�1(W1) � Y � f0g and from the normality of N f (Y ) we have that thereexists an open set V of N f (Y ), such that (Y � B1(0)) \ 
A \ (ej
A)�1(W1) ��V � V � Y � f0g. Then ej�V : �V ! e( �V ) � W1 is a homeomorphism andH+�H � W � W1 � e( �V ) � e(V ) � f(Y ). Again by the normality of H+�H , thereexists an open set W2 of H+�H , such thate(V ) �W 2 � W2 � f(Y ):Now it is clear that �jW2 = ejY�f0g�
j(ejV )�1 : W 2 ! f(Y ), where j :(ejV )�1(W 2) ,! (Y � B=1 (0)) \ N f (Y ) is the inclusion map, is a proper map.�4. Collar neighbourhood of @(X) in X. Embedded and collaredmanifoldsProposition 4.1Let X be a Hausdor� paracompact Hilbert di�erentiable manifold of class p.Then there is a real Hilbert space, (H;<;>) and there is a closed embedding fof class p from X into H. Therefore the manifold X is di�eomorphic of classp to a closed submanifold of H. Moreover, for every x 2 X there is an openneighbourhood W x of x in X, there is a closed vector subspace H1 of H and thereis a quadrant (H1)+�1 of H1 such that fjWx : W x ! (H1)+�1 is an embedding ofclass p which ful�ls that f(W x) is a totally neat submanifold of (H1)+�1 , (see [2]).�Lemma 4.2Let X be a Hausdor� paracompact Hilbert di�erentiable manifold of class pwith @(X) 6= �. Then there exists a function g : X ! R of class p such that1) g(x) � 0 for all x 2 X.



156 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZ2) g�1(0) = @(X).3) @2(X) = g�1(0) \ fx 2 X=Txg = 0g. Hence Tx(g) = 0 for all x 2 @2(X).4) If @2(X) = �, then Tx(g) 6= 0 for all x 2 @(X) and TxjTxB1X = ker Tx(g) =@((TxX)i) for all x 2 B1(X), where j : B1X ! X is the inclusion map.ProofThe manifoldX admits partitions of unity of class p. Let us consider the atlasA = fci = (Ui;	i = (	0i ;	1i ; : : : ;	nii ); (Ei � Rni; (pij)j2Ji=f1;::: ;nig))=i 2 Ig ofclass p of X, where pij(x0; x1; : : : ; xni) = xj. Then there exists a partition of unityf�igi2I of class p in X which is subordinated to the open covering fUigi2I .For every i 2 I let us consider the function gi : X ! R of class p de�ned bygi(x) = � �i(x)Qj2Ji 	ji (x) if x 2 Ui0 if x 62 UiThen g = Xi2I gi : X ! R is a function of class p that ful�ls the followingproperties:1) g(x) � 0 for all x 2 X.2) g�1(0) = @(X). Indeed, if x 2 @(X) and x 2 Ui, there is j 2 Ji such thatpij	i(x) = 	ji (x) = 0 and gi(x) = 0 and therefore g(x) = 0. If x 2 g�1(0), thenthere is i0 2 I such that �i0 (x) 6= 0 and there is j0 2 Ji0 such that 	j0i0 (x) = 0.Hence x 2 @X.3) Let x be an element of @(X) and let c = (U;	 = (	0;	1; : : : ;	n); (E �Rn; (pj)j2J=f1;2;::: ;ng)) be a chart of X with x 2 U and 	(x) = 0, where pj(x0; x1;: : : ; xn) = xj. Then for all j0 2 f0; 1; 2; : : : ; ng = J[f0g, one has that @(g	�1(0))@xj0 =Xi2I @(gi	�1)(0)@xj0 and for all i 2 I, @(gi	�1(0))@xj0 = 0 if x 2 X � Ui � X � sup(�i) and@(g	�1(0))@xj0 = @((�i:Qj2Ji 	ji )	�1)(0)@xj0 == �i(x)0@Xk2Ji0@ Yj2Ji�fkg	ji (x)1A :@(	ki 	�1)(0)@xj0 1A if x 2 Ui:Thus if ind (x) � 2, then @(gi	�1(0))@xj0 = 0 and @2X � g�1(0) \ C(g), whereC(g) = fx 2 X=Txg = 0g.If x 2 B1(X) and x 2 Ui, there is a unique j0 2 Ji such that 	j0i (x) = 0.Moreover J = f1g, p1(z; t) = t and@(gi	�1)(0)@t = �i(x)0@ Yj2Ji�fj0g	ji (x)1A @(	j0i 	�1)@t (0):



