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SYMMETRIES OF CONNECTIONS ON FIBERED MANIFOLDS

ALEXANDR VONDRA

ABSTRACT. The (infinitesimal) symmetries of first and second-order partial differ-
ential equations represented by connections on fibered manifolds are studied within
the framework of certain “strong horizontal” structures closely related to the equa-
tions in question. The classification and global description of the symmetries is
presented by means of some natural compatible structures, e.g. by vertical prolon-
gations of connections.

1. INTRODUCTION

In our recent paper [15], we have introduced a formalism which can be applied
for a geometrical description of some indirrect integration methods concerning
differential equations for integral sections of connections, 1.e. Pfaffian systems for
integral mappings of corresponding horizontal distributions. The results, moti-
vated by the variational analysis over one-dimensional base [13], [14], suggest a
generalization either of the “method of characterististics” from the theory of exte-
rior differential systems or the “method of fields of extremals” (Hamilton-Jacobi
method) from mechanics. This is done in terms of characterizable connections on
m10, their characteristic 2-connections on w and fields of paths, which are local
connections on 7. The crucial idea of reasoning on equations through the corre-
sponding connections and their interrelations rests upon certain results on natural
transformations [5] and it takes full advantage of the relationships between the
associated horizontal distributions.

In this paper, we study in some sense complementary “strong horizontal” dis-
tributions which appear within the framework of considerations on the symmetries
of such equations. It should be mentioned here that analogous structures appear
in a particular case of J17 = R x T'M e.g. in [3], [27], or in a slightly more general
situation on Jl7 over an arbitrary one-dimensional base [26]. The importance of
these structures either for equations themselves or for the calculus of forms along
m,0: RxTM — R x M is discussed e.g. in [23].
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The notions and results are twofold, considered either “locally” for a single

(mostly integrable) connection T on 7 or “globally” for a characterizable connec-
r

1,0
of a connection T on m in the decomposition of the tangent bundle TT(Y), ex-

tion E on 7 o. It turns out that the complement to the Cartan distribution C

pressed in terms of the vertical prolongation VI of T', has a global counterpart in
the so-called reduced connection associated to any characterizable connection on
m1,0. 1t should be mentioned that some of these ideas are partially motivated by
[2], [28], [29]. The importance of the decompositions will become apparent in the
last section, where the infinitesimal symmetries of connections are studied. We
hope that the presented classification creates a contribution to the transparent
description of the situation. In the last part of this section, we reap the benefit
of the relations between 2-connections and their fields of paths to the description
of the relations between their symmetries by means of the corresponding vertical
prolongations.

Our formalism and notation of the fibered manifolds theory, jet prolongations
and connections is mostly in accordance with [16], [17], [24]. For jet prolongations
of vector fields and groups of transformations see e.g. [9], [10], [11], [19], [24]. The
motivations and results from the theory of prolongations of connections and related
topics are due to [7], [8], [18]. For the theory of natural operations and invariants
we refer to [9], [12]. Further theories we are dealing with are the geometry of
vector distributions and differential equations and their symmetries [1], [25] and
mainly [6], [19], [24]. An interesting approach to these problems can be found in
2], 28], [29]

2. CONNECTIONS AND EQUATIONS

Let 7: Y — X be a fibered manifold with local fibered coordinates (z!,y?),
t=1,...,n=dmX, oc=1,...,m=dimY — dimX. The first jet prolongation
of 7 as the set of all 1-jets jly (z € X) of local sections v: X DU — Y of 7 (the
set of such sections we denote by Sy (w) or generally Sjoc(7)) is denoted by Jlz.
The induced coordinates on J'7 are denoted by (z',y”,y?). The manifold Jlm
will be viewed as the total space both of the fibered manifold 71: J'7 — X and
of the affine bundle 7; o: Jir =Y.

A connection on 7 is a section (generally defined on some open subset of Y)
[:Y — Jlm of w1 9. In local fibered coordinates, the equations of I' are y7 o I' =
[?(2%,y*), where I' are the components of I'. The horizontal form hr of T is
hr = Dr; ® dz', where Dr; = 8/0x' + T20/0y° is the i-th (absolute) derivative
with respect to I'. The complementary projection to hr is the vertical form vpr =
I — hr and the connection I' is then identified with a canonical decomposition
TY = V.Y & Hr, where the n-dimensional m—horizontal distribution Hr = Im hr
is locally generated by the vector fields Drp; for ¢ = 1, ..., n or equivalently by the
forms dy” —I'Y del fore=1,...,m.

By a first-order differential equation on = (more precisely, a (nonlinear) system
of partial differential equations (PDE)) we mean any (embedded) submanifold £ of
Jtm. A solution of £ is a section v € Sjoc(7) such that j'v C £. Anintrinsic object
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related to & is the Cartan distribution C’ﬁl)u of & defined by C¢ =C,, , N TE,

T1,0 1,0
where Cr, , is the canonical Cartan distribution on J'x.
Evidently, the (n + m)-dimensional submanifold I'(Y) C J'7 can be viewed as

a global counterpart of a first-order differential equation “explicitly solved with
respect to derivatives”. Thus a section v € Sic(7) is called a path or an integral
section of the connection I' if j'v = T o %, which locally means the equations for
v on its domain

av°

Ozt
Recall that v is an integral section of I' if and only if the image of v is an integral
manifold of the horizontal distribution Hr. Accordingly, the Frobenius integrabil-
ity conditions for I', locally expressed by

=I7(a! 7).

ory | ory ., _ oryg N oryg o
Oxd ~ oy 7 xt 0 Oyr

means equivalently that there exists a unique maximal integral section of ' passing
through each point y € Y or that the distribution Hr is involutive or finally that
for the curvature Rp of the connection I' it holds R = 0.

