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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 117 { 130ON THE STRUCTURE OF SOLUTIONS OF ASYSTEM OF THREE DIFFERENTIAL INEQUALITIESMiroslav Bartu�sekAbstract. The aim of this paper is to study the global structure of solutions ofthree di�erential inequalities with respect to their zeros. New information for thedi�erential equation of the third order with quasiderivatives is obtained, too.1. IntroductionThe aim of this paper is to investigate a global structure of solutions withrespect to zeros of a system of di�erential inequalities�iy0i(t)yi+1 � 0 ;yi+1(t) = 0) y0i(t) = 0; i = 1; 2; 3; t 2 J(1)where �i 2 f�1; 1g, y4 = y1, J = (a; b), �1 � a < b � 1.y = (y1; y2; y3) is called a solution of (1) if yi : J ! R, R = (�1;1) is locallyabsolute continuous and (1) holds for all t 2 J such that y0i exists.Put yi+3k = yi, i = 1; 2; 3, k 2 Z, Z = f: : : ;�1; 0; 1; : : :g.Two special cases of (1) which are often studied.(a) A system of three di�erential equationsy0i = fi(t; y1; y2; y3); i = 1; 2; 3;(2) �ifi(t; x1; x2; x3)xi+1 � 0;xi+1 = 0 ) fi(t; x1; x2; x3) = 0 in D; i = 1; 2; 3(3)where �i 2 f�1; 1g, x4 = x1, fi : D = R�R3 ! R satis�es the local Carath�eodoryconditions, i = 1; 2; 3. See e.g. [2,5] and the references herein. y = (y1; y2; y3),de�ned in J , is called a solution of (2) if it is locally absolute continuous and (2)holds for almost all t 2 J .1991 Mathematics Subject Classi�cation : 34C10, 34A40, 34C15.Key words and phrases: system of three di�erential equations, oscillatory solutions, non-oscillatory solutions, structure of solutions.Received May 14, 1993.



118 MIROSLAV BARTU�SEK(b) The di�erential equation with the quasi-derivatives of the third orderL3x(t) = f(t; x; x0; x00) ;(4) �f(t; x1; x2; x3)x1 � 0; f(t; 0; x2; x3) = 0(5)where � 2 f�1; 1g, f : R � R3 ! R ful�ls the local Carath�eodory conditions,aj : R ! R are continuous, aj(t) > 0 for t 2 R, j = 0; 1; 2; 3 and Ljx is thej-th quasi-derivative of x : L0x = a0(t)x, Lix = ai(t)(Li�1x)0, i = 1; 2; 3. Further,suppose that a0 2 C1(R) if f(t; x1; x2; x3) � f(t; x1; x2) and a0 2 C2(R), a1 2C1(R) if f depends in x3, too.By the use of a standard transformation we can see that (4), (5) is equivalentto (2), (3): yj = Lj�1x, j = 1; 2; 3,y01(t) = y2(t)a1(t) ; y02(t) = y3(t)a2(t) ;y03(t) = 1a3(t)f � t; y1a0 ; y2a1a0 � a00y1a20 ; y3a0a1a2 � y2a0a1 � a01a1 + 2a00a0 �(6) � y1a30a1 (a0a000a1 � 2a1a020 )� =. �f (t; y1; y2; y3) :Note that � �f (t; y1; y2; y3)y1 � 0, �f (t; 0; y2; y3) = 0, �1 = �2 = 1, �3 = �.In [2, 4] the structure of oscillatory solutions (de�ned in the usual sense) hasbeen studied for the di�erential equation (4), (5) and its special forms. It is shownthat there exists a relation between zeros of the derivatives of a solution. Further,in [1] oscillatory solutions of (1) are investigated under the validity of the relation(7) y0i(t) = 0) yi+1(t) = 0; i = 1; 2; 3 :Especially, it is proved that zeros of yi, i = 1; 2; 3 are simple in some neighbourhoodof its cluster point, i.e. if yi(t) = 0, then yi+1(t) 6= 0. In [6] non-oscillatory solutionsof di�erential inclusions for which (1) holds are studied.In the present paper a generalization and an extension of these results to thesystem (1) are going to be made. Some new results for (4) are gained, too.Note that (7) is ful�lled if it is supposed that�ifi(t; x1; x2; x3)xi+1 > 0 for xi+1 6= 0 ;= 0 for xi+1 = 0; i = 1; 2; 3(8)is valid for (2) instead of (3). Similarly, (7) is valid if(9) �f(t; x1; x2; x3)x1 > 0 for x1 6= 0; f(t; 0; x2; x3) = 0holds for (4) instead of (5).