EMBEDDING OF HILBERT MANIFOLDS : : : 157Since D(	i	�1)(0) is a linear homeomorphism, it holds that D(	j0i 	�1)(0) 6=0. On the other hand 	j0i 	�1(y) � 0 for all y 2 	(U \ Ui) and 	j0i 	�1(0) = 0and therefore @(	j0i 	�1)(0)@z = 0 and @(	j0i 	�1)(0)@t > 0. Then we have that Txg 6= 0,that is x 62 C(g), and @2(X) = g�1(0) \C(g).4) If @2(X) = �, then g�1(0) \C(g) = � or @(X) \C(g) = �: �We note that the Lemma 4.2 is also true if X is a di�erentiable manifold whichadmits partition of unity of class p.Corollary 4.3Let X be a Hausdor� paracompact di�erentiable manifold of class p whosecharts are modelled over real Banach spaces which satisfy the Urysohn conditionof class p (In particular, X can be a Hausdor� paracompact Hilbert di�erentiablemanifold). Suppose that @(X) 6= � and @2(X) = �. Then there exists a realBanach space (E; k k) (or there exists a real Hilbert space (E;<;>), if X is aHausdor� paracompact Hilbert manifold) and there exists a closed embedding gof class p from X into the quadrant E� (R+ [f0g) of E�R such that g(@(X)) =g(X)\(E�f0g) and g(X) is a closed totally neat submanifold of (E�R)+p2 , wherep2(x; t) = t. Moreover for all x 2 X there is an open neighbourhood W x of x inX, there is a closed vector subspace E1 of E and there is a quadrant E1+�1 of E1such that p1g : W x ! E1+�1 is an embedding of class p and p1g(W x) is a totallyneat submanifold of E1+�1 .ProofThere exists a real Banach space, (E; k k), and there exists a closed embeddingf of class p from X into E such that for every x 2 X there is an open neigh-bourhood W x of x in X, there is a closed vector subspace E1 of E and there is aquadrant (E1)+�1 of E1 which ful�l that fjWx : W x ! (E1)+�1 is an embedding ofclass p and f(W x) is a totally neat submanifold of (E1)+�1 (see [2]). In particular,there exists a real Hilbert space, (E;<;>), and there exists a closed embeddingf of class p from X into E with the same local property if X is a Hausdor�paracompact Hilbert di�erentiable manifold).From Lemma 4.2 it follows that there exists a function � : X ! R of classp such that �(x) � 0 for all x 2 X, ��1(0) = @(X) and Tx(�) 6= 0 for allx 2 @(X) = ��1(0) and Tx(j)TxB1(X) = ker(Tx(�)) = @((Tx(X))i) for all x 2B1(X), where j : B1(X) ! X is the inclusion map. Let us consider the map,g = (f; �) : X ! E� (R+ [f0g). Obviously g is an injective map. Moreover g is aclosed map. Indeed, if C is a closed subset of X and fg(xn) = (f(xn); �(xn))gn2Nis a sequence in g(C) which converges to (u0; t0) in E�(R+[f0g), then xn 2 C forall n 2 N and the sequence ff(xn)gn2N converges to u0 in E. Hence the sequencefxngn2N converges to x0 2 C in X. Thus (u0; t0) = g(x0) 2 g(C) and g(C) is aclosed set in E � (R+ [ f0g).Then it occurs that g : X ! g(X) is a homeomorphism, g(X) is a closed set in