The second (holonomic) prolongation of 7 is the set J?7 of 2-jets of local
sections of 7 with local coordinates (z°,y7, y?, 7).

The first jet prolongation Jlﬂ'lyo of the bundle my o: Jim — Y is the set of 1-jets
of local connections on 7 with the induced coordinates (z!,y?,y?, z7, z8).

A 2-connection on 7 is a section I'®): Jlx — J271 of m21. In coordinates,
THRS re = U7, where I'Y; = I']; are the components of I'®) . The horizontal
form of I'®) is locally expressed by hpe) = Dre); @ dzt, where Dpe); = d/0x +
y7 0/0y° + I'7;0/9y] is the i-th absolute derivative with respect to '®. The
canonical decomposition generated by hp) is TJ m = Vi, Ji7r @ Hpe), where the
n-dimensional m—horizontal distribution Hpe) = Im Ape) is locally generated by
the vector fields Dr); or by the forms dy” = y7 ded, dy? = Ffjdxj.

Since Hpe C C
defined to be a section ¥ € Sjoe(7) such that jZy = I'®) o jly. Consequently, 2-
connections on 7 are geometric counterparts of systems of second-order differential
equations solved with respect to highest derivatives of the form

3270 E oA 67’\
S -
Jxtdad Y (x T Bt

Recall that + is an integral section of T'(*) if and only if the image of j'y is an
integral manifold of the horizontal distribution Hp().

Finally, a connection on ;o is a section =: Jir — Jlﬂ'l’o of (m1,0)1,0. The
horizontal form of E is locally expressed by h=z = Dz; ® dz? + D=y @ dy, where
Dzj = 8/027 + E70/9y] and Dz) = d/oy* + E5,0/0y? for j = 1,...,n and
A = 1,...,m, are the j-th or the A-th absolute derivative with respect to =,

w10, & path or an integral section of the connection r® is
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respectively. The canonical decomposition generated by hz is 7J'7 = Vm)ojlﬂ' )
Hz, where the (n 4+ m)-dimensional 71 g—horizontal distribution Hz = Im hz is
locally generated by the vector fields D=; and D=y or equivalently by the forms
dyf = 2 dz? + = dy*.

Evidently, the integral sections of connections on 7 ¢ are just local connections
on m. Such a connection T' € Sioe(71 o) is an integral section of = if and only if
jiT' = Zo T, which in fibered coordinates means a system of (n + m) first order
PDE of the form
ory

= 27.(2%, ¢, TY), Ty = Zh (2", v, T})

for the components of I'; or equivalently if and only if the image of I 1s an integral
manifold of the horizontal distribution H=.

We refer to [15] for the more detailed discussion of the following notions and
results.

It was shown in [5] that there is a unique 2-connection I'®) on 7 naturally
assigned to any connection E on m; . A connection = on m g is then called
characterizable if Hpe C Hg or equivalently Hpe = Hz N Cr,, for the above
2-connection I'?)| called now the characteristic connection of Z. Since the local
;7]» — E}’Z + E;’Ay;»‘ — E}’Ayf‘ = 0, the
components of its characteristic connection are I'/; = Zf; + E;’Ay;‘. The integral
manifolds of Hp) of maximal dimension, which are just first jet prolongations
of integral sections of the characteristic connection, are called characteristics of
the connection = and the most important fact for the theory of equations under
consideration is that the integral sections of = are foliated by the characteristics.

A connection T': Y DV — J'7 on 7 is called a field of paths of a 2-connection

I'? on 7 ifon V

conditions for = to be characterizable are =

(2.1) JHT,idx)o T =T® ol |

where J(T,idx) is the first jet prolongation of the fibered morphism I' over X.
An arbitrary field of paths of I'®) is integrable and a connection I': Y DV — Jlx
is a field of paths of T®) if and only if the submanifold T(V) C J'x is foliated
by first jet prolongations of integral sections of @ e if Hr) |p(v) = 071;1,0' In
fiber coordinates, (2.1) reads I'Y; o I' = Dr;(I'Y). Since '@ ojly=T®oloy =
JUT,idx)oT oy = 5T o7) = j'(j*) = j*v, if T is a field of paths of T(?) and
7 is an integral section of T' then v is an integral section (a path) of '@ Thus if
'Y DV — J'nis a field of paths of I'?) then Hrp defines a foliation of V such
that each leaf of this foliation is the image of an integral section of I'?).