ON THE STRUCTURE OF SOLUTIONS 119De�nition. Let y : (a; b) ! R3 be a solution of (1). Then y is called non-continuable if two following relations are valid(i) either a = �1 or, if �1 < a, then limt!a+ sup 3
Pi=1 jyi(t)j =1(ii) either b =1 or, if b <1, then limt!b� sup 3

Pi=1 jyi(t)j =1 .y is called trivial if yi(t) = 0 in (a; b), i = 1; 2; 3.In our further considerations the points of the zero initial conditions will playan important role. The \non-trivial" ones are de�ned in the followingDe�nition. Let y : J = (a; b) ! R3 be a solution of (1). Let c be such a pointthat c 2 J , yi(c) = 0, i = 1; 2; 3 holds, and in any neighbourhood I of c thereexists � 2 I such that 3
Pj=1 jyj(� )j > 0. Then c is called Z-point of y.Let i 2 f1; 2; 3g, J1 � J be either J1 = [a1; b) or J1 = (a; b1] or J1 = [a1; b1],a1; b1 2 J . J1 is called Z-interval of yi if yi = 0 in J1 and two following relationshold:(i) yi is non-trivial in any left neighbourhood of t = a1 if J1 = [a1; b) orJ1 = [a1; b1];(ii) yi is non-trivial in any right neighbourhood of t = b1 if J1 = (a; b1] orJ1 = [a1; b1].Property V is valid in the interval J1 if there exists an index i 2 f1; 2; 3g suchthat J1 is Z-interval of both yi, yi+1 and yi+2 6= 0 in J1.Notation. Let y be a solution of (1). Put Y1 = y1, Y2 = �1y2, Y3 = �1�2y3,Yi+3k = Yi, k 2 Z, i = 1; 2; 3.2. Case �1�2�3 = �1In this chapter the case(10) �1�2�3 = �1will be studied. The validity of (10) will be supposed in all the considerations.For the study of the structure of solutions of (1) the following types will bede�ned. Let y : J = (c; d)! R3.Type I. Sequences ftikg, f�tikg, i = 1; 2; 3, k = ki; ki+1; : : : exist such that k1 = 1,k2 2 f0; 1g, k3 2 f0; k2g, tik 2 J , limk!1 tik = d and(11) 8
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t1k � �t1k < t3k � �t3k < t2k � �t2k < t1k+1;Yi(t) = 0 for t 2 [tik; �tik]; Yi(t) 6= 0 for t �2 [tik; �tik] ;Yj(t)Y1(t) > 0 for t 2 (�t1k; tjk) ;< 0 for t 2 (�tjk; t1k+1) ;j = 2; 3; i = 1; 2; 3; for all admissible k



120 MIROSLAV BARTU�SEKhold. Moreover, �i
i = �1 where �i(
i) is signYi in the interval (c; tiki)(in (�tiki ; tiki+1)), i = 1; 2; 3 .Type II. Sequences ftikg, f�tikg, i = 1; 2; 3, k = ki; ki�1; ki�2; : : : , exist such thatk1 = 1, k3 2 f0; 1g, k2 2 f0; k3g, tik 2 J , limk!�1 tik = c and (11) hold. Moreover,�i
i = �1 where �i(
i) is signYi in the interval (�tiki�1; tiki)((�tiki ; d)), i = 1; 2; 3.Type III. Sequences ftikg, f�tikg, i = 1; 2; 3, k 2 Z exist such that tik 2 J ,limk!�1 tik = c, limk!1 tik = d and (11) holds for k 2 Z.Type IV. There exists � � c such that(12) � Yi; i 2 f1; 2; 3g has a �nite number of Z � intervals [tik; �tik] in(c; � ) and (11) holds until c < � ;jY1j, jY2j are non-decreasing, jY3j is non-increasing and Y1(t)Y2(t) > 0, Y1(t)Y3(t) �0 holds in (�; d).Type V. 3
Pi=1 jYi(t)j > 0; jYij, i = 1; 2; 3 are non-increasing,(13) Y1(t)Y2(t) � 0 ; Y1(t)Y3(t) � 0 ; Y2(t)Y3(t) � 0 ; t 2 J :Type VI. There exists � � c such that (12) holds; jY1j, jY3j are non-decreasing,jY2j is non-increasing,Y1(t)Y2(t) � 0 ; Y1(t)Y3(t) < 0 in (�; b) :Type VII. There exists � � c such that (12) holds; jY1j is non-increasing, jY2j; jY3jare non-decreasing andY1(t)Y2(t) � 0 ; Y2(t)Y3(t) > 0 in (�; b) :Type VIII. y is trivial in J .Remark 1. The solutions of Type either I or III are ussually called oscillatory,the ones of Types IV-VII are non-oscillatory. The solution of Type V, b = 1 iscalled Kneser solution.De�nition. Let y : (a; b) ! R3 be a solution of (1), Ai be one of Types I-VIII,i = 0; 1; 2; : : : ; s. Then y is of Type fA1; A2; : : : ; Asg in (a; b) if the index j, j 2f1; 2; : : : ; sg exists such that y is of Type Aj in (a; b). Y is successively of TypesA1; A2; : : : ; As�1 and As if numbers �0; : : : �s exist such that a = �0 � �1 � �2 �� � � � �s�1 � �s = b, y is of Type Aj in (�j�1; �j), j = 1; 2; : : :; s. At the same timeif y is of Type A on (�; � ), then Type A is missing.Let us start with some lemmas.