158 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZE � (R+ [ f0g) and g(@(X)) = g(X) \ (E � f0g).Let x0 be an element ofX. Since Tx0 (f) is a linear injective map and im (Tx0 (f))admits a topological supplement in Tf(x0)(E), we have that Tx0(g) �(Tx0 (f); Tx0(�)) is a linear injective map and im (Tx0 (g)) admits a topologicalsupplement in T(f(x0);�(x0))(E �R+ [ f0g)).On the other hand g�1(@((E � R)+p2)) = @(X), and ind (v) = ind (Tx0 (g)(v))for all v 2 (Tx0 (X))i, because of ker(Tx(�)) = @((TxX)i) for all x 2 B1(X).Then, by Theorem 2.3 of [2], the map g is an immersion at x0 and thereforeg is a closed embedding of class p of X into E � (R+ [ f0g) which ful�ls thatg�1(E � f0g) = @(X): �De�nition 4.4Let X be a di�erentiable manifold of class p with @X 6= � and @2X = �. Wesay that (f;A) is a collar neighbourhood of @X in X of class p if A is an openneighbourhood of @(X) in X and f : @X � (R+ [ f0g) ! A is a di�eomorphismof class p such that f(x; 0) = x for all x 2 @(X).Lemma 4.5Let X be a di�erentiable manifold of class p which admits partitions of unity ofclass p (In particular X could be a Hausdor� paracompact Hilbert manifold), letM = fMi=i 2 Ig be a locally �nite family of subsets of X such that X = [i2IMiand " = f"igi2I a family of positive real numbers. Then there exists a map� : X ! R+ of class p such that �(x) < "i for all i 2 I and all x 2Mi: �Theorem 4.6Let X be a Hilbert Hausdor� paracompact di�erentiable manifold of class p+1; p � 1, such that @(X) 6= � and @2(X) = �. Then there exists a collarneighbourhood (f;A) of @(X) in X of class p. Moreover there are a real Hilbertspace H, a closed embedding � : @(X) ! H of class p + 1 and an open set A�in N�(@(X)) such that f(y; 0)=y 2 @(X)g � A� and e : A� ! H, de�ned bye(y; v) = f(y) + v is a local di�eomorphism of class p at (y; 0) 2 A� for everyy 2 @X.ProofBy Proposition 4.1, there is a real Hilbert space (H;<;>), and there is a closedembedding g of class p+1, fromX intoH. Obviously, gj@(X) : @(X) = B1(X)! His also a closed embedding of class p+ 1.Moreover, for every x 2 X there is an open neighbourhood W x of x in X, thereis a closed vector subspace H1 of H, and there is a quadrant (H1)+�1 of H1, suchthat gjWx :W x ! (H1)+�1 is an embedding of class p+ 1 which ful�ls that g(W x)is a totally neat submanifold of (H1)+�1 .Then, by Proposition 3.1, we have that g(@(X)) is a submanifold withoutboundary of H and there are an open set W of H and a map � :W !W of class



EMBEDDING OF HILBERT MANIFOLDS : : : 159p such that g(@(X)) � W; �(W ) � g(@(X)), � g(y) = g(y) for every y 2 @(X)and � : W ! g(@(X)) is a submersion of class p at every g(y) 2 g(@(X)). ThusU = g�1(W ) is an open set in X such that @(X) � U and r = (gj@(X))�1:�:gjU :U ! @(X) is a retraction of class p.On the other hand, from Lemma 4.2, there exists a function � : X ! R+ [f0gof class p + 1 such that ��1(0) = @(X) and Tx(�) 6= 0 for all x 2 @(X) andTx(j)(Tx(B1(X))) = ker(Tx(�)) = @((Tx(X))i) for all x 2 B1(X), where j :B1(X) ! X is the inclusion map.Let us