By the above results, the problem of finding all the integral sections of a given
integrable 2-connection is equivalent to the problem of solving all fields of paths of
I'®) This is not much surprising within the context of the theory of prolongations
of differential equations. Clearly, the submanifold J*(T',idx) o I'(Y) C J?n is just
the first prolongation of the equation I'(Y') C J1w. Conversely, each field of paths I’
of T represents a (local) reduction of the order of the equation T®(J'7z) C J2x.
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It is easy to prove that if = is a characterizable connection on 7 o and r® its
characteristic 2-connection on 7 then each integral section I' of = is a field of paths
of T(*). Consequently, if Z is integrable then I'(®) is integrable and each integral
section of I'®) is locally imbedded in a field of paths I', which is an integral section
of =.

3. STRONG HORIZONTAL DISTRIBUTIONS

First recall the structure of vertical bundles on Y and J'm. The vertical sub-
bundle V;Y to @ of TY, representing the family of vectors tangent to the fibers
of m, can be viewed as the total space of the fibered manifold p: V;YV — X,
p = moTy. Consequently, there is an identification of the tangent space TY, of Y,
with the fiber p=1(x) of p. There are two canonical vertical subbundles of T'J'7x
namely Vi, Jlw or Vi, DJ17T of m or my g—vertical vectors on Jlm, respectively. To
relate them with VY, we have to recall that there is a canonical isomorphism
between J'p and VmJlﬂ' over ﬂ'io(VﬂY). The isomorphism 1s represented lo-
cally by a rearrangement; if the induced coordinates on J!p are (z%,y7, 9, y7,9?)
then those on Vi, Ji7 are (2%,y”,y?,9°,97). Thus there is a natural identifica-
tion of the tangent space T(J'7), of a fiber (J'7), = n7'(x) with p7*(z) and
T(J7), = 7 ().

Using a canonical vertical functor V for a connection I': Y — J'm on 7 one
obtains a mapping VI': V;Y — V Jl7, representing a mi-vertical lift of 7-vertical
vectors by

(3.1) o 0 YL o o P 0

Ay’ ly 3 7 Iy + dy Y y? Irey) -

Using the above identification Vy, J'7 = J1p we get the so-called wvertical prolon-
gation VI of T'| realizing the only connection on p naturally determined by the
given connection I' on 7 [7]. This vertical prolongation finds wide application for
example in the theory of prolongations of connections on 7 to connections on 7y
(see [7], [8], [9], [18] and references therein). In what follows we would like to show
that it also provides a natural description of the geometry related to the equation
[(Y) C Jl7 in terms of its symmetries. It is to be remarked that this approach is
not quite so original (cf. [28]).

First we will be interested in a decomposition of the tangent bundle TT(Y),
expressing the internal geometry of the corresponding equation I'(Y') C J7. Since
we will have frequent occasion for expressing the results with reference to jet
prolongations of vector fields, we recall that { being a vector field on Y, locally
expressed by ¢ = (19/0x" +(°0/0y°, its first jet prolongation J'¢ is

(D) = D) -

o
(32) Je=d

For a m-projectable vector field ¢ on Y, the flow of J!¢ is the jet prolongation of
that of ¢, which consists of fibered isomorphisms of =.

Since J'Dr; oI = TT o Dr; if and only if T is integrable, the following assertion
can be easily proved.
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Lemma 3.1. Let I' be an integrable connection on w. Then for any I'-horizontal

vector field ( on'Y holds
(3.3) J¥ ol =TT o e CY

Ti1,0 °

It is trivial to verify that the tangent bundle TT(Y) splits into the direct sum
TT(Y) = 071;1 , @ VI(V3Y) accordingly to the decomposition TY = Hr @ VY
corresponding)to r.

Considering TT(Y') in obvious sense as an subbundle of T'J!7 we find the asser-
tion concerning a natural decomposition associated to any integrable connection
on 7. This proposition is to be considered as an inner version of Proposition 3.3.

Proposition 3.1. Let I' be an integrable connection on m and { a vector field on
Y. Then

J'CoT =FJ hro()oT + VIl ovpol +(J'(ol)™e

where
jl(hr‘ o C) ol' € 071;1)0
VI ovpo( € VI'(V;Y)
(T'¢oT)y™ € Vpy Jim .
Moreover,

VIl ovp o+ (J'oT)™0 = Jl(vro()ol
J'DrioT = D; o JYT,idx) ol .

The whole situation will become apparent in terms of decompositions of char-
acterizable connections on 71 o. Recall that a non-vanishing (1,1) tensor field F' of
constant rank on a manifold M is called an f(3,-1) structure on M if F® — F =0,
which yields a canonical direct sum decomposition of T'M induced by any such
f(3,-1) structure. The eigenspaces corresponding to the eigenvalues 0, —1, 4+1 are
Im(F? — 1), Im(F? — F), Im(F? + F), respectively.

Proposition 3.2. Let Z be a characterizable connection on 7o and 2 jts
characteristic 2-connection on ©. Then Fz = 2hz — hpe) — I is an {(3,-1) structure
on Jm of rank m(n + 1).

