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ON THE STRUCTURE OF SOLUTIONS OF A
SYSTEM OF THREE DIFFERENTIAL INEQUALITIES

MIrROSLAV BARTUSEK

ABSTRACT. The aim of this paper is to study the global structure of solutions of
three differential inequalities with respect to their zeros. New information for the
differential equation of the third order with quasiderivatives is obtained, too.

1. Introduction

The aim of this paper is to investigate a global structure of solutions with
respect to zeros of a system of differential inequalities

iy () yig1 > 0,
(1) virr(t) = 0= (1) =0, i=1,23, teJ

where a; € {=1,1}, ya = 11, J = (a,b), —oo < a < b < 0.

y = (y1,y2,y3) is called a solution of (1) if y; : J — R, R = (—00,o0) is locally
absolute continuous and (1) holds for all t € J such that ! exists.

Put yiae =y i= 1,23, ke Z, Z=1{...,—1,0,1,...}.

Two special cases of (1) which are often studied.

(a) A system of three differential equations

(2) yngi(taylayZayE})a i:1a2a3a
o fi(t, w1, 22, 23)x41 > 0,
(3) rip1 =0 = fi(t,z1,22,23)=0in D, i=1,2,3

where a; € {—1,1}, 24 = 1, f; : D = Rx R® — R satisfies the local Carathéodory
conditions, ¢ = 1,2,3. See e.g. [2,5] and the references herein. y = (1, y2, ¥3),
defined in J, is called a solution of (2) if it is locally absolute continuous and (2)
holds for almost all ¢ € J.
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(b) The differential equation with the quasi-derivatives of the third order

(4) Lsz(t) = f(t,z, 2" 2",
(5) af(t,l’l,l‘z,l’g)l‘l Zoa f(t,0,$2,$3):0

where a € {—1,1}, f : R x R® — R fulfils the local Carathéodory conditions,
aj : R — R are continuous, a;(t) > 0 fort € R, j = 0,1,2,3 and Lz is the
J-th quasi-derivative of # : Loz = ao(t)x, Liz = a;(¢)(Li—12)’, i = 1,2, 3. Further,
suppose that ag € CH(R) if f(t,x1,22,23) = f(t,21,22) and ag € C*(R), a1 €
CL(R) if f depends in z3, too.

By the use of a standard transformation we can see that (4), (5) is equivalent
to (2),3):y; =Lz, j=1,2,3,

/ y(t) ys(t)
yi(t) = , Ys(t) = ,

1() al(t) 2() Clz(t)
1 Y1 Yo agyr Y3 Y2 ay | 2ap
6 (1) = t, — — — 1, 270
( ) yS( ) as(t)f Tag” arag a% " agaias apga; aj + ag

- Clgill (aoagal - 2&1&2)2) :..f(taylayZayS) .
0

Note that af(t,y1,y2,y3)tn > 0, f(1,0,42,y3) =0, 01 = a2 = 1, a3 = av.

In [2, 4] the structure of oscillatory solutions (defined in the usual sense) has
been studied for the differential equation (4), (5) and its special forms. It is shown
that there exists a relation between zeros of the derivatives of a solution. Further,
in [1] oscillatory solutions of (1) are investigated under the validity of the relation

Especially, it is proved that zeros of y;, 2 = 1, 2, 3 are simple in some neighbourhood
of its cluster point, i.e. if y;(¢) = 0, then y;41(¢) # 0. In [6] non-oscillatory solutions
of differential inclusions for which (1) holds are studied.

In the present paper a generalization and an extension of these results to the

system (1) are going to be made. Some new results for (4) are gained, too.
Note that (7) is fulfilled if it is supposed that

a; fi(t, 21, @2, 23)xi41 > 0 for 41 # 0,
(8) =0fora;y1 =0, i=1,2,3

is valid for (2) instead of (3). Similarly, (7) is valid if
(9) af(t,ey, w2, 23)x1 > 0 for 1 #0, f(¢,0,22,235) =0

holds for (4) instead of (5).
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Definition. Let y : (a,b) — R? be a solution of (1). Then y is called non-
continuable if two following relations are valid
3

(i) either @ = —oo or, if —o0 < a, then 1im+ sup  |y(t)] =
t—a i=1
3
(ii) either b = oo or, if b < oo, then lim sup  |y(?)| = .
t—b- i=1

y is called trivial if y;(¢) = 0 in (a,b), i =1,2,3.
In our further considerations the points of the zero initial conditions will play
an important role. The “non-trivial” ones are defined in the following