ON THE STRUCTURE OF SOLUTIONS 121Lemma 1. Let y be a solution of (1) de�ned in an interval J .(a) Let j 2 f2; 3g and Yj(t) � 0 (� 0) on J . Then Yj�1 is non-decreasing(non-increasing) on J .(b) If Y1 � 0 (Y1 � 0) in J , then Y3 is non-increasing (non-decreasing) in J .Proof. Let j = 2, Y2(t) = �1y2(t) � 0 in J . As, by the use of (1) �1y01(t)y2(t) � 0,we have y01 = Y 01 � 0 for almost all t 2 J . In the other cases the proof is similar(in (b) the assumption (10) must be used, too). �Remark 2. The following conclusions follow directly from Lemma 1.Let y : (c; d)! R3 be a solution of (1).(i) Let y be either of Type IV, i = 3 or of the Type VI, i = 2 or of Type VII,i = 1. If t0, t0 2 (c; d) exists such that yi(t0) = 0, then yi(t) = 0 in [t0; d).(ii) Let y be of Type V, i 2 f1; 2; 3g and let t0, t0 2 (c; d) exist such thatyi(t0) = 0. Then yi(t) = 0 in [t0; d).Lemma 2. Let y : [t1; t2] ! R3 be a solution of (1), i 2 f1; 2; 3g,Yi(t1) = Yi+1(t1) = 0, Yi+2(t) 6= 0 in [t1; t2]. Then either(14) Yi � Yi+1 � 0 in [t1; t2] ;or there exists a number � such that t1 � � < t2, Yi(t) = Yi+1(t) = 0 in [t1; � ],(�1)i+1Yi+1(t)Yi+2(t) > 0 in (�; t2].Proof. Suppose that (14) is not valid, i = 1 and Y3(t) > 0 in [t1; t2] holds for thesimplicity. Then by the use of Lemma 1 the function Y2 is non-decreasing, Y2 � 0in [t1; t2] and Y1 is non-decreasing, too. Thus, there exists � , t1 � � < t2 such thatY1(t) = Y2(t) = 0 on [t1; � ] and(15) Y 21 (t) + Y 22 (t) > 0 in (�; t2] :Suppose that Y2 = 0 at some right neighbourhood J of � . By the use of (1) wehave y01(t) = 0 in J , and thus y1(t) = 0, Y1(t) = 0 in J . This contradiction to (15)proves the statement for i = 1. For the other i the proof is similar. �Lemma 3. Let (10) be valid, y : J = [a; b)! R3, b �1 be a solution of (1) suchthat 3
Pi=1 jyi(t)j 6= 0 in J and let the following relation be not valid for t = a:(16) �1y1y2 < 0 ; �1�2y1y3 > 0 :Then y is successively of Types V and fI, IV, VI, VIIg.Proof. Let us investigate y under the validity of all possible Cauchy initial con-ditions at t = a. These conditions will be expressed by the use of the functions Yi,i = 1; 2; 3.