Proof. Since hz o hpe) = hpe o hg = hpe , it is easy to see that FZ = vpe),
which immediately gives Fg’ — F= = 0. The rank of Fz is evident from the local
expression

FE:<FZ»U» a —y}j a)®d$]+

]63/;7 6y0
) )
dy® — dy? + F5 — @ dy*
6ya®y 6y‘7® yZ—I-Mayg@y,

K3

_|_

te

where the functions F}7 = Zf; — E;’Ay;»‘ and Ff5 = 2Ef, are the components of

I=. a

Since F2 — I = —hp@), F2+ Fz = 2(hz — hpz) and F2 — Fg = 2vz, the
assertion follows.
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Proposition 3.3. Let Z be a characterizable connection on o and r® jts
characteristic 2-connection on w. Then there is a canonically determined direct
sum decomposition

(3.4) TJ'm = Va0 J'n® Hpe & Hp, |
given for any (V) € TJ'x by
¢ =v=((M) + hre (¢M) + (hz — hre) (M)

where Hr) & Hp, = H,

11

The m-dimensional Hp, = Im(hz — hpe)) will be called a strong horizontal
distribution. By the strong horizontality of H=z we mean the decomposition

Vi Jlm = Ve, J'n & Hp,
Using coordinates, for ((V) = ¢*9/dx* 4+ ¢70/dy" + (70/0y? the decomposition
(3.4) means
o
Hy?

J

v=(¢M) = (¢ — B¢ - E0,¢Y)

1 8 ed a —_g =T 8
hpe (M) =¢ (%Z» tU e T (5 + :My?)@) ’

J

Z. o _. 0
(hz = hra)(C™M) = (¢ = ¢y (@ + :jA@)

It appears that there is further interesting object closely related with the results
just referred to (cf. [2], [28], [29]).

Definition 3.1. A reduced connection of type (1,0) on w is a section
Loy 75 o(VaY) — Vo, J'm

which is linear in y7, i.e. whose local expression is gy o I'(1 o) = F;’A(xj, v, y7) vt

In other words, I'(; o) represents a lift of vector fields expressed by

0
-1 [
(]x7a< % |’y(x))

and thus 1t generates a decomposition

(1,0 o 0 AN 0
¢ dy° |j;w+ri>\c 7 jly >

Ve, J'm = Vi, o' m @ Hr, )

with Hr, , = ImT( o) generated by the vector fields d/0y* +T9,0/8y? for A =
1

R ¥
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Definition 3.2. A m-vertical vector field ¢ on Y will be called an integral section
of a reduced connection I'(; oy on 7 if for any jly holds

(3.5) TCGy) = Doy (a7, Cv())) -

Using coordinates, (3.5) means

07 0Ty _

(3.6) dzi " 9y Y

EN

Remark that if we are given I'(; o) then obviously each connection I on 7 gen-
erates a connection I'(y gy o ['on p: V2 Y — X by the composition

vy 22Xy vy 2D gy vy 260y i
Locally
- 0 L1000 U 0
(3.7) ¢ 3 , —— a ey +TH s v Irey) -

Considering hz: TT,O(TY) — TJ17 as the horizontal lift with respect to a given
characterizable connection Z on 7y o, Prop. 3.3 can be reformulated.

Theorem 3.1. Fach characterizable connection on m g splits into the direct sum
of a 2-connection on m and a reduced connection of type (1,0) on w. The decom-
position is given by

HE = HF(2) S HF(I,D) )

where T(2) is the characteristic connection of = and Lo = h5|7q J(VaY)s ie
locally
(38) z)\ - “;7)\ .

The last assertion of this section imply the meaning of reduced connections (or
in other words of the corresponding strong horizontal subbundles) in the theory

of symmetries. By (3.1), (3.7) and (3.8):

Proposition 3.4. Let = be a characterizable connection on o, I'(10) the as-
sociated reduced connection of type (1,0) on m. Let T € Sy (71 ) be an integral
section of =. Then I'(; gyo I' = VI on 7';1((/) CcVRY.

4. SYMMETRIES

In this section we will discuss the symmetries of connections in keeping with
previous considerations. It should be noticed that we follow the infinitesimal
approach, so that symmetries will be vector fields as the generators of the groups
of invariant transformations.
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First recall the symmetries of distributions in accordance with [6].

Let P be a regular distribution on a smooth manifold M. A vector field { on
M 1s called a symmetry of the distribution P if its flow consists of diffeomorphisms
which preserve P i.e.if {ay} is the corresponding one-parametric group of diffeo-
morphisms then T'a;(Py) = Pa, (o) for # € M. The set Sym(P) of all symmetries
of P is a Lie algebra with respect to Lie bracket of vector fields and

(4.1) (eSym(P)<=1[(,&]leP for each ¢ € P
or equivalently
(4.2) ¢ €Sym(P) < Lw € P* for each w € P*,

where by P* we denote the ideal of differentiable forms on M, annihilating P.
Denoting by v; the local generators of P, i = 1,...,dim P, then (4.1) means the
existence of functions k;; € C°°(M) such that [(,v;] = Z]' kijv; for each 4. Using
the definition of the Lie derivative we can see that 1t is equivalent to the condition
Toy(vy) = Zj Aij(t)v; for the flow {ay} of ¢ where A;; € C°°(M) are smoothly
parameterized by ¢ and
d
ki; = —— A (t) .
J dt im0 ]( )

The importance of symmetries of a completely integrable distribution rests upon

the fact that the corresponding flows preserve the set of maximal integral manifolds

of P.