consider the map h = (r; �jU) : U ! @(X) � (R+ [ f0g) of class p.Then it is clear that h(@(U )) = h(@(X)) = [@(X)] � f0g = @[@(X) � (R+ [ f0g)]and Tx0(h) is a linear homeomorphism for every x0 2 @(X). Indeed, we havethat Tx0(h) � (Tx0 (r); Tx0(�jU)) : Tx0(U ) ! (Tx0(@(X))) � (T0(R+ [ f0g)) andTx0(X) = Tx0 (j)(Tx0 (B1(X))) �T Lfv1g, where Tx0 (�)(v1) 6= 0. Then for everyu 2 Tx0(X), there exists u1 2 Tx0(j)(Tx0 (@(X)) and there exists u2 2 Lfv1g suchthat u = u1 + u2 and Tx0 (h) = (u1 + Tx0(r)(u2); Tx0(�)(u2)) which proves thatTx0(h) is a linear homeomorphism. Thus there exists an open neighbourhood V x0of x0 in U there exists "x0 > 0 and there exists an open neighbourhood W x0 ofx0 in X, such that hjV x0 : V x0 ! (W x0 \ @(X)) � [0; "x0) is a di�eomorphismof class p for all x0 2 @(X). Clearly the map s : @(X) � f0g ! U , de�ned bys(x; 0) = x, is a continuous section of h and using the Godement's lemma we havethat there are an open neighbourhood G1 of @(X)�f0g in @(X)� (R+ [f0g), anopen set U1 in U with @(X) � U1 and a prolongation of s to a continuous section,�s : G1 ! U1 of hjU1 such that �s(G1) = U0 is an open set of U1 with @(X) � U0.Hence hjU0 : U0 ! G1 is a di�eomorphism of class p.By the Lemma 4.5 there exists a function 
 : @(X) ! R+ of class p+1 such thatfxg�[0; 
(x)) � G1 for every x 2 @(X). Then the set G2 = [x2@(X)fxg�[0; 
(x)) �G1 is an open set in @(X)� (R+ [f0g) and the map � : G2 ! @(X)� (R+ [f0g),de�ned by �(x; t) = �x; t
(x)�t�, is a di�eomorphism of class p+ 1 whose inversemap is ��1(y; u) = �y; u:
(y)u+1 �. Thus the set A = �hjU0��1 (G2) is an open setof U0 � U1 such that @(X) � A and f� = �hjA is a di�eomorphism of class p ofA onto @(X) � (R+ [ f0g), which veri�es that f�(x) = (x; 0) for all x 2 @(X).Finally we take f = (f�)�1: �Proof of Theorem ABy Theorem 4.6, there exists a collar neighbourhood ( �f ; U ) of @(X) in X ofclass p. Then �f(@(X) � [0;+1)) = U is an open set in X with @(X) � U and�f : @(X) � [0;+1)! U is a di�eomorphism of class p such that �f (x; 0) = x forevery x 2 @(X).Since X is a normal topological space and @(X) is a closed set in X, there is anopen set V in X, such that X � U � �V � V � @(X). Therefore ( �f )�1(V ) is anopen set in @(X) � [0;+1) and, from Lemma 4.5, there exists a map 
 : @(X) !R+ of class p+ 1, such that fxg � [0; 
(x)) � ( �f )�1(V ) for every x 2 @(X).



160 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZWe consider the maps of class p� : U ( �f)�1�! @(X) � [0;+1) p1�! @(X);� : U ( �f)�1�! @(X) � [0;+1) p2�! [0;+1)and 
1 = 
� : U ! R+.Then it is clear that �; � are surjective maps, ( �f )�1(x) = (�(x); �(x)) for allx 2 U; U1 = fx 2 U=�(x) < 34
�(x)g is an open set of U; U2 = fx 2 U=�(x) <58
�(x)g is an open set of U; U�1 = fx 2 U=�(x) � 34
�(x)g is a closed set ofU; U�2 = fx 2 U=�(x) � 58