122 MIROSLAV BARTU�SEK1� Y1(a)Y3(a) � 0, Y2(a)Y3(a) > 02� Y1(a)Y2(a) > 0, Y1(a)Y3(a) � 03� Y1(a)Y2(a) � 0, Y1(a)Y3(a) < 04� Y1(a) = 0; Y2(a)Y3(a) < 05� Y2(a) = 0; Y1(a)Y3(a) > 06� Y1(a)Y2(a) < 0; Y3(a) = 07� Y1(a) = Y2(a) = 0; Y3(a) 6= 08� Y1(a) 6= 0; Y2(a) = Y3(a) = 09� Y1(a) = Y3(a) = 0; Y2(a) 6= 0 .The conditions Yi(a) = 0, i = 1; 2; 3 and Y1(a)Y2(a) < 0, Y1(a)Y3(a) > 0 cannotbe valid with respect to the assumptions of the lemma.Ad 1�. Suppose that Y1(a) � 0, Y2(a) > 0, Y3(a) > 0 (the opposite case can bestudied similarly). Then we have either Y1(t) � 0, Yj(t) > 0, j = 2; 3 in J (TypeIV), or there exists �t0 such that (see Lemma 1)Y1(t) = 0; Y2(t) > 0; Y3(t) > 0 in [a; �t0]Y1(t) > 0 in some right neighbourhood of �t0 :In this case, according to Lemma 1, Y1 > 0, Y2 > 0 are non-decreasing and Y3 > 0is non-increasing for t > �t0 until Y2 > 0. Thus y is either of Type IV (Yj > 0,j = 1; 2, Y3 � 0 in J) or there exists a number t3, t3 > �t0 such thatY1(t3) > 0; Y2(t3) > 0; Y3(t3) = 0 :By the repetition of the considerations the following conclusions can be proved inthe same way: either y is one of Types IV, VI, VII or numbers �t3, t2, �t2, t0 existsuch that t3 � �t3 < t2 � �t2 < t0,(17) � Y1(t) > 0; Y2(t) > 0; Y3(t) = 0 in [t3; �t3]Y1(t) > 0; Y2(t) > 0; Y3(t) < 0 in (�t3; t2)
� Y1(t) > 0; Y2(t) = 0; Y3(t) < 0 in [t2; �t2]Y1(t) > 0; Y2(t) < 0; Y3(t) < 0 in (�t2; t0)(18) Y1(t0) = 0; Y2(t0) < 0; Y3(t0) < 0 :It is evident that the same Cauchy initial conditions (with respect to signs) at t0are valid as in t = a. Thus by the repetition of these considerations we can see thatthe statement of the lemma is valid in the case 1�. According to the assumption3

Pi=1 jyi(t)j > 0 of the lemma limk!1 tik = b must be valid if y is of Type I.Ad 2�; 3�. The conditions are met in the case 1�, see (17), (18).Ad 4�. For the simplicity, let Y2(a) > 0 be valid. According to Lemma 1 Y3 < 0,Y3 is constant, Y2 is non-increasing for t � a until Y1 � 0. Thus either Y1 � 0,Y2 > 0, Y3 < 0 in J (Type VI) or there exists � , a < � < b such that(19) Y1(� ) = 0; Y2(� ) = 0; Y3(� ) < 0 ;



ON THE STRUCTURE OF SOLUTIONS 123or there exists � , a < � < b such that(20) Y1 > 0; Y2 > 0; Y3 < 0holds in some right neighbourhood of t = � . The case (20) is studied in 2�. Let(19) be valid. Then according to Lemma 2 either Y1 � Y2 � 0, Y3 < 0 in J (TypeIV) or there exists �1, � � �1 < b such that we have Y1(t) = Y2(t) = 0, Y3(t) < 0in [�; �1],Y1(t) � 0, Y2(t) < 0, Y3(t) < 0 in some right neighbourhood of t = �1.But this case is studied in 1�.Ad 5�; 6�. These cases can be studied similarly to 4�.Ad 7�; 8�; 9�. The case 7� is met in 4�, see (19). Similarly, the cases 8�; 9� areinvestigated in 5�; 6�, respectively. The lemma is proved. �Remark 3. (i) It is seen from the proof of the Lemma 3 that the followingstatement is valid.Let i 2 f1; 2; 3g and (7) be valid only for i. Then tik = �tik, k 2 N .(ii) Let y : [a; b) ! R3 be a non-continuable solution of the Type fI, IV, VI,VIIg. Then b may be also �nite as it is seen from the following example. For suchsolutions for (2) see [5].Example. y01 = 0, y02 = y22y3, y03 = 0. Thus we can put �1 = �2 = 1, �3 = �1.The solution y1 � 0, y2 = 11�t , y3 � 1, de�ned in (�1; 1) is non-continuable.Lemma 4. Let y : (a; b]! R3 be a solution of (1), (13) hold at b and 3
Pi=1 jyi(b)j >0. Then y is of Type V on (a; b).Proof. Let i 2 f1; 2; 3g, Yi(t) = 0 on J = (�i; b], a � �i, Yi 6= 0 in (a; �i). If such�i do not exist, put �i = b. According to Lemma 1 Yi+2 is constant and by the useof (13) and Lemma 1 Yi+1(t)Yi+2(t) � 0 in J . Thus the statement is valid in (�; b],� = min1�i�3 �i. Let � > a. Thus (13) holds at t = � and Yi 6= 0, i = 1; 2; 3 in someleft neighbourhood J1 of t = � . From this, according to Lemma 1, Y1(t)Y2(t) < 0,Y1(t)Y3(t) > 0 in J1. We prove indirectly that these inequalities hold in (a; � ).Thus suppose that there exists �1 2 (a; � ) such that(21) Y1(�1) = 0; Y1(t) > 0; Y2(t) � 0 for t 2 (�1; � ) :In the other cases the proof is similar. From this and from Lemma 1 Y1 is non-increasing in (�1; � ) that contradicts to (21). �Lemma 5. Let y : [c; d]! R3, c < d be a solution of (1),(22) 3