Definition. Let y : J = (a,b) — R? be a solution of (1). Let ¢ be such a point

that ¢ € J, yi(¢) = 0,4 = 1,2,3 holds, and in any neighbourhood I of ¢ there
3
exists 7 € [ such that ly; (7)] > 0. Then ¢ is called Z-point of y.
ji=1
Let ¢ € {1,2,3}, J1 C J be either J; = [a1,b) or J1 = (a,b1] or Jy = [a1,b1],
a1, by € J. Jy is called Z-interval of y; if y; = 0 in J; and two following relations
hold:

(i) w is non-trivial in any left neighbourhood of t = ay if J; = [a1,b) or
Ji = [ai, bi];

(ii) y; is non-trivial in any right neighbourhood of ¢t = b, if J; = (a,b1] or
Jl = [al, bl]

Property V is valid in the interval Jy if there exists an index ¢ € {1,2,3} such
that Jy is Z-interval of both y;, y;41 and yi42 # 0 in Jy.

Notation. Let y be a solution of (1). Put Y1 = 41, Y2 = a1y2, Y3 = arays,
}/i-I—Sk :}/ia ke ZaZ: 1a2a3'
2. Case ovjasas = —1

In this chapter the case
(10) 1o (¥g = —1

will be studied. The validity of (10) will be supposed in all the considerations.
For the study of the structure of solutions of (1) the following types will be
defined. Let y : J = (¢,d) — R3.

Type I. Sequences {t}}, {ti},i=1,2,3,k = k;, k;+1,... exist such that k; = 1,
ks € {0, 1}, ks € {0,]6‘2}, tﬁc € J, thl tﬁc = d and

S < <G <G ST <ty
Yi(t)=0 for te[ti,t], Yi(t)#0 for tel[ti,ii],
(11) Yi(t)Yi(t) >0 for te(ih,t),

<0 for te (fi,t,lc_l_l),
j=2,3, i=1,2,3, for all admissible k
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hold. Moreover, B;y; = —1 where S;(y;) is signY; in the interval (c,tf}cl)
(in (f};l,tﬁcl“)), i=1,2,3.

Type IL. Sequences {ti}, {#i},i = 1,23,k = ki, ki—1,k;—2,. .., exist such that
ki =1, ks € {0,1}, k2 € {0, ks}, £} € J, klim ti = ¢ and (11) hold. Moreover,
Bivi = —1 where 5;(7;) is sign'¥; in the interval ({2,—1’%,)(({2,’ d)),i=1,2,3.

Type IIL. Sequences {t{}, {{i}, i = 1,2,3, k € Z exist such that t{ € J,
klim ti =, klim ti = d and (11) holds for k € Z.

Type IV. There exists 7 > ¢ such that

Y;, i € {1,2,3} has a finite number of Z — intervals [t} ,#.] in

12
(12) (¢,7) and (11) holds until ¢ < 7;

[Y1], |Y2| are non-decreasing, |Y3| is non-increasing and Y7 (¢)Ya(¢) > 0, Y1(¢)Y3(t) >
0 holds in (7, d).

3
Type V. [Yi(t)| > 0; |Yi|, ¢ = 1,2,3 are non-increasing,
=1

(13) Yi()Y2(t) <0, Yi(#)Y3(1) >0, Ya2(D)Ys(t) <0, telJ.

Type VI. There exists 7 > ¢ such that (12) holds; |Y1|, [Y3| are non-decreasing,
|Y2] is non-increasing,

Vi()Ya(1) >0, Yi()Ya(t) <0 in (r,0).

Type VII. There exists 7 > ¢ such that (12) holds; |¥1] is non-increasing, |Ya|, | V3]
are non-decreasing and

Vi()Y2(1) <0, Ya()Ya(t) >0 in (r,0).

Type VIIL y is trivial in J.

Remark 1. The solutions of Type either I or III are ussually called oscillatory,
the ones of Types IV-VII are non-oscillatory. The solution of Type V, b = oo is
called Kneser solution.