�(x)g is a closed set of U; @(X) � U1 � U�1 ; @(X) �U2 � U�2 � U1 � U�1 and @(X) � U�1 � V � �V � U � X. Hence U�1 ; U�2 are closedsets ofX and there exists a map of class p+1; � : X ! [0; 1], such that �( �U1) = f1gand �(X � V ) = f0g and there exists a map of class p + 1; � : X ! [0; 1] suchthat �( �U2) = f0g and �(X � U1) = f1g.Let us consider the map � : X ! [0;+1) of class p, de�ned by� (x) = � �(x):�(x) + �(x) if x 2 U�(x) if x 2 X � U;the open set of U; U 0 = fx 2 U=�(x) < 12
�(x)g and the open set of @(X) �[0;+1); W1 = f(x; t) 2 @(X) � [0;+1)=t < 12
(x)g. Then we have that @(X) �U 0 � U2 � U1 � U; @(X) � f0g � W1; � (@(X)) = f0g; �jU 0 = �jU 0 ; �jX� �V=�jX� �Vand � is a submersion at x for every x 2 @(X).Hence Tx(j)Tx(@(X)) = ker(Tx(� )) for every x 2 @(X), where j : @(X) ! Xis the inclusion map. Moreover Tx(j)Tx(@X) = (TxX)0 = @(TxX)i) = ker(Tx(� ))for every x 2 @(X).On the other hand C1 = f(x; t) 2 @(X) � [0;+1)=t � 14
(x)g and C2 = f(x; t)2 @(X) � [0;+1) =38
(x) � t � 12
(x)g are disjoint closed sets of @(X)� [0;+1)such that @(X) � f0g � C1; C1 � W1 and �C1= f(x; t) 2 @(X) � [0;+1)=t <14
(x)g.There is a map r : [0; 12 ] ! [0; 1] of class 1 such that r(t) = 0 for everyt 2 [0; 14 ]; r(t) = 1 for all t 2 [38 ; 12 ] and r(t1) < r(t2) for all t1; t2 2 (1=4; 3=8) witht1 < t2.Let us consider the map � : W1 ! [0; 1] de�ned by �(x; t) = r � t
(x)�. Thenwe have that � is a map of class p + 1; ��1(0) = C1; ��1(1) = C2 \W1 and�(x; t1) < �(x; t2) for every (x; t1); (x; t2) 2 W1 with t1; t2 2 (14
(x); 38
(x)) andt1 < t2. Hence for every x 2 @(X); �x : (14
(x); 38
(x)) ! (0; 1) is a bijectivemap.Now we consider the map u : W1 ! @(X) � [0;+1) of class p + 1, de�ned byu(x; t) = (x; t:�(x; t)) and the map, q : X ! X, de�ned byq(x) = � �fu( �f)�1(x) if x 2 U 0 � U2 � U1x if x 62 U 0



EMBEDDING OF HILBERT MANIFOLDS : : : 161(Note that for every x 2 U 0; ( �f )�1(x) = (�(x); �(x)) 2 W1). Since the set C =fx 2 U=�(x) � 38
�(x)g � U�1 � V is a closed set ofX; C � U 0; X = U 0[(X�C)and �f (�(x); �(x)�(�(x); �(x))) = �f (�(x); �(x)) = x for every x 2 U 0 \ (X � C),we have that q is a map of class p.By Proposition 4.1, there exists a real Hilbert space (H;<;>) and there existsa closed embedding h of class p + 1, from X into H. Let g be the map of classp; g = (hq; � ) : X ! H � [0;+1).Then the map g has the following properties:a) g(@X) = g(X) \ (H � f0g); @(X) = ��1(0).b) g � (��jC1) = ((p10gj@(x)) � 1[0;+1))jC1and h(x) = p1g(x) for all x 2 @(X). Indeed, for all (x; t) 2 C1, we have that� �f (x; t) = t � 14
(x) < 12
�( �f (x; t)); �f(x; t) 2 U 0 andg �f (x; t) = (hq �f (x; t); � �f(x; t)) = (h �fu(x; t); � �f(x; t))= (h �f (x; 0); t) = (h(x); t) = (p1g(x); t) :In particular g �f (x; 0) = g(x) = (h(x); 0) for every x 2 @(X).c) The map g is an injective map. Indeed,1) For all y 2 X � fx 2 U=�(x) < 38
�(x)g = M1, we have that g(y) =(hq(y); � (y)) = (h(y); � (y)).2) For every y 2 fx 2 U=14
�(x) < �(x) < 38
�(x)g = M2, we have thatg(y) = (h �fu(�(y); �(y)); �(y)).3) For every y 2 fx 2 U=�(x) � 14