Example 4.1. Let P be a one-dimensional distribution locally generated by a
nowhere vanishing vector field £. Then (4.1) reads ¢ € Sym(P) <= [(, €] = k¢ for
k € C°°(M). The notion of the maximal integral manifold of P coincides locally
with that of the maximal integral curves of &.

Example 4.2. Considering the Cartan distribution C7, , on Jtm, the symme-
tries of Cy, , are called contact vector fields. In this case (4.2) means that the
Lie derivative of any contact form with respect to a contact vector field is again
a contact form. Tt can be shown (e.g. [24]) that if a vector field (") on J'z is
projectable onto Y, then ¢(!) is a contact vector field if and only if it is a prolon-
gation of a vector field on Y. Moreover, if m > 1 then every contact vector field
is projectable and thus it is a prolongation. Notice that the singularity of the case
m = 1 is induced by the same dimension n of the fibers of 7 g and of the integral

submanifolds j'y(U) of Cxr, .

The set of symmetries of P lying within P is denoted Char(P). The flow of
any such characteristic symmetry of P moves integral manifolds along itself. Since
Char(P) is an ideal in Sym(P), the quotient algebra Shuf(P) = Sym(P)/ Char(P)
of the so-called shuffling symmetries of P can be constructed. Thus any { €
Shuf(P) represents the whole class of symmetries whose flow rearrange the integral
manifolds of P in the same way.
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Secondly, the symmetries of equations can be studied. Let & C J'w be a first
order differential equation on #. They are two different ways for understanding
the symmetries of £, closely related to their internal and external geometry. The
external symmetry of £ is any contact vector field on J'7 tangent to £. The flow
of such a symmetry preserve £ and obviously the restriction of { to £ defines a
symmetry of C’ﬁl)o. Just the symmetries of the distribution C’ﬁl)u (vector fields on
&) are called internal symmetries of £.

Definition 4.1. Let I' be a connection on 7. A vector field ¢ on Y 1is called a
symmetry of T if and only if ¢ and J'¢ are T-related, i.e.

(4.3) JYWCoT =TT o( |

Corollary 4.1. If T is integrable, then each I'-horizontal vector field { on Y is a
symmetry of T

Proof. See Lemma 3.1. O

Proposition 4.1. Let I' be an integrable connection on w. Then a vector field (
onY is a symmetry of I' if and only if

(4.4) jl(vpoC)oF:VFovpoC.

Proof. Since { = hr(¢) + vr(¢) and due to Prop. 3.1 and Corollary 4.1, { is a
symmetry of T if and only if vp(¢) is a symmetry. Since evidently VT o vp o ¢ =
TT o vr o (, the assertion is then an immediate consequence of Prop. 3.1. |

The condition (4.3) can be represented in terms of (generalized) Lie derivative
[9]. Actually, a vector field ¢ on Y is a symmetry of T if and only if a generalized
Lie derivative

E(Cyjlc)F:TFoC—j%’oF

of T with respect to ¢ and J'¢ vanishes. In this context, previous proposition can
be obtained (again using Lemma 3.1) by

(45) L, 710l = Linpoctvrot, 7t (hro¢) 4Tt (wrocnl =
= Linro¢, 71 (hrocnl + Livrog, 71 @wroonl” = Livrog, 7t wroon -
The relation (4.4) locally means a system of PDE for the generating functions

p? =(% — F}»’Cj of vp(¢) = »70/0y” expressed by Dri(¢?) = Ly )I'] or equiva-
lently

dp? dp? A_arf A

art T oyt Tt T oy z

(4.6)

fori=1,...,n,0=1,...,m.

Directly by calculations in coordinates we see that :
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Corollary 4.2. A vector field { on'Y is a symmetry of an integrable connection
I' if and only if

(4.7) Lyrcyhr =0 .
In other words, due to the canonical vertical splitting

v

ol T T T xy (ViY@ 7 (T7X))
and accordingly to (4.5), the generalized Lie derivative E(CVJIC)F of an integrable
connection I reads

(4.8) Lol = (T, Lororhr) -

If we are asked to give an explicit formula for the symmetry ¢ of an integrable
[ then if ¢ = (*0/0x" +(?9/dy°, we can see that [vr(¢), Dr;] = [ —hr(¢), Dri] =
[¢, Dri] = [¢? Dry, Dr;] and since Lyroyhr = [vr((), Dri] ® dz', ¢ is a symmetry of
I' if and only if

(4.9) [¢, Dri] = =Dri(¢7) Drj

for any ¢ = 1,... n. In this arrangement, symmetries of [' are vector fields { such
that j1C|p(y) are the symmetries of 071;1,0' Accordingly, the symmetries of an
integrable connection I' are just the symmetries of the horizontal distribution Hr.

An additional characterization can be given in the case of projectable symme-
tries, the flow of which consists of #-morphisms. By means of direct calculations

we obtain :

Lemma 4.1. Let ¢ be a vector field on Y. Then Ly (¢yhr = 0 if and only if  is
projectable.