Definition. Let y : (a,b) — R3 be a solution of (1), A; be one of Types I-VIII,
i=20,1,2,...,s. Then y is of Type {41, Aa,..., As} in (a,b) if the index j, j €
{1,2,..., s} exists such that y is of Type A; in (a,b). Y is successively of Types
A1, Ag, ..., As_1 and A if numbers 1, ... 7s exist such that a = 79 < 7 < 1 <
<o <1, =b,yisof Type A; in (15-1,75), 7 = 1,2, ..., s. At the same time
if y is of Type A on (7, 7), then Type A is missing.

Let us start with some lemmas.



ON THE STRUCTURE OF SOLUTIONS 121

Lemma 1. Let y be a solution of (1) defined in an interval .J.
(a) Let j € {2,3} and Y;(t) > 0 (< 0) on J. Then Y;_; is non-decreasing
(non-increasing) on J.
(b) If Y1 >0 (Y1 <0)in J, then Y3 is non-increasing (non-decreasing) in J.

Proof. Let j =2, Y5(t) = a1y2(t) > 0in J. As, by the use of (1) a1y} (t)y2(¢) > 0,
we have yj = Y/ > 0 for almost all t € J. In the other cases the proof is similar
(in (b) the assumption (10) must be used, too). O

Remark 2. The following conclusions follow directly from Lemma 1.
Let y : (¢,d) — R? be a solution of (1).
(i) Let y be either of Type IV, ¢ = 3 or of the Type VI, ¢ = 2 or of Type VII,
i=1.Ifty, tg € (¢, d) exists such that y;(tg) = 0, then y;(¢) = 0 in [to, d).
(ii)) Let y be of Type V, ¢ € {1,2,3} and let g, g € (¢,d) exist such that
yi(to) = 0. Then y;(t) = 0 in [to, d).

Lemma 2. Let y : [t1,t2] — R® be a solution of (1), i € {1,2,3},
}/z(tl) = }/i+1(t1) = 0, }/H_z(t) ;é 0 in [tl,tz]. Then either

(14) }/z = }/H_l =01in [tl,tz] s
or there exists a number 7 such that t; < 7 < ta2, Y;(t) = Yip1(t) = 0 in [t1, 7],
(—1)Z+1}/i+1(t)}/i+2(t) > 0 in (T,tz].

Proof. Suppose that (14) is not valid, ¢ = 1 and Y3(¢) > 0 in [¢1,¢2] holds for the
simplicity. Then by the use of Lemma 1 the function Y5 is non-decreasing, Y> > 0

in [t1,1s] and Y] is non-decreasing, too. Thus, there exists 7,11 < 7 < {3 such that
Y1(t) =Ya(t) =0 on [{1, 7] and

(15) YE() + Y5 (#) >0 in (1,ts].

Suppose that Y2 = 0 at some right neighbourhood J of 7. By the use of (1) we
have ¢} (¢) = 0 in J, and thus y;(¢) = 0, Y1(¢) = 0 in J. This contradiction to (15)
proves the statement for ¢ = 1. For the other ¢ the proof is similar. a

Lemma 3. Let (10) be valid, y : J = [a,b) — R3 b < co be a solution of (1) such
3
that  |y;(1)| # 0 in J and let the following relation be not valid for t = a:
i=1

(16) aryrys <0, arasyiys > 0.

Then y is successively of Types V and {I, IV, VI, VII}.

Proof. Let us investigate y under the validity of all possible Cauchy initial con-
ditions at ¢ = a. These conditions will be expressed by the use of the functions Y;,

i=1,2,3.
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1° Yl(a)Yg(a) >0, YQ(G)YQ,(CE) >0

2° Yl(a)Yz(Cl) > 0, Yl(a)Yg(a) S 0

3° Yl(a)Yz(a) <0, Yl(a)Yg(Cl) <0

4° Yl(a) =0, YQ(G)YQ,(CE) <0

5° Yz(a) =0, Yl(a)Yg(Cl) >0

6° Yl(a)Yz(a) <0, Yg(a) =0

7° Yl(a) = Yz(a) = 0, Yg(a) ;é 0

8° Yl(a ;é 0, Yz(a = Yg(a) =0

9° Yl(a) = Yg(a) = 0, Yz(a) ;é 0.