�(x)g = M3 � U 0 it occurs that g(y) =(hq(y); � (y)) = (h �fu( �f )�1(y); � (y)) = (h�(y); �(y)).Obviously X = M1 [M2 [M3 and M1;M3 are closed sets of X. Let x; y beelements of X with x 6= y such that g(x) = g(y).c1) If x; y 2M1, then g(x) = (h(x); � (x)) = (h(y); � (y)) = g(y) and h(x) = h(y)which is a contradiction.c2) If x 2 M1 and y 2 fz 2 U=�(z) < 38
�(z)g, then g(x) = (h(x); � (x)) andg(y) = (h�(y); �(y)) if y 2M3 or g(y) = (h �fu(�(y); �(y)); �(y)) if y 2M2.In the �rst case x = �(y) 2 @(X) which is a contradiction. In the second casewe have that x = �f (�(y); �(y)�(�(y); �(y)) which implies that �(x) = �(y) and38
�(x) � �(x) = �(y)�(�(y); �(y)) � �(y) < 38
�(y) which is a contradiction.c3) If x; y 2 fz 2 U=�(z) < 38
�(z)g, then �(x) = �(y) and it happens thath�(x) = h�(y) if x; y 2 M3; �fu(�(x); �(x)) = �fu(�(y); �(y)) if x; y 2 M2 and�(x) = �fu(�(y); �(y)) = �f(�(y); �(y)�(�(y); �(y))) if x 2 M3 and y 2 M2. Allthese cases give us that �(x) = �(y), which is a contradiction.d) The map g : X ! g(X) is a homeomorphism and g(X) is a closed set ofH � [0;+1).Indeed,d1) The map gjM1 : M1 ! g(M1) is a homeomorphism whose inverse map is�1 = h�1p1jg(M1). Indeed, we note that p1g(M1) = h(M1); p1g(x) = h(x) forall x 2 M1 and �1g(x) = �1(h(x); � (x)) = h�1h(x) = x for every x 2 M1 andg�1(y; t) = g�1g(z) = g�1(h(z); � (z)) = g(z) = (y; t) for all (y; t) 2 g(M1).



162 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZd2) The map gjM3 : M3 ! g(M3) is a homeomorphism whose inverse mapis �3 = �f (��1)jg(M3) : g(M3) ! M3, where � = �hj@(X)�1 [0;+1)�jC1 : C1 !�hj@(X)�1[0;+1)� (C1). Indeed, we note that g(M3) � �(C1) �f��1g(M3) =M3; �f��1g(x) = x for every x 2 M3; g �f��1g(x) = g(x) for all x 2 M3 and�f��1g(x) = x for every x 2M3.d3) Let M2 be the closed subset of X; fx 2 U=14
�(x) � �(x) � 38
�(x)g � U 0.Then the map gjM�2 :M�2 ! g(M�2 ) is a homeomorphism.Indeed, we have that the map ux : [14
(x); 38
(x)] ! [0; 38
(x)] is a bijectivemap for every x 2 @(X), the map ujc3 : C3 = f(y; t) 2 @(X) � [0;+1)=14
(y) �t � 38
(y)g ! C�3 is a homeomorphism, whereC�3 = f(y; t) 2 @(X) � [0;+1)=t � 38
(y)g � W1 ;p1g(M�2 ) � im (h);M�2 � U 0; h�1p1g(M�2 ) � U 0 � U; ( �f )�1h�1p1g(M�2 ) � C�3 ;u�1( �f )�1h�1p1g(M�2 ) � C3 � W1; �f (C3) � M�2and �fu�1( �f )�1h�1p1g(M�2 ) � M�2 . Thus the inverse map of gjM�2 is the continuousmap �fu�1 �f�1h�1 p1=g(M�2 ).d4) g(M1); g(M3); g(M�2 ) are closed sets of H � [0;+1) and therefore g(X) =g(M1) [ g(M3) [ g(M�2 ) is a closed set and g : X ! g(X) is a homeomorphism.e) The map Tx(g) : Tx(X) ! Tg(x)(H � [0;+1)) is an injective map, for everyx 2 X.e1) First we note that M1 = fx 2 U=�(x) � 38
�(x)g and that the map� : @(X) � [0;+1))! R, de�ned by �(y; t) = �t+ 38
(y), is a map of class p+ 1such that ��1(0) \ (@(X) � f0g) = � and T(x;t)(�) 6= 0 for every (x; t) 2 ��1(0).Then the set ��1((�1; 0]) is a closed submanifold of class p+1 of @(X)� [0;+1)such that @(��1((�1; 0])) = ��1(0) [ ((@(X) � f0g) \ ��1((�1; 0))) = ��1(0).But ��1((�1; 0]) = f(y; t) 2 @(X) � [0;+1)=t � 38
(y)g and �f��1((�1; 0]) =fx 2 U=�(x) � 38
�(x)g = M1. Hence it follows that M1 is a submanifold ofclass p + 1 of X such that @(M1) = �f (@(��1((�1; 0]))) = �f(��1(0)) = fx 2U=�(x) = 38