Xi=1 jyi(t)j > 0 in (c; d) :(i) If c is the Z-point of y then y is of the Type II in some right neighbourhoodof c.(ii) If d is the Z-point of y then y is of the Type either I or V in some leftneighbourhood of d.



124 MIROSLAV BARTU�SEKProof. (i) At �rst, we consider that y1 do not change its sign in some rightneighbourhood J of t = c, e.g.(23) y1 � 0 in J :Then, by the use of Lemma 1, we have successively: Yi is non-increasing, Yi � 0,i = 3; 2; 1 in J . From this and from (23) y1 � 0 holds in J . As y2(c) = y3(c) = 0,it follows from Lemma 1 that y2 � y3 � 0 in J . The contradiction to (22) provesthat there exists a sequence ft1kg, k = 0;�1;�2; : : : of zeros of y1 tending to c.The behaviour of y in [t1k; t10], k 2 N is studied in Lemma 3 and thus y is of TypeII in J .(ii) If y is not of Type V in a left neighbourhood of t = d, then there exists� , c � � < d such that (16) does not hold at t = � . With respect to (22) thebehaviour of y in [�; b) is studied by Lemma 3. As yi(d) = 0, i = 1; 2; 3 TypesIV, VI, VII are impossible and y must be of Type I in some left neighbourhood oft = d. The lemma has been proved. �Theorem 1. Let (10) be valid and let y : (a; b)! R3 be a non-trivial solution of(1).(i) Let Z-points of y do not exist in (a; b). Then y is successively of Types fV,II, IV, VI, VIIg and fI, IV, VI, VIIg in (a; b).(ii) Let � , � 2 (a; b) be Z-point of y and (22) hold in (a; � ). Then y is eitherof the Type V in (a; � ) or there exists �1, a � �1 < � such that y is of Type I in(�1; � ) and of Type fII, IV, V, VI, VIIg in (a; �1). Moreover, if y is of Type V in(a; � ) then the inequalities (13) are sharp.(iii) Let �; �1, a < � < �1 < b be Z-points of y such that (22) holds in (�; �1).Then y is of Type III in (�; �1).(iv) Let � , a < � < b be Z-point of y such that (22) holds in (�; b). Then �1,a < �1 � b exists such that y is of Type II in (�; �1) and of Type fI, IV, VI, VIIgin (�1; b).(v) Then there exists at most one maximal interval J � (a; b) with Property V.Proof. (i) According to the assumptions (22) holds for t 2 (a; b). Let c 2 (a; b).If the Cauchy initial conditions at t = c do not ful�l (16), then by the use ofLemma 3 y is successively of Types V and fI, IV, VI, VIIg in [c; b). Let (16) bevalid at c. Then y is either of the Type V in [c; b), or � , � > c exists such thaty1(� )y2(� )y3(� ) = 0. As (22) is valid at � , the structure of y in [�; b) is studiedby Lemma 3. Thus y is successively of Types V and fI, IV, VI, VIIg in [c; b). Theconsiderations about the structure of y in (a; c] can be made similarly to Lemma3 (use also Lemma 4).(ii) The �rst statement follows from the proved part (i) and Lemma 5(ii). Lety be of Type V in (a; � ). We prove by the indirect proof that the inequalities (13)are sharp. Thus suppose that there exists a left neighbourhood J of � such thaty1(t) = 0 in J (see Remark 2, (ii), too). Then Y2(� ) = Y3(� ) = 0, Y2 � 0, Y3 � 0