Previous assertion means that Lchr = L, (¢)hr and equivalently
(4.10) Lol = (T, Lchr)

if and only if { is projectable.

Corollary 4.3. A projectable vector field { on Y is a symmetry of I' if and only
if

(4.11) Lehr =0 .
Notice that in the case of projectable symmetry ¢ of I, (4.9) reads [¢, Dry] =
—D;(¢7) Drj.

Remark 4.1. To prove the importance of the projectability, we recall a result of
[24]. Namely; if ¢ is a vector field on ¥ with the flow {o4} and R is a (1,1) tensor
field on Y then £, R = 0 if and only if Ta; o R = R o T'a; for each t.
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Corollary 4.4. A projectable vector field { on Y is a symmetry of an integrable
connection I' on 7 if and only if its flow permutes the integral sections of I.

Proof. Let v € Sy(7) and denote by hr|, the restriction of Ar to T(,)Y for any
¢ € U. Evidently v is an integral section of I' if and only if Ap|, = Ty o T'7.
Let ¢ be a projectable vector field on Y with the flow {a;} and suppose ay o7 to
be defined. Clearly ¥ = a; oy € Sz(7) is an integral section of I' if and only if
hrls = Ta;oTyoTwoTa; . The assertion is due to Corollary 4.3 and Remark 4.1,
since ¢ is a symmetry of I' if and only if Ar|y = T'ay o hrly o Tozt_l. |

Previous results shows that in further considerations we can assume symmetries
of I' to be m-vertical. The flow of such a symmetry permutes the integral sections of
I’ without changing their parameterization since the flow consists of isomorphisms
of @ over X; and (4.9) reads [(, Dr;] = 0. The set of all symmetries of T will be
denoted by Sym(T") and the set of w-vertical symmetries by Sym,, (T').

Proposition 4.2. Let I' be an integrable connection on w. Then it holds

Sym, (T') = Shuf(CL ).

1,0

Proof. The assertion accords with the evident fact that

Hr = Char(CL ).

1,0

Analogously as in [6] it can be shown that Shuf(CL, )= ker Ap, where

Ar: (C=(Y)" — (€)™
is an operator defined for each ¢ = (¢7) by Ar(¢) = (Af;(¢)), where

oy
qo

A7i(¢) = Dri(¢7)

On the other hand, also Sym,(T') = ker Ar. This isomorphism is given by the
identification of m-vertical vector field with its generating functions family ¢ = (¢7)

by (4.4). O

Next assertions can be viewed as a confirmation of a deep relation between
' and VI in terms of vertical symmetries; sections and fields along sections. A
connection I' is again supposed to be integrable.

Proposition 4.3. Let ( € Sym, (I'). Then a section v of 7 is an integral section
of T if and only if the section & = ( o of p is an integral section of VI .

Proof. Let v be an integral section of I'. Since ( is vertical, (4.4) reads J'( ol =
VI o(. Then VI oé =Vl ooy =T ol oy =J ojly = j'€. Conversely, if
VL oé = ', then VT ooy = J'Cojly, which implies J'¢ oL oy = J'C o jly.
Since J1( is a section, we have I' oy = jlv. |
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Corollary 4.5. For any vertical { it holds ¢ € Sym,(T") if and only if ¢ = (o is
an integral section of VI for each integral section v of T'.

Proof. Let y € Y be an arbitrary point, let v be a maximal integral section of
[ such that y(z) = y for # = a(y). Then J'¢ o T(y) = T o jly(x) = jL&(x) =
VI oé(x) = VT o oy(x) = VT o ((y). The converse is evident from Prop. 4.3. O

Remark 4.2. Since (: Y — V.Y is a fibered morphism between 7 and p over
X and JY¢ = JY(¢,idx), the so-called covariant derivative Vyr)¢ of ¢ with
respect to the pair of connections T' and VT can be considered, see [8], [17]. This
is defined as V(r yry( = Vyr o J'¢ oT. Using a canonical fibered morphism

1,0

Ve, J'm or vy Ve Jlm = Ve, I

(realizing an ordinary difference of vectors in the same fiber), we can easily see
that Vi yry(: Y — Vi o7 and moreover Vyr = _E(CVJIC)F = (I, -L¢hr).
Consequently ¢ € Sym, (I') if and only if V(¢ yr)¢ = 0. Recall [8], where the last
condition was proved to be equivalent with (-relativity of the vertical lifts hAp(€)
and hyr (&) for any vector field £ on X.

This characterization can be compared to that of [28] expressing the situation by
means of the so-called covariant derivative with respect to the canonical Bliznikas
reduced connection.

Remark 4.3. At the very end of the previous section, we have suggested the
importance of the reduced connection I'(; gy associated to a given characterizable
connection = on m; 9. From Def. 3.2 and Prop. 3.4 we deduce that if { is an
integral section of I'(; oy then (|y is a symmetry of an arbitrary integral section
I'e SV(WI,O) of =.