�(x)g, int(M1) = fx 2 U=�(x) > 38
�(x)g is an open set of X andTx(j) : Tx(M1)! Tx(X) is a bijective map for every x 2M1, where j : M1 ! Xis the inclusion map.Moreover for every y 2 M1 it occurs that g(y) = (h(y); � (y)), Ty(gjM1) is aninjective map and Ty(g) is an injective map.e2) If y 2M2, then g(y) = (h �fu( �f )�1(y); �(y)).On the other hand uj�C3 : �C3! �C3 is a di�eomorphism of class p+ 1 and( �f )�1(M2) = �C3. Therefore Ty(g) is an injective map for all y 2M2.e3) We have that M3 is a submanifold of class p + 1 of X such that @(M3) =fx 2 U=�(x) = 14
�(x)g and int(M3) = fx 2 U=�(x) < 14
�(x)g is an open set ofX. Then for every x 2 M3; Tx(j) : Tx(M3) ! Tx(X) is a bijective map, wherej :M3 ! X is the inclusion map. Moreover ( �f )�1(M3) = C1 and for every y 2M3



EMBEDDING OF HILBERT MANIFOLDS : : : 163it occurs that g(y) = (h�(y); �(y)) = (hj@(X)�1 [0;+1))jC1 ( �f)�1(y); Ty(gjM3) is aninjective map and Ty(g) is an injective map.Then using the formula Tx(j)Tx(@X) = (TxX)0 = @((TxX)i) � kerTx(� ) forevery x 2 @(X), we have that ind(v) = ind (Tx(g)(v)) for every v 2 (TxX)i andall x 2 X and g is an immersion of class p. Hence g is a closed embedding of classp. Lastly it is straighforward to check that for every x 2 �f ( �C1), T gx (X) = H1�R,where H1 is closed linear subspace of H. Hence N gx (X) � H � f0g for everyx 2 �f ( �C1): �Proposition 4.7Let f : X ! X be a di�erentiable map of class p such that f:f = f . Supposethat f(@(X)) � @(X) and ker(Tx0(f)) � (Tx0X)i for every x0 2 f(X) \ @(X).Then we have that:1) f is a subimmersion at every x0 2 f(X), i.e. f localizes as a linear continuousmap whose kernel and image admit topological supplements.2) f(X) = fx 2 X=f(x) = xg is a totally neat submanifold of class p of X.Moreover, if X is a Hausdor� manifold, then f(X) is a closed set of X (see [7]).Proof of Theorem Ba)) b). From 4.7 we have that there are a real Hilbert space (H;<;>), a closedembedding g : X ! H � [0;+1) of class 1 with g(@(X)) = g(X) \ (H � f0g),a collar neighbourhood (f;A) of @(X) in X of class 1 and an open set G in@(X) � [0;+1), such that @(X) � f0g � G, ((p1gj@(X))� 1[0;+1))jG = gjA0f=G,f(G) = G1 is an open set in X with @(X) � G1 and for every x 2 G1; N gx (X) �H � f0g = (H � R)0p2 .Using 3.1 we have that there is an open set 
 of ~A � N g(X), with X�f0g � 
and there is an open set W ofH�[0;+1), with g(X) � W such that ej
 : 
!Wis a di�eomorphism of class 1 and e:� = g, where � : X ! N g(X) is de�ned by�(y) = (y; 0); ~A is an open set of N g(X) with (x; 0) 2 ~A for every x 2 X ande : ~A ! H � [0;+1) de�ned by e(x; v) = g(x) + v is a local di�eomorphism ofclass 1 at (x; 0) 2 ~A for every x 2 X.Moreover the map � : W ! W de�ned by � = e�p1j
(ej
)�1 is a map of class1 such that �(W ) = g(X); �(@(W )) � @(g(X)) = g(@(X)) = g(X) \ (H � f0g)and �g(x) = g(x) for all x 2 X.Lastly the map � :W ! g(X) is a submersion of class 1 at every g(x) 2 g(X).Let (x0; t0) 2 W such that �(x0; t0) 2 @(W ). Then �(x0; t0) = (y0; 0),(ej