The conditions Y;(a) = 0, i = 1,2,3 and Y;(a)Ys(a) < 0, ¥1(a)Y3(a) > 0 cannot
be valid with respect to the assumptions of the lemma.
Ad 1°. Suppose that Yi(a) > 0, Ya(a) > 0, Y3(a) > 0 (the opposite case can be
studied similarly). Then we have either Y1(t) =0, Y;(¢) > 0, j = 2,3 in J (Type
IV), or there exists ¢y such that (see Lemma 1)

Y1 (t) = 0, iIl
Yl(t) >0

Ya(t) >0, Ya(t) >0 [a,20]

in some right neighbourhood of #g.

In this case, according to Lemma 1, Y7 > 0, Y5 > 0 are non-decreasing and Y3 > 0
is non-increasing for ¢ > ¢y until Y5 > 0. Thus y is either of Type IV (Y; > 0,
J=1,2,Y3>01n J) or there exists a number ¢3, t3 > ¢y such that

Yl(t3) > Oa YZ(tS) > 0, Y3(t3) =0.

By the repetition of the considerations the following conclusions can be proved in
the same way: either y is one of Types 1V, VI, VII or numbers 13, o, {3, t exist
such that t3 < 13 <ty <ty < tg,

; Vi(t)> 0, Ya(t)>0, Ya(t)=0 in [is,fs]

( ) Yl(t) > 0, Yz(t) > 0, Yg(t) 0 1in ({3,152)

18 Yl(t) > 0, Yz(t) = 0, Yg(t) <0 1In [tz,fz]

(18) Yi(t) >0, Ya(t) <0, Ys(t)<O0 in (i2,t0)
Yl(to) =0, Yz(to) <0, Yg(to) < 0.

It is evident that the same Cauchy initial conditions (with respect to signs) at ¢y
are valid as in ¢ = a. Thus by the repetition of these considerations we can see that
the statement of the lemma is valid in the case 1°. According to the assumption
3 ,

ly: ()| > 0 of the lemma klim ' = b must be valid if y is of Type L.
i=1 — 00
Ad 2°,3°. The conditions are met in the case 1°, see (17), (18).
Ad 4°. For the simplicity, let Y2(a) > 0 be valid. According to Lemma 1 Y3 < 0,
Y3 is constant, Y3 is non-increasing for ¢ > a until Y3 = 0. Thus either Y7 = 0,
Y2 >0,Y3 < 0in J (Type VI) or there exists 7, a < 7 < b such that

(19) Yi(r) =0, Ya(r)=0, Ys(r)<0,
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or there exists 7, a < 7 < b such that
(20) Y > 0, Yy > 0, Y3 <0

holds in some right neighbourhood of ¢ = 7. The case (20) is studied in 2°. Let
(19) be valid. Then according to Lemma 2 either Y1 = Y2 =0, Y3 < 0 in J (Type
IV) or there exists 7, 7 < 7 < b such that we have Y1(¢) = Y2(¢) = 0, Y3(¢) < 0
in [r,71],Y1(t) €0, Ya() < 0, Y3(¢) < 0 in some right neighbourhood of ¢t = .
But this case is studied in 1°.

Ad 5°,6°. These cases can be studied similarly to 4°.

Ad 7°,8°,9°. The case 7° is met in 4°, see (19). Similarly, the cases 8°,9° are
investigated in 5°,6°, respectively. The lemma is proved. a

Remark 3. (i) It is seen from the proof of the Lemma 3 that the following
statement is valid.

Let i € {1,2,3} and (7) be valid only for i. Then ¢{ =# k€ N.

(ii) Let y : [a,b) — R3 be a non-continuable solution of the Type {I, IV, VI,
VII}. Then b may be also finite as it is seen from the following example. For such
solutions for (2) see [5].

Example. v} = 0, v, = y2ys, v5 = 0. Thus we can put a; = as = 1, ag = —1.
The solution y; =0, yo = ﬁ, ys = 1, defined in (—oc, 1) is non-continuable.
3
Lemma 4. Lety: (a,b] — R? be a solution of (1), (13) hold at b and  |y;(b)] >
i=1
0. Then y is of Type V on (a,b).
Proof. Let i € {1,2,3},Y;(t) =0on J = (5,b],a <7, Y; #01in (a, 7). If such

