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ON A FOURTH ORDER PERIODIC
BOUNDARY VALUE PROBLEM

LubpoviT PINDA

ABSTRACT. Existence and uniqueness of the solution to a fourth order nonlinear
vector periodic boundary value problem is proved by using the estimates for deriva-
tives of the Green function for the corresponding homogenous scalar problem

The aim of this paper is to prove the existence and the uniqueness of a solution
for the nonlinear vector periodic boundary value problem

(1) (In = Lo(y) + K -y =) g™+ (m>+0?) ¢ +(m*n* + K) y = g(t, v, v/, y", y")

(2) y(0) =y (2m), i=0,1,23.

where 0 < m < n, m,n € N and K > %(n2 —m?)?, the function ¢ € C(D, RY),
D=1[0,27]x R*x R* x R* x R* [ d > 1.

The Green function for the corresponding homogeneous boundary value prob-
lem (d = 1) has also been constructed. The method of the construction of this
function is published for instance in [3], where a nonlinear differential equation of
the third order is investigated. Similarly as in that paper where the scalar case
is considered we shall prove the existence and uniqueness to (1), (2) in the vector
case.

We consider the scalar differential equation of the fourth order

(3) (Lo(z) =) 2@ 4 (m2 + nz) 2"+ mPn?e=0

with periodic boundary conditions (2). Let the space X = L?([0,27]) be provided
with the usual norm [|-|| and scalar product (-, -}. Consider the differential operator
Lg defined on the subspace

D(Lo) = {z € C3([0,2]) : Y € L*([0,27]), 2D(0) = D (27), i=0,1,2,3}.
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Therefore the operator Ly maps D(Lg) C X into X. The functions z(¢) =
cosmt, z2(t) = sinmt, z3(t) = cosnt, z4(¢) = sin nt form a fundamental system of
solutions of the equation (3) and satisfy the boundary conditions (2). Considering
the problem

(4) Lo(l‘) = /\x

it is obvious that A = 0 is the eigenvalue of the operator Ly. In this case the Green
function does not exist. Let us take the equation

(5)  (Ii=Lo(x)+ K-z=) e+ m>+n2)a"+(m*n®> +K) #=0

instead of the equation (3) and state a condition for the constant K € R, in order
that the operator Lo + K -I have not the eigenvalue A = 0. [ is the identical
mapping in the space X.

Lemma 1. Let K > %(n2 — m?)2. Then 0 is not the eigenvalue of the operator
Lo+ K-I.

Proof. X is the eigenvalue of the problem (4) if and only if there exists such a
k € Z that i-k is the root of characteristic equation

r4+(m2—|—n2)r2+m2n2—A:0.
This happens, iff k satisfies the equation

E*— (m? = nH k2 + mPn? =X =0.
Denote g : R — IR the function

g(k) = k* — (m?* = n?) k?* + m*n?

The eigenvalues of the problem (4) are the values of the function g at k € Z. The

function g is an even function and min g(k) = —%(n2 —m?)? k € Z and hence all

eigenvalues A; > —%(n2 —m?)%. From the form of the function g it follows that
all eigenvalues of the problem (4) form a sequence {);} which approaches to oo to
j — oo. If we add to the function ¢ a constant K > %(n2 —m?)? to that function,
then g + K will be positive for all k. The corresponding characteristic equation

will be
r4+(m2—|—n2)r2—|—m2n2—|—[(:0

and the differential operator will be Lo(z) + K -x. d

From Lemma 1 it follows that the equation (Ly + K - I)(#) = 0 has only the
trivial solution for K. By Lemma 4.3, [1], p.145 it follows that the operator
Lo+ K - I 1s one-to-one and onto X.
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Lemma 2. The operator Lo + K -1, K € R is symetric in D(Ly) (i. e. for every
z,y € D(Lg) the equality (Lo + K-I)(z),y) = {x, (Lo + K-I)(y)} Is true.

Proof. Let z,y € D(Ly) = D(Lg + K-I). The assertion of the lemma follows by
twice integration by parts and by using boundary condition (2). a

Define a linear operator M in space X by

2T

M@ = [ ds, vt

where G is the Green function for the problem (5),(2). By Lemma 2 and Lemma
4.5 [1] p. 147 it follows that M is the self-adjoint operator on X and

(6) G(t,s) = G(s,t), for every (t,s) € [0,2x] x [0, 27]

Hence the operator Ly + K - I is self-adjoint too and D(Ly + K - I) = D(Ly).
Lemma 1 assurs the existence of the Green function G(¢,s) for the operator
Lo 4+ K-I. Determine its form. The characteristic equation Lg(z) + K-z = 0 is

r4+(m2—|—n2)r2—|—m2n2—|—[(:0.