ON THE STRUCTURE OF SOLUTIONS 125in J . By the use of Lemma 1 and from this, we have successively: Y3 � 0, Y2 � 0in J . The contradiction to (22) proves this part.(iii) The statement is a consequence of Lemmas 4 and 5.(iv) The conclusion follows directly from the proved part (i) and Lemma 5(i).(v) The interval with Property V may exist only in the Type V. The resultfollows from this and from Remark 2, (ii). �Remark 4. If y is of Type fIV, VI, VIIg in some right neighbourhood of a in thecases (i), (ii) of Theorem 1, then the number � from the de�nition of these casesis equal to a.Theoretically, an in�nite number of Z-points may exist. The following theoremgives some conditions for the system of di�erential equations (2) under whichZ-points do not exist. Thus it solves the problem of uniqueness of the Cauchyproblem with zero conditions.Theorem 2. Let " > 0, �" > 0, K > 0 and y be a non-trivial solution of (2), (3),(10) de�ned in (a; b). Let continuons functions ai : R� [0; "]2 ! R+, gi : [0; "]!R+, i = 1; 2; 3 exist such that gi are non-decreasing,(24) jfi(t; x1; x2; x3)j 5 ai(t; jxij; jxi+2j)gi(jxi+1j) in R� [�"; "]3; i = 1; 2; 3and(25) g1(�"g2(�"g3(z))) � Kz; z 2 [0; "]hold. Then y has no Z-point in (a; b) and the statement of Theorem 1, (i) is valid.Proof. On the contrary, suppose that Z-point � 2 (a; b) exists. Without loss ofgenerality we can suppose that there exists a right neighbourhood of � in which yis not trivial (for the left neighbourhood the proof is similar).As yi(� ) = 0, i = 1; 2; 3 then an interval J1 = [�; � + �], � > 0 exists such that(26) jyi(t)j � "; t 2 J1 :By the use of Lemma 1 y1 is not trivial in any right neighbourhood of � . Let "1and J = [�; � + �1], 0 < �1 � � be such that 0 < "1 � �",(27) "1K < 1; "1 max0�s�"j=1;2;3gj(s) � "; maxj=1;2;3 ZJ max0�x1;x2�"aj(t; x1; x2)dt � "1 :Then by the use of (24), (26)jyi(t)j 5 t
Z� jfi(t; yi(t); yi+1(t); yi+2(t))j dt � ZJ ai(t; jyi(t)j; jyi+2(t)j) dt �� gi(maxs2J jyi+1(s)j); t 2 J; i = 1; 2; 3 :



126 MIROSLAV BARTU�SEKThus maxs2J jyi(s)j � "1gi(maxs2J jyi+1(s)j); i = 1; 2; 3 :From this and by the use of (25), (27) we get: � = maxs2J jy1(s)j > 0,� � "1g1("1g2("1g3(�))) � "1g1(�"g2(�"g3(�))) � "1K� < �. This contradictionproves the theorem. �The structure of solutions of (4), (5) (or (6)) can be described more precisely.Note that �1 = �2 = 1, �3 = � = �1.Theorem 3. Let � = �1, x : (a; b)! R be a non-trivial solution of (4), (5).(i) Let " > 0, K > 0 and let continuous functions d : R+ � [0; "]2 ! R+,g : [0; "] ! R+ exist such that g is non-decreasing, jf(t; x1; x2; x3)j � d(t; jx2j;jx3j)g(jx1j), t 2 R, jxij � ", i = 1; 2; 3, and g(x1) � Kx1 for x1 2 [0; "] hold.Let yi = Li�1x, i = 1; 2; 3. Then x has no Z-point on (a; b) and the statement ofTheorem 1, (i) is valid.(ii) Let a2a1 2 C1(R). Then x has at most one Z-interval and one of the twofollowing relations holds:1� y is successively of Types fV, II, IV, VI, VIIg and fI, IV, VI, VIIg in (a; b),2� y is successively of Types V, VIII, II and fI, IV, VI, VIIg in (a; b);if y is not of Type VIII in some left neighbourdhood of b, then Types VIIIand II are both present.Proof. (i) It follows from (6) that the relationx(� ) = x0(� ) = x00(� ) = 0() yi(� ) = 0; i = 1; 2; 3holds. Put g1(x) = g2(x) = x, g3 � g. From this the statement is a consequence ofTheorem 2.(ii) Let � 2 (a; b) be Z-point such 3
Pi=1 jyi(t)j > 0 in some left neighbourhood Jof t = � . According to Lemma 5 y is either of Type I or of Type V. We prove bythe indirect proof that it is of Type V. Thus suppose that y is of Type I in J . LetJ1 = [�; � ], J1 � �J be such interval that(28) 32 mins2J 1a1(s) � 12 Z �� dsa2(s) maxs2J �

�

�

�

�

� a2(s)a1(s) � 0 �

�

�

�

�

� 0 :Let us de�ne for t 2 J1F (t) = � Z t� dsa2(s)y3(t)y1(t) + 12 a2(t)a1(t) Z t� dsa2(s)y22(t) + y1(t)y2(t) :Then, by the use of (4), (5), (6) and (28) we have for t 2 J1F 0(t) = � Z t� dsa2(s)y03y1 + " 32a1(t) + 12 � a2(t)a1(t) � 0 Z t� dsa2(s) # y22(t) � 0 :



ON THE STRUCTURE OF SOLUTIONS 127Thus F is non-decreasing. It follows from (11) that we have for an arbitrary zero� = t1k of y1, � 2 (�; � )F (�) = 12 a2(�)a1(�) Z �� dsa2(s)y22(�) > 0; F (� ) = 0 ;and we receive the contradiction to F being non-decreasing. Thus y is of Type Vin J and by use of Lemma 4 y is of Type V in (a; � ). From this there exists atmost one Z-interval in (a; b) and the statement follows from Theorem 1. �Remark 5. (i) Let y be a solution of (4) of Type fI, II, III, IV, VI, VIIg. Then itfollows from Remark 3(i) that tik = �tik, k 2 N , i = 1; 2 holds (see (11)). Moreover,if (9) is valid, then t3k = �t3k, too.(ii) Theorem 1 generalizes and enlarges some results of [1]. Theorem 3 general-izes some results of [4] (for (4)) and of [2] (for the di�erential equation of the thirdorder).(iii) Theorem 2 generalizes the well-known condition for the non-existence of Zpoints, see [2, 5]:" > 0; jfi(t; x1; x2; x3)j � di(t) 3
Xj=1 jxjj; t 2 R; jxij � "; i = 1; 2; 3:(iv) Some conditions are given for (4) in [6] under which solutions of Types VI,VII do not exist. The paper [3] contains conditions under which solutions of (2) ofTypes III, VI, VII, b =1 do not exist (so called Property A of (2)).(v) Let y : (a; b) ! R3 be non-continuable solution of (4), (5) and be of TypeIV in some left neighbourhood of b. Then b =1 (use (6)).3. Case �1�2�3 = 1This chapter is devoted to the case(29) �1�2�3 = 1 :The results will be only given. The proofs are similar to Chapter 2, or we can usethe transformation of the independent variable T = �t, t 2 (a; b), y(t) = �y(T ).Then (1) is transformed into ��i�y0i(T )�yi+1(T ) � 0, �yi+1(T ) = 0 ) �y0i(T ) = 0,i = 1; 2; 3, T 2 (�b;�a). Thus the system has the same form as (1), the formula(10) is transformed into (29). This transformation conserves zeros, Z-points andZ-intervals.Let us consider the following types of solutions of (1). Let y : J = (c; d)! R3.



128 MIROSLAV BARTU�SEKType I. Sequences ftikg, f�tikg, i = 1; 2; 3, k = ki; ki� 1; ki� 2; : : : exist such thatk1 = 1, k2 2 f0; 1g, k3 2 f0; k2g, tik 2 J , limk!�1 tik = c and(30) 8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�t1k�1 < t2k � �t2k < t3k � �t3k < t1k � �t1k ;Yi(t) = 0 for t 2 [tik; �tik]; Yi(t) 6= 0 for t �2 [tik; �tik] ;(�1)j�1Yj(t)Y1(t) > 0 for t 2 (�t1k�1; tjk)< 0 for t 2 (�tjk; t1k) ;j = 2; 3; i = 1; 2; 3; for all admissible kholds. Moreover �i
i = �1 where �i(
i) is signYi in the interval (�tiki�1 ; tiki) (in(�tiki ; d)), i = 1; 2; 3.Type II. Sequences ftikg, f�tikg, i = 1; 2; 3, k = ki; ki+1; : : : exist such that k1 = 1,k3 2 f0; 1g, k2 2 f0; k2g, tik 2 J , limk!1 tik = d and (30) hold. Moreover �i
i = �1where �i(
i) is signYi in the interval (c; tiki) ( in (�tiki ; tiki+1)); i = 1; 2; 3.Type III. Sequences ftikg, f�tikg, i = 1; 2; 3, k 2 Z exist such that tik 2 J ,limk!�1 tik = c, limk!1 tik = d and (30) holds for k 2 Z.Type IV. � � d exists such that(31) � Yi; i 2 f1; 2; 3g has a �nite number of Z � intervals [tik; �tik] in(�; d); (30) holds until � < d ;jY1j, jY2j are non-increasing, jY3j is non-decreasing andY1(t)Y2(t) < 0; Y1(t)Y3(t) � 0 in (c; � ):Type V. 3
Pi=1 jyi(t)j > 0 in J ; jY1j, jY2j, jY3j are non-decreasing andY1(t)Y2(t) � 0; Y1(t)Y3(t) � 0; Y2(t)Y3(t) � 0; t 2 J :Type VI. There exists � � d such that (31) holds; jY1j, jY3j are non-increasing,jY2j is non-decreasing andY1(t)Y2(t) � 0; Y1(t)Y3(t) < 0 in (c; � ) :Type VII. There exists � � d such that (31) holds; jY1j is non-decreasing, jY2j,jY3j are non-increasing andY1(t)Y2(t) � 0; Y2(t)Y3(t) < 0 in (c; � ) :Type VIII. y is trivial in J .