7; do not exist, put ; = b. According to Lemma 1 Y;42 is constant and by the use
of (13) and Lemma 1 Y;41(¢)Yi42(¢) < 0in J. Thus the statement is valid in (7, 8],
T = 1r<11j£137'i. Let 7 > a. Thus (13) holds at ¢ = 7 and Y; # 0,4 = 1,2, 3 in some

left neighbourhood J; of t = 7. From this, according to Lemma 1, Y1 (¢)Y5(t) < 0,
Y1(1)Ys(t) > 0 in J,. We prove indirectly that these inequalities hold in (a, 7).
Thus suppose that there exists 71 € (a, 7) such that

(21) Yi(n)=0, Yi(¥) >0, Yy(t)<0 for te(m,7).
In the other cases the proof is similar. From this and from Lemma 1 Y] is non-
increasing in (71, 7) that contradicts to (21). O
Lemma 5. Let y: [c,d] — R3, ¢ < d be a solution of (1),
3
(22) lyi(t)] > 0 in (e, d).
i=1

(i) Ifcis the Z-point of y then y is of the Type II in some right neighbourhood
of c.

(ii) If d is the Z-point of y then y is of the Type either I or V in some left
neighbourhood of d.
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Proof. (i) At first, we consider that y; do not change its sign in some right
neighbourhood .J of t = ¢, e.g.

(23) y1 >0 in J.

Then, by the use of Lemma 1, we have successively: Y; is non-increasing, ¥; < 0,
i =3,2,1in J. From this and from (23) y; = 0 holds in J. As ya(c) = y3(c) = 0,
it follows from Lemma 1 that y2 = y3 = 0 in J. The contradiction to (22) proves
that there exists a sequence {¢}, k = 0,—1,—2,... of zeros of y; tending to c.
The behaviour of y in [t},t}], k € N is studied in Lemma 3 and thus y is of Type
ITin J.

(ii) If y is not of Type V in a left neighbourhood of ¢ = d, then there exists
7, ¢ < 7 < d such that (16) does not hold at ¢ = 7. With respect to (22) the
behaviour of y in [r,b) is studied by Lemma 3. As y;(d) = 0, ¢ = 1,2,3 Types
IV, VI, VII are impossible and y must be of Type I in some left neighbourhood of
t = d. The lemma has been proved. a

Theorem 1. Let (10) be valid and let y : (a,b) — R® be a non-trivial solution of
(1).

(i) Let Z-points of y do not exist in (a,b). Then y is successively of Types {V,
IL, IV, VI, VII} and {I, IV, VI, VII} in (a,b).

(ii) Let 7, 7 € (a,b) be Z-point of y and (22) hold in (a, 7). Then y is either
of the Type V in (a,7) or there exists 71, a < 1 < T such that y is of Type I in
(m1,7) and of Type {II, IV, V, VI, VII} in (a, ). Moreover, if y is of Type V in
(a,7) then the inequalities (13) are sharp.

(iii) Let 7,1, a < 7 < 11 < b be Z-points of y such that (22) holds in (r, 7).
Then y is of Type IIl in (7, 71).

(iv) Let 7, a < 7 < b be Z-point of y such that (22) holds in (r,b). Then T,
a < 1 < b exists such that y is of Type Il in (7, 7) and of Type {I, IV, VI, VII}
in (71, ).

(v) Then there exists at most one maximal interval J C (a,b) with Property V.

Proof. (i) According to the assumptions (22) holds for ¢ € (a,b). Let ¢ € (a,b).
If the Cauchy initial conditions at ¢ = ¢ do not fulfil (16), then by the use of
Lemma 3 y is successively of Types V and {I, IV, VI, VII} in [e, b). Let (16) be
valid at ¢. Then y is either of the Type V in [¢,b), or 7, T > ¢ exists such that
y1(T)y2(m)ys(7) = 0. As (22) is valid at 7, the structure of y in [r,d) is studied
by Lemma 3. Thus y is successively of Types V and {I, IV, VI, VII} in [¢, ). The
considerations about the structure of y in (a, ¢] can be made similarly to Lemma
3 (use also Lemma 4).

(ii) The first statement follows from the proved part (i) and Lemma 5(ii). Let
y be of Type V in (a, 7). We prove by the indirect proof that the inequalities (13)
are sharp. Thus suppose that there exists a left neighbourhood J of 7 such that
y1(t) = 0in J (see Remark 2, (ii), too). Then Ya(r) = Y3(r) =0,Y2 < 0,¥3 >0
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in J. By the use of Lemma 1 and from this, we have successively: Y3 =0, Y =0
in J. The contradiction to (22) proves this part.