)�1(x0; t0) = (x1; u1; v1) �(x0; t0) = g(x1) and x1 2 @(X); (x0; t0) = g(x1) +(u1; v1); (u1; v1) 2 N gx1 (X); (y0; 0) 2 g(G1).Let us consider open neighbourhoods V x0 � G1; V 0R � R, V y0 � H and V 0 �[0;+1) such that V y0 � V 0 � W , V 0R � V 0, N g(X) \ (V x1 � BH" (0) � V 0R) � 
,V y0 � y0 � BH"=2(0) and [V y0 \ p1(g(@(X)))] � V 0 � g(V x1) � g(G1) = gf(G).Then if (y; t) 2 V y0 � V 0 we have that (y; 0) 2 @(W ); �(y; 0) 2 g(@(X)) =



164 J. MARGALEF-ROIG AND E. OUTERELO-DOM�INGUEZg(X) \ (H � f0g) and �(y; 0) = g(x2) = (p1gj@(X) � 1[0;+1))(x2; 0) = (p1g(x2); 0)with x2 2 @(X). Since �(y0; 0) = (y0; 0), there are open neighbourhoods V y01 � H,V 01 � [0;+1) such that �(V y01 � V 01 ) � V y0 � V 0 and V y01 � V 01 � V y0 � V 0.Now, if (y; t) 2 V y01 � V 01 , then p1g(x2) 2 V y0 \ p1g(@(X)); (p1g(x2); t) 2g(V x1); (p1g(x2); t) = g(z) with z 2 V x11 ; g(x2)+(0; t) = g(z) and (y; 0) = g(x2)+(u; 0), where (ej
)�1(y; 0) = (x2; (u; 0)); �(y; 0) = g(x2) and (u; 0) 2 N gx2(X).Hence (y; t) = (y; 0) + (0; t) = g(x2) + (u; 0) + (0; t) = g(z) + (u; 0). On theother hand, from the formula g:fjG = (p1gj@(X) � 1[0;+1))jG, it is straightforwardto check that T gx2 (X) = T gz (X) and therefore N gx2 (X) = N gz (X), (u; 0) 2 N gz (X),(z; (u; 0)) 2 N g(X), p1g(x2)+u = y; u = (y� y0)� (p1g(x2)� y0), k y� y0 k< "2 ,k p1g(x2) � y0 k< "=2 and k u k< ". Finally u 2 BH" (0), (z; u; 0) 2 
; �(y; t) =g(z) = (p1g(x2); t) and ker(D�(y0; 0)) � H � f0g.b) ) a) By 4.8, r(U ) is a totally neat submanifold of class 1 of U , which ishomeomorphic to X. Thus X admits a Hilbert di�erentiable structure of class 1with @(X) 6= � and @2(X) = �. References[1] R. Abraham: Lectures of Smale Di�erential Topology. Columbia University, New York, 1962.[2] S. Armas-G�omez, J. Margalef-Roig, E. Outerelo-Dom��nguez, E. Padr�on-Fern�andez: Embed-ding of an Urysohn di�erentiable manifold with corners in a real Banach space. WinterSchool of Geometry and Physics held in SRNI (January, 1991, Czechoslovak).[3] H. Cartan: Sur les R�etractions d'une variet�e. C.R. Acad. Sc. Paris, A. 303, Serie I, n. 14,1986, p. 715.[4] J. Eells, K.D. Elworthy: Open embeddings of certain Banach manifolds. Ann. of Math. 91,1970, 465{485.[5] R. Godement: Th�eorie des faisceaux. Hermann, Paris, 1958.[6] J. Margalef-Roig, E. Outerelo-Dom��nguez: Topolog��a diferencial. C.S.I.C., Madrid, 1988.[7] J. Margalef-Roig, E. Outerelo-Dom��nguez: On Retraction of Manifolds with corners (toappear).[8] J.H. McAlpin: In�nite dimensional manifolds and Morse theory. Ph.D. Thesis, ColumbiaUniversity, New York, 1965.[9] R.E. Stong: Notes on Cobordism Theory. Princeton University Press, 1968.J. Margalef{RoigConsejo Superior de Investigaciones Cient��ficasInstituto de Matem�aticas y F��sica Fundamentalc/ Serrano 12328006 Madrid, SPAINE. Outerelo{DominguezUniv. Complutense de MadridFacultad de Matem�aticas Ciudad Universitaria28040 Madrid, SPAIN
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