Definition 4.2. Let I'® be an integrable 2-connection on 7. A vector field (V)
on J'm will be called a a first-order symmetry of T(*) if ﬁvr(z)(c(l))hl“@) =0or
equivalently

(4.12) (<™, D@yl = =Dr@ (¢! ) Draj -

Locally, ¢(Y) must be such a vector field on J'x that

d d
e () = ¢ oy° oy? -’

K3

+ Dre,(¢7)

where the equations for the generating functions ¢? = (% — y?¢% on Jl7 are

(4.13) D2.). (¢7) = or; o™ + %D @ (™)
: ()45 ay)\ ay? NS ’
where D%(Q)i].(f) = Dr@j(Dr@;(f)). The right side of (4.13) may be written as

V() (C(l))(Ffj) and the set of these symmetries we denote by Sym(l)(F(z)).
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Remark 4.4. As before, the first-order symmetries of an integrable connection
I'®) are just the symmetries of Hy2); the symbol of vy can be in omitted for m-
projectable symmetries and this 1s equivalent with the permutation of the first jet
prolongations of integral sections of I'2). The set of m-vertical symmetries of the
first order of I'? will be denoted by Symgl)(F(z)) and according to Prop. 4.2 it can

be shown that in view of Hp) = Char(C’};(i)) it holds Sym{"(I(2)) = Shuf(C'F(Q)),

T2,1

where 071;2(21) =Cr,, N TT3)(J'7) is the Cartan distribution of the second-order

equation T)(J'x) C J%7.
Let us return to vector fields on Y.

Definition 4.3. Let I'® be a 2-connection on 7. A vector field ¢ on Y will be

called a zeroth-order symmetry or briefly a symmetry of T(2) if

(414) 'C’Ur(z)(Jlth(Q) =0.

Denote the set of these symmetries by Sym(F(z)). If T® is integrable then
(4.14) means

(4.15) [7'¢, Drey] = _Di(cj)DF(2)]' .

Such a symmetry is determined by the functions ¢? = (7 — y?¢* (again on J!7)
satisfying
ore.

ore,
DN 1] A
= 4+ Dr2 ,
ay 14 8y];\ r@R(P”)

(4.16) Dre; (Di(¢7))

where on the right side is just vF(Q)(jlo(Ffj).
Remark 4.5. For (V) = ¢?0/dx* 4+ (70/dy” + (70/9y7, (4.12) means that

(7 = Dre;(¢7) = 4 Dre;(C') -

Consequently, if ¢(V) is m1,0-projectable then (7 = D;(¢7) — v/ D; (¢") and (ac-
cording to Example 4.2) a 7 - projectable vector field ¢W on Jlr is a first-order
symmetry of I'®) if and only if it is a prolongation of the symmetry ¢ = Tﬂ'lyo(c(l)).

Proposition 4.4. A projectable vector field ( on'Y is a symmetry of an integrable
2-connection I'?) on 7 if and only if its flow permutes the integral sections of T(?).

Proof. Definition 4.3 means that ¢ on Y is a symmetry of I'® if and only if
JLC is a symmetry of the first order. By previous considerations it is for an
projectable ¢ equivalent to the fact that the flow of J'¢ permutes the first jet
prolongations j'v of integral sections 4 of I'®). But this flow is the prolongation
of the flow of ¢. Hence if oy permutes the integral sections of I'2) and if j'v is the
prolongation of an integral section then (J!(ay) denotes J* (¢, idx)) J*(a)ojly is
by definition just j(a;07) and thus again a jet prolongation of an integral section.
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Conversely, if J!(a;) permutes the prolongations j!'vy of integral sections and if we
are given such a section v, then j?(a; 0v) = j1(j (a0 7)) = jH(J H(ar) o jlvy) =
T o (JYay) o j'y) = T™® o ji(a; o) and consequently a; o5 is an integral
section. d

The remainder of the section is devoted to the study of the algebras Sym, (F(Z))
or Sym, (T') of the vertical symmetries of I'®) or I, respectively. Accordingly, the
word “vertical” will be omitted if there is no danger of confusion.

In (4.4), the vertical prolongation VI' of T on # allowed us to characterize
the symmetries of I'. In the case of 2-connections an analogous concept may
be introduced. In order to relate it with the symmetries of I'?) the second jet
prolongation of a w-vertical vector field on Y must be recalled.

For any ¢ being a vertical vector field on Y, the second jet prolongation J2¢ =
J%(¢,idx) is a vector field on J?7 with the flow which is the second jet prolongation
of the flow of (. In coordinates

(4.17) T = c" — + D}

6"’

where D?jf denotes a composition D;(D; f) of total derivatives with respect to
base coordinates, where the inner component is a vector field along 7 ¢ while the
outer one is a vector field along 72 ;.

The wvertical prolongation VI'(?) of a 2-connection I'®) on m can be defined
analogously to VI' of I' by means of the vertical functor V', which gives a mapping

VIV, Jl'n — Vi, J?x, and thus defines a lift

(1.18) ¢° Ve,

9 L0
AACIORES 37 |F(2)(z) +
ar;f] - ara
C a 0' |F(2)(z

Composing VI'®) with a canonical diffeomorphism between Vi, J?7 and J2p

for p: Vz Y — X, one obtains VI'®) as a 2-connection on p.
From (4.16), (4.17) and (4.18), where ¢ = (7 are now functions on Y, we have

Zao’|2

Proposition 4.5. A vertical vector field { on Y is a symmetry of a 2-connection
I'® on 7 if and only if

(4.19) T oT® =y1® o6 gi¢ .