ON THE STRUCTURE OF SOLUTIONS 129Theorem 4. Let (29) be valid and let y : (a; b)! R3 be a non-trivial solution of(1).(i) Let Z-points of y do not exist in (a; b). Then y is successively of Types fI,IV, VI, VIIg and fII, V, IV, VI, VIIg in (a; b).(ii) Let � , � 2 (a; b) be Z-point of y and (22) hold in (a; � ). Then �1, a � �1 < bexists such that y is of Type II in (�1; b) and of Type fI, IV, VI, VIIg in (a; �1).(iii) Let � , �1, a < � < �1 < b be Z-points of y such that (22) holds in (�; �1).Then y is of Type III in (�; �1).(iv) Let � , � 2 (a; b) be Z-points of y and (22) hold in (�; b). Then y is eitherof the Type V in (�; b) or there exists �1, � < �1 � b such that y is of Type I in(�; �1) and of Type fII, IV, V, VI, VIIg in (�1; b).(v) Then there exists at most one maximal interval J � (a; b) with Property V.Theorem 5. Let the assumptions of Theorem 2 be valid and at the same timethe validity of (29) is supposed instead of (10). Then y has no Z-point on (a; b)and the statement of Theorem 4, (i) is valid.Theorem 6. Let � = 1, x : (a; b)! R be a non-trivial solution of (4), (5).(i) Let the assumptions of Theorem 3(i) be valid. Then x has no Z-point in(a; b) and the statement of Theorem 4, (i) holds.(ii) Let a2a1 2 C1(R). Then x has at most one Z-interval and one of the twofollowing relations holds:1� y is successively of Types fI, IV, VI, VIIg and fII, IV, V, VI, VIIg in (a; b).2� y is successively of Types fI, IV, VI, VIIg, II, VIII and V in (a; b). If yis not of the Type VIII in some right neighbourhood of a, then Types IIand VIII are both present.Remark 6. Similar conclusions hold as in Remark 5.References[1] Bartu�sek, M., On Oscillatory Solutions of Di�erential Inequalities, Czech. Math. J., 42 (117)1992, 45-52.[2] Bartu�sek, M., Asymptotic Properties of Oscillatory Solutions of Di�erential equations of theN -th Order, Folia F. S. N. Univ. Brunensis Masarykianae, Masaryk University, Brno, 1993,92 pp.[3] Qanturi�, T. A., Ob oscill�cionnyh svo$istvah sistem neline$iyh obyknovennyhdifferencial~nyh uravneni$i, Tr. in-ta prikl. mat. Tbilisskogo un-ta, 16, 1983,163-204.[4] Do�sl�a, Z., Bartu�sek, M., On Solutions of a Third Order Nonlinear Di�erential Equation,Nonlinear analysis (to appear).



130 MIROSLAV BARTU�SEK[5] Kiguradze, I. T., Qanturi�, T. A.,Asimptotiqeskie svo$istva rexeni$i neavtonom-nyh obyknovennyh differencial~nyh uravneni$i, Nauka, Moskva, 1990 429 s.[6] �Svec, M., Oscillatory Properties of Solutions to a Di�erential Inclusion of Order n , Czech.Math. J., 42 (117) 1992, 35-43.Miroslav Bartu�sekDepartment of Mathematical AnalysisFaculty of Science Masaryk UniversityJan�a�ckovo n�am. 2a, 662 95 Brno, CZECH REPUBLIC
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