Its roots are

rm=a+i-b, ro=a—1t-b, rs=—-a+i-b, r4a=—-a—i-b,
where
1 232 1 2 32
a=1/5 ay + /a7y + b7, b= 3 —ay + /a7 +b7 ],
2 2
alz—%, b= I K — (2 m2)Z >0,

and 0 < a < b 1s true. The Green function will be found in the form
cre% cos bt + coe® sin bt + cze™ % cos bt + cqe” % sin bt |
0<t<s<2m,
G(t,s) =
cse® cos bt + cge® sin bt + cre™ % cos bt 4+ cge ™ sin bt |

0<s<t<2rm.

From (6) follows that it is sufficient to determine the coeficients ¢;, i = 5,6,7,8.
These coeficients are calculated using the standart properties of the Green func-
tion. The Green function of the problem (5), (2) is

Gt ) = [ 71 e®17H27) — oy emalizstan)]
x [a sinb(s—t+2m) 4+ b cosb(s — t + 27)]
— [y e®7) - 726_a(t_s)]
X [a sinb(s —t) 4+ b cosb(s —t)], 0<s<t<2m,
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where
v = [ab(a® + b?)(e*¥™ — 2797 cos 2bw + 1)] ! ,
vo = [ab(a® + b?)(e™*™ — 27?7 cos 2bm + 1)] !
and
T 26797 cos 2bm + 1> (29T —1)2 > 0,
e 2672 cos b 4+ 1> (e7 29T —1)2 > 0.
Hence 0 < 41, 0 < 2. Let us introduce the notacion
M =y (e*™ 4+ 1), N = yo(e™ 2% 4 1).

Lemma 3. The following estimates are vatid
|G(t,9)| < (M e™ + N)a? +7,
Ga(t, )] < (M e + N)(a+ b)v/a? 52,
|Gu(t,s)] < (M e + N)(a+b)*\/a2 + b2,
|Gaae(t, 5)| < (M e + N)(a+b)>\/a? + b2

Proof. We consider the function f(u)=A sinu + B coswu for [0, 2x], where 0 <
[|A]| < |IB]|l, A, B € R. Look for the maximum of the function f. From the equality
F(u) = A cosu— B sinu = 0 it follows that sinu = %cosu Let A>0,B>0.
Then 0 < tg u = B < 1 and therefore there exists such u; € (0, 727), Uy € ( ,‘;’ ),
that f/(u;) =0, i = 1,2 and cosu; = B(A% + Bz)_% acosus = —B(A? + B?)~z.
The extremal values of fin uy, ug are f(uy) = (Az—i—Bz)% , flug) = —(A2+B?)z.
We shall get the same values in the casees when 4 > 0, B <0, A <0, B> 0, and
A <0, B < 0. Therefore max |f(u)| = (A2 + B2?)? in [0, 27] for all A, B € R.

We use these relations in the following estimations. The function e®(!=5+27)
attains its maximum on the set 0 < s < t at s = 0 and the function e~ @(*=s+27)
at s = ¢. Similar results hold for the function e®*=*) ¢=*(=%) Haying calculated
I*G(t, s)

otk

[SI[ER NI

,k=0,1,2, 3, we get these estimations

G(t,s)| < [11€(e** + 1) + 72(e77%" 4 1)] (az—i—bz)%
= (Me® 4+ N)(a® +b%)7
|Golt, )] < [re® (€7 4+ 1) +72(e7>" + 1] (a + b)(a” 4 b7)3
= (Me™ + N)(a+ b)(a® + bz)
|Gu(t, s)] < ['yleat 20T L 1) 4 ya(e7 29 4 1)] (a* + 2ab + b?)
x (a” +b2>% (Me® + N)(a+b)°(a” +b%)*
[y1e™ (2™ + 1) + v2(e7?"" + 1)] (a® + 3a”b + 3ab” + b°)
x (a? +b2)% (Me®™ 4+ N)(a+ b)>(a® + b°)7 . O

|Gt”t S |
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Lemma 4.

max / |G(t,8)|ds = Ko < 2m(Me**™ + N)(a® + bz)% ,

0<t< 27
27T

022”5#/ |Gi(t, s)| ds = Ky < 27(Me*™ + N)(a + b)(a® + b%) 7,
0
2T

022”5#/ |Gty )| ds = Ko < 21(Me**™ + N)(a+ b)*(a® + b%)7

0

_max / |Gty s)| ds = Kg < 27(Me**™ + N)(a + b)>(a® 4 b°)7 .

Gts

Proof. The integrals f 517

ds, j = 0,1,2,3 are continuous functions of the

variable ¢ in the compact interval [0,27] and in this interval they attain their
maximum Kj;, j = 0,1,2,3. From Lemma 3 we obtain the estimations above. 0O

Let us consider the nonlinear vector periodic boundary value problem (1), (2).
Firstly we introduce the following notations : = (z1,...,24)? is a column vector,
|z| = (|z1], . . ., |za])T, Myxq is the set of all real d x d matrices, ug = (1,...,1) € R,
p(N) is the spectral radius of the matrix N € Mgxq, p(N) = max|;|, where X;
are all eigenvalues of N.