Remark 4.6. Following Remark 4.2, it is possible to present that { € Sym,, (F(Z))
if and only if

0= Vire yrend ¢ = _E(ch,ﬂc)r(z) = (T, ~Lyichpe): T — Vo,  Jo7

Analogously to Corollary 4.5 we obtain
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Corollary 4.6. Let ['?) be an integrable 2-connection on w. Then { € Sym, (F(Z))
if and only if € = ( o is an integral section of VI'?) for each integral section v of
r.

In what follows, T' € Sy (71,0) is supposed to be a field of paths of a 2-connection
I'®). Since any integral section of I' is an integral section of I'2)| due to Prop. 4.4
we get an expected result.

Corollary 4.7. If ¢ is a symmetry of I'® then (| is a symmetry of T.

One might ask on the relationships between the vertical prolongations VI'(2)

and VI

Proposition 4.6. A connection I on 7 is a field of paths of a 2-connection ')

on 7 if and only if VT is a field of paths of VT'(%).

Proof. Let T' be a field of paths of T?) ie. I'®) o' = JYT,idx) o T. Relative
to the naturality of all morphisms, functors and structures, it is easy to see that
VI o VT = V(TP oT) = V(JYT,idx)oT) = VJY(T,idx)o VT = J'(VI,idx) o
VI' which means that VT is a field of paths of VI'2). Note that we use the
above mentioned identifications of various prolongations of p: VY — X with
the corresponding vertical bundles, if necessary. The converse can be obtained
analogously. d

As an immediate consequence we obtain the well-known result affirming that
an arbitrary vertical symmetry of an equation is a symmetry of its prolongation.

Corollary 4.8. If ¢ is a symmetry of T', then ¢ is a symmetry of T(?) o T
Proof. What we want to prove is (following (4.19))

(4.20) T oT@ ol =yI® o g% ¢ol  onl .

Let y € U be an arbitrary point, v the maximal integral section of I' passing
through y, v(x) = y. Then VI® o J1¢ o T(y) = VI® o J'C o T o y(x) =
VT @oT1¢ojly(z) = VI ol (Cor)(z) = VI Pojé(z) = j2¢(x) = T oj?y(z) =
jZCoF(z)ojlfy(x) = jZCoF(Z)oF(y). d

Clearly, the whole situation may be described diagrammatically:

vr vy
VeV ——— Vo It s Vi, JPm

CT TJIC TJQC

T (2
Y —— Ja —— J¥n .

Example 4.3. First consider a time-dependent vector field v = T (¢, ¢*)0/dq°
on M, identified with the connection T' on # : R x M — R by Dp = 9/9t + v.
A symmetry of v is then a vector field ¢ = ¢%9/0t + (°9/dq° on R x M, such
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that [¢, Dr] = —Dr(¢°)Dr. Considering m-vertical symmetries we obtain again
(generally time-dependent) vector fields ¢ on M satisfying [(,8/0t + v] = 0.
Let now

9 9 9
Dra = — + ¢y =—— + [y ——
re = 5 T G T SErS

be a (global) semispray on R x TM, identified with the 2-connection r@: mx

TM — R x T?M. A vector field (V) = ¢°9/0t 4+ ¢79/9q° + C(Ul)ﬁ/@q&) is then a
first-order symmetry of the semispray Dpe) if

(4.21) (¢, Dpa)] = —Dre (¢°) Dpe

which locally means

C(U1) = DF(2) (CU) - (J&)Dr@) (CO)

and or?, or?,
D2 ) Ty — (2) A (2)D , A
T )(SD ) aq)\ ©" + aq()\l) T( )(SD )

for the generating functions ¢” = {7 —qE’l)CO. In particular, for (V) 7 -projectable
or mi-vertical (4.21) reads [((V), Dp@] = =D(C®) Dpe or [(D, D] = 0, respec-
tively.

If ¢(V is projectable onto IR x M then it is a prolongation of the (zeroth-order)
symmetry of Dy, which is a vector field ¢ satisfying [71¢, D] = —D(¢°)Dre) .
Provided Dpe) = 8/t + w, where w(g?*, q(>\1)) is a semispray on T'M, then ¢(Y) on
TM is a first order symmetry of w if and only if [C(l),w] =0 and ( on M is a
symmelry of w if and only if [¢¢, w] = 0, where (¢ is a complete lift of (.

It is well-known that the study of symmetries play a intrinsic role in the geom-
etry both of autonomous and time-dependent dynamics; we refer e.g. to [3], [4],
[19], [20], [21], [22] (and references therein). From this point of view, the above
classification of symmetries for connections might be useful e.g. in the geome-
try of dynamics on an arbitrary fibered manifold over one-dimensional base (e.g.
[14] and references therein). In fact, first order symmetries of the Hamilton vector
field associated to a first-order regular lagrangian A = L dt on J!7 are nothing else
that the so-called dynamical symmetries of A and accordingly the (zeroth-order)
symmetries are just the Lie symmetries of A (cf. [20], [21]).
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