(iii) The statement is a consequence of Lemmas 4 and 5.

(iv) The conclusion follows directly from the proved part (i) and Lemma 5(i).

(v) The interval with Property V may exist only in the Type V. The result
follows from this and from Remark 2, (ii). O

Remark 4. If y is of Type {IV, VI, VII} in some right neighbourhood of a in the
cases (i), (ii) of Theorem 1, then the number 7 from the definition of these cases
is equal to a.

Theoretically, an infinite number of Z-points may exist. The following theorem
gives some conditions for the system of differential equations (2) under which
Z-points do not exist. Thus it solves the problem of uniqueness of the Cauchy
problem with zero conditions.

Theorem 2. Let ¢ > 0,2 >0, K > 0 and y be a non-trivial solution of (2), (3),
(10) defined in (a,b). Let continuons functions a; : R x [0,¢]* — Ry, g; : [0,¢] —
Ry, 1=1,2,3 exist such that g; are non-decreasing,

(24) |fi(tax1a$2ax3)| § ai(ta |$Z|a |x2+2|)gl(|xl+1|) jH R X [_EaE]Sa Z = 1a2a3

and

(25) 91(Z92(Eg3(2))) < Kz, z€]0,¢]

hold. Then y has no Z-point in (a,b) and the statement of Theorem 1, (i) is valid.

Proof. On the contrary, suppose that Z-point 7 € (a,b) exists. Without loss of
generality we can suppose that there exists a right neighbourhood of 7 in which y
is not trivial (for the left neighbourhood the proof is similar).

As y;(r) =0,4=1,2,3 then an interval J; = [r, 7+ 6], § > 0 exists such that

(26) Wl <= ted,

By the use of Lemma 1 y; i1s not trivial in any right neighbourhood of 7. Let ¢
and J = [r,7 4+ 61], 0 < 8 < é be such that 0 < ¢ < ¢,

(27) @K <1, ¢ max g;j(s) <e¢, max max  a;(t, 21, x0)dt <eq.
0<s<e ji=1,2,3 0<z,22<e
J=123 J

Then by the use of (24), (26)

t

ly(OI S 1y, Y1 (D), yira (D) dE < @it [y (D], [yi2(D)]) dE <
T J
X gi(meajx|yi+1(5)|), ted, i=1,2,3.
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Thus
I?Ea}(|yi(5)| < 51gi(1§1€a}(|yi+1(5)|)a i=1,2,3.

From this and by the use of (25), (27) we get: v = maJX|y1(5)| > 0,
s€

v < €1g1(61g2(61g3(1/))) < €1g1(5g2(5g3(1/))) < aKv < v This contradiction
proves the theorem. a

The structure of solutions of (4), (5) (or (6)) can be described more precisely.
Note that a1 =as =1, ag = a = —1.

Theorem 3. Let « = —1, z : (a,b) — R be a non-trivial solution of (4), (5).

(i) Let ¢ > 0, K > 0 and let continuous functions d : Ry x [0,¢]*> — R4,
¢ : [0,¢] — Ry exist such that g is non-decreasing, |f(t,x1, 2, 23)| < d(t, |22,
lza))g(|z1]), t € R, |2| < e, ¢ = 1,2,3, and g(x1) < Kay for 1 € [0,¢] hold.
Let y; = Li_1x, i = 1,2,3. Then = has no Z-point on (a,b) and the statement of
Theorem 1, (i) is valid.

(ii) Let =€ CY(R). Then x has at most one Z-interval and one of the two
following relations holds:
1° y is successively of Types {V, II, IV, VI, VII} and {I, IV, VI, VII} in (a,b),
2° y is successively of Types V, VIII, II and {I, IV, VI, VII} in (a,b);
if y is not of Type VIII in some left neighbourdhood of b, then Types VIII
and II are both present.