For the scalar boundary value problem (5), (2) the estimations

(]) /‘3(?155

(7) =K; 023)2( |L1(y) ()], J=10,1,2,3,

~0g;g>§WIL 1(y)(s)| ds

are valid, where the constants K; are determined in Lemma 4.
Futher we shall use a generalized norm. If £ is a real vector space, then the

generalized norm in E is a mapping || - ||¢ : £ — R denoted by
(8) lelle = (a1(x), ..., aa(x))"
such that

(1) |lz|l¢ > 0 that is aj(x) >0 forj=1,...,d, x € E,
(2) llz|le =0iff 2 =0}

(3) llexlle =lef-[lzllg, c€E R, w € E ;

4) llz+ylle <llzlle + llylla, =,y € E.
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The couple (E, || - ||¢) is then called a generalized linear normed space. The
topology in this space is given in the following way. For each z € E, and ¢ > 0
let B: ={y € E : || — y|ll¢ < - ug}. The same topology can be inducted by the
norm which is defined in this way. Let ||z||¢ is given by (8), then

(9) [|z]| = max(aq(x), ..., aq(x)), reF.

The mapping ||-|| has all properties of the norm. The topology of the normed space
(E, ||-1]) is given by the basis of neighbourhoods V.(2) ={y € E : |ly—=|| < ¢},
€ FE,e¢>0and V.(2) = B:(%). Therefore the norms (8) and (9) define the same
topology on E and in this sense are equivalent. We may use the norm (9) instead
of the generalized norm (8). The following lemma is true and it is introduced in

[2], p. 78.

Lemma 5. Let (E, ||-||¢) be a generalized Banach space and let T : E — F be
such that for all z,y € E and for some positive integer p

1T%(x) = T*(W)lle < M -[lz = ylla,

where M € Mgxq is a nonnegative matrix with p(M) < 1 and TP is p-th iterate
of T'. Then T has a unique fixed point. a

Theorem 1. Let for all (¢, ug, u1,us, us), (t,v0,v1,v2,v3) € D the function ¢
satisfy the Lipschitz condition

3

(10) l9(t, wo, w1, uz, uz) — g(t, vo, v1, v2, v3,)| < ZN1|U1 —ul,
=0

3
where N; € Miyq are nonnegative matrices. Let p (Z N; - K; ) < 1, where K;
=0
are the constant in Lemma 4. Then there exists a unique solution to (1), (2).
Proof. Let us itreduce the notation for each = € C([0, 27],RY), =(t) = (z1(t), . ..,
zq(t))T max |z(t)] = ( max |zi(t)],.. - max lza(t))T. Let
<t<2w

0<t<L2r 0<t<L2r
Sy ={x e C(0,27], Y . 290 =2(21), i=0,1,2,3}.

Then S is a real vector space and the generalized norm is defined on 57 by

lally = max [La(@)0)], pre vsetky o € 1.

The properties of the generalized norm can be easily checked. (S1, |- ]l1) is a
generalized Banach space. In fact, if {z,}52, C S1 a Cauchy sequence, then
the sequence {Li(xy)(t)}o2, converge uniformly on [0,27] to the function y €
C([0,27]), R9). The problem L;(z)(t) = y(t), (2) has a unique solution = € S; a
nlLH;o ||zn — z||1 = 0.
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Define the mapping 7' : S1 — S1 by T'(y) = x, where z is a solution of the
equation

Ly(z)(t) = g(t,y(1), ¥ (1), " (), y" (1)),

which fulfils the boundary conditions (2). By (10) for any of two functions y,z €
S1 we have

(11) LT ()0 = LT ()0 < Y Nly (1) = (),

for all t € [0, 2x].
Denote the j-th coordinate of the functions y and z by y;, z; respectively. Then
from (7) we have

(1) — V()] <

27

]

< K; og?z(n |L1(y; )(t) — L1(z;)(®)|, (=0,1,2,3.

JG(t, 5)

| oA |L1(y; )(t) — La(2;)(t)|ds

0<t<L2r

Therefore
(12) ) = 2O < Killy = 2|l 1=0,1,2,3.
From (11) and (12) it follows
3
LT ())(t) = LT )OI < Y N Killy = =|la
1=0
for all y,z € S, t € [0,27] and

3

IT(y) = T()ls <D N Killy — 2| -
=0

As the assumption of Lemma b is fulfiled, there exists a unique fixed point of 7" in
Si1. This means that the problem (1), (2) has a unique solution. d
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