Proof. (i) It follows from (6) that the relation
r(ry=2(r)=2"(1) = 0<= yi(r) =0, i=1,2,3

holds. Put g1(#) = g2(x) = z, g3 = ¢g. From this the statement is a consequence of

Theorem 2.
3
(ii)) Let 7 € (a,b) be Z-point such ly:(t)] > 0 in some left neighbourhood J

i=1
of t = 7. According to Lemma b y is either of Type I or of Type V. We prove by
the indirect proof that it is of Type V. Thus suppose that y is of Type I'in J. Let
J1 = [, 7], J1 C J be such interval that

o8) A

T ds as(s)
in
2 sed ay(s)

1
-2 220 >,
2, ass) r?ea}( ai(s) 20

Let us define for ¢t € J;
tods 1 as(?) tods
Ft) = — —ys3(t it —
() N az(s)yS( )yl()+2a1(t) N az(s)

Then, by the use of (4), (5), (6) and (28) we have for t € J;

Y3 (1) + v ()ya(t) .-

tods 3
F'(t) = — —
O== L%

as(t) L

o a2(5)

y3(t) > 0.

N | —
=
i
VannS
o~
—
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Thus F' is non-decreasing. It follows from (11) that we have for an arbitrary zero
B=1; of yi, B € (a,7)

_laz(ﬁ) Fods
_2a1(ﬁ) o az2(s)

F(p) y2(8) >0, F(r)=0,

and we receive the contradiction to F' being non-decreasing. Thus y is of Type V
in J and by use of Lemma 4 y is of Type V in (a, 7). From this there exists at
most one Z-interval in (a,b) and the statement follows from Theorem 1. a

Remark 5. (i) Let y be a solution of (4) of Type {I, II, III, TV, VI, VII}. Then it
follows from Remark 3(i) that 2 =, k € N, i =1,2 holds (see (11)). Moreover,
if (9) is valid, then {3 = 3, too.

(ii) Theorem 1 generalizes and enlarges some results of [1]. Theorem 3 general-
izes some results of [4] (for (4)) and of [2] (for the differential equation of the third
order).

(iii) Theorem 2 generalizes the well-known condition for the non-existence of 7
points, see [2, 5]:

€>0a |fi(t,l‘1,l‘2,l‘3)|§di(t) |l‘]|, tERa |xi|§€a Z:1a2a3
ji=1

(iv) Some conditions are given for (4) in [6] under which solutions of Types VI,
VII do not exist. The paper [3] contains conditions under which solutions of (2) of
Types III, VI, VII, b = oo do not exist (so called Property A of (2)).

(v) Let y : (a,b) — R? be non-continuable solution of (4), (5) and be of Type
IV in some left neighbourhood of 4. Then b = oo (use (6)).

3. Case ajasas = 1

This chapter is devoted to the case
(29) 1z = 1.

The results will be only given. The proofs are similar to Chapter 2, or we can use
the transformation of the independent variable T' = —t, ¢t € (a,b), y(t) = y(7T).
Then (1) is transformed into —c,; G (T)gi+1(T) > 0, g1 (T) = 0 = yi(T) = 0,
i=1,2,3, T € (=b,—a). Thus the system has the same form as (1), the formula
(10) is transformed into (29). This transformation conserves zeros, Z-points and
Z-intervals.

Let us consider the following types of solutions of (1). Let y : J = (¢, d) — R3.
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Type I. Sequences {ti}, {ti}, i=1,2,3 k= k; ki —1,k; —2,... exist such that
k= 1, ko € {0,1},]936{0,]92},152 e J, khm t% = ¢ and

ho<i<i<@<i<i<i,
Yi(t) =0 for tel[ti,it], Yi(t)#0 for tel[ti,ti],
(30) (1Y =LY ()Yi(t) > 0 for te(fh_,,t)
<0 for te(f,th),
j=2,3; i1=1,2,3, forall admissible %
holds. Moreover 3;y; = —1 where 5;(7;) is sign¥; in the interval ({21—1’1521) (in
(B, d), i=1,2,3.

Type IL. Sequences {t{}, {f},i=1,2,3,k = k;, kit1, ... exist such that k; = 1,
ks € {0,1}, ko € {0, ko), 88 € J, klim ti = d and (30) hold. Moreover B;y; = —1

where §;(7;) is sign¥; in the interval (c,tﬁcl) (in (f};l,téﬁl)); i=1,2,3.
Type IIL. Sequences {t{}, {{i}, i = 1,2,3, k € Z exist such that t{ € J,
klim ti =, klim ti = d and (30) holds for k € Z.

Type IV. 7 < d exists such that

Y;,i € {1,2,3} has a finite number of Z — intervals [ti, #.] in

31
(31) (r,d), (30) holds until 7 < d,

|Y1], |Ya| are non-increasing, |Ys| is non-decreasing and

Yi (t)Yz(t) <0, Yl(t)Yg(t) >0 n (C, T).

3
Type V. ly:(6)| > 0in J; |Y1], |Y2|, | V5| are non-decreasing and
=1

i()Yo(t) 20,  Yi()Ys(t) >0,  Ya()Y3(t) >0, t€J.

Type VI. There exists 7 < d such that (31) holds; |Y1], |Y3| are non-increasing,
|Y2] is non-decreasing and

Vi()Ya(1) <0, Yi(O)Ya(t) <0 in (c,7).

Type VII. There exists 7 < d such that (31) holds; |Y1] is non-decreasing, |Y3|,
|Y3] are non-increasing and

Vi()Ya(t) >0, Ya(O)Ya(t) <0 in (c,7).

Type VIIL y is trivial in J.
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Theorem 4. Let (29) be valid and let y : (a,b) — R?® be a non-trivial solution of
(1).

(i) Let Z-points of y do not exist in (a,b). Then y is successively of Types {I,
IV, VI, VII} and {II, V, IV, VI, VII} in (a,b).

(ii) Let 7, 7 € (a,b) be Z-point of y and (22) hold in (a, 7). Then 1, a <71 < b
exists such that y is of Type I in (71, b) and of Type {I, IV, VI, VII} in (a, ).

(iti) Let 7, 7, a < 7 < 1 < b be Z-points of y such that (22) holds in (1, 7).
Then y is of Type IIl in (7, 71).

(iv) Let 7, T € (a,b) be Z-points of y and (22) hold in (7,b). Then y is either
of the Type V in (7,b) or there exists 7, T < 7 < b such that y is of Type I in
(t,m) and of Type {II, IV, V, VI, VII} in (71, b).

(v) Then there exists at most one maximal interval J C (a,b) with Property V.

Theorem 5. Let the assumptions of Theorem 2 be valid and at the same time
the validity of (29) is supposed instead of (10). Then y has no Z-point on (a,b)
and the statement of Theorem 4, (i) is valid.

Theorem 6. Let « = 1, z : (a,b) — R be a non-trivial solution of (4), (5).

(i) Let the assumptions of Theorem 3(i) be valid. Then x has no Z-point in
(a,b) and the statement of Theorem 4, (i) holds.

(ii) Let Z—f € C1(R). Then x has at most one Z-interval and one of the two
following relations holds:

1° y is successively of Types {I, IV, VI, VII} and {II, IV, V, VI, VII} in (a,b).

2° y is successively of Types {I, IV, VI, VII}, II, VIIT and V in (a,b). If y
is not of the Type VIII in some right neighbourhood of a, then Types I1
and VIII are both present.

Remark 6. Similar conclusions hold as in Remark 5.

REFERENCES

[1] Bartusek, M., On Oscillatory Solutions of Differential Inequalities, Czech. Math. J., 42 (117)
1992, 45-52.

[2] Bartusek, M., Asymptotic Properties of Oscillatory Solutions of Differential equations of the
N-th Order, Folia F. S. N. Univ. Brunensis Masarykianae, Masaryk University, Brno, 1993,
92 pp-

[3] Yamrypusa, T. A., O6 ocyusrdyuonn® ceoficmear cucmem HeAUNeLnm 06b1KN0E EHNBLT
dudppepenyuarvnoe ypaenenul, Tp. un-ta npurna. mat. T6unuccrkoro yu-ta, 16, 1983,
163-204.

[4] Dosla, Z., Bartusek, M., On Solutions of a Third Order Nonlinear Differential Equation,

Nonlinear analysis (to appear).



130 MIROSLAV BARTUSEK

[5] Kurypanse, . T., Yanrypusa, T. A., Acumnmomurnecrue ceoficmea pewenusl neasmonom-
wowr obnrnoeennns Juddepenyuarvuns ypaenenul, Hayra, Mocksa, 1990 429 c.

[6] Svec, M., Oscillatory Properties of Solutions to a Differential Inclusion of Order n, Czech.
Math. J., 42 (117) 1992, 35-43.

MIROSLAV BARTUSEK

DEPARTMENT OF MATHEMATICAL ANALYSIS

FAcULTY OF SCIENCE MASARYK UNIVERSITY

JANAGKOVO NAM. 24, 662 95 Brno, CZECH REPUBLIC



		webmaster@dml.cz
	2012-05-10T10:59:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




