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ATOMS IN LATTICE OF RADICAL
CLASSES OF LATTICE-ORDERED GROUPS

Dao-Rong TonN

ABSTRACT. There are several special kinds of radical classes. For example, a prod-
uct radical class is closed under forming product, a closed-kernel radical class is
closed under taking order closures, a K-radical class is closed under taking K-
isomorphic images, a polar kernel radical class is closed under taking double polars,
etc. The set of all radical classes of the same kind is a complete lattice. In this paper
we discuss atoms in these lattices. We prove that every nontrivial element in these
lattices has a cover.

For the definitions and the standard results concerning f-groups, the reader is
referred to [1, 3, 6]. Let G be an ¢-group. €(G), Z(G) and K(G) will be denoted
the complete lattices of all convex f-subgroups, all f-ideals and closed convex ¢-
subgroups of G, respectively. Let C C G. By C¢g C’é"‘ we denote the order closure
of C'in G and the double polar of C' in G, respectively. Two f-groups G and G’
are said to be K-isomorphic, if K(G) and K(G’) are isomorphic as lattices. Join
in a lattice L is denoted by V(F).

Let 4 be the set of all f-groups. For X C ¢ we denote by
Jr(X) — the class of all {-groups G having a system {G\|A € A} C X N K(G)
such that G = )\\/A(K(G))GA;

€
L(X) — the class of all &~groups G such that K(G) is isomorphic to K(Gy) for
some GG1 € X.

We can make new f-groups from some original f-groups. These constructions
include:

1. taking convex f-subgroups,

2. forming joins of convex f-subgroups,

3. forming completely subdirect products,
3. forming direct products,

4. taking f~homomorphic images,

4’. taking complete ~-homomorphic images,
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5. forming extensions, that is, (G is an extension of A by using B
if Ais an ¢-ideal of G and B =G/A
6. taking order closures, that is, G is an order closure of A if A is a convex
(-subgroup of an f-group H and G = Ag.
7. taking double polars, that is, G’ is a double polar of A if A is a convex
{-subgroup of an (-group H and G = A%,
8. taking K-isomorphic images.
A family % of ¢-groups is called a class, if it is closed under some constructions.
If a class % is closed under the constructions i1, ...,4;, we call % a i ...1;-class,
where iy,... i € {1,2,3,3,4,4',5,6,7,8} and 1 < k < 8. All our classes are
always assumed to contain along with a given f-group all its f-isomorphic copies.
Thus, a radical class [7] is a 12-class, a quasi-torsion class [9] is a 124'-class, a
torsion class [10] is a 124-class, a closed-kernel radical class [5] is a 126-class, a
polar kernel radical class [5] is a 127-class, a K-radical class [8] is a 128-class. We
call a 123’ (123-class) a product radical class (a subproduct radical class). We call
a 125-class a complete (idempotent) radical class.
In this paper we call 1243 ...¢;-classes radical classes. Let T1a;, 4, be the set
of all 12i5...ig-classes. For any family {Z|A € A} of 12i5 ... ig-classes, AQ/\%A €

Th2i4 i, - S0 we can define

ANZ\y= NA,
AEA AEA

)\\/ %)\ = m{%e T12232k|%2 ‘%A for each A€ /\} ’
en

and Tia4, 4, becomes a complete lattice.

Let Z12i, i, be a 12i3...4p-class and G be an f-group. Then there exists a
largest convex £-subgroup of G belonging to Z14;,. i, . We denote it by Z12i,. 4, (G)
and call it a Z19;, i,-radical. It is invariant under all the -automorphisms of G.
It is clear that an ¢-group G belongs to Z12i,. 4, if and only if G = %14, 4, (G). If
Ry, Bz € Thoiy. iy, then #y < J5 if and only if 2, (G) C > (G) for each ¢-group
(G).

Lemma 1. Every closed-kernel radical class is a subproduct radical class.

Proof. Suppose that Z is a closed-kernel radical class and G is a completely
subdirect product of {GA|A € A} where {G5|A € A} C Z. That is,

dancac ] Ga

AEA AEA

For each A € A put Gy = {g € [ GA|N # A = g»» = 0}. Then Z(G) NG, =
AEA

Z(Gy)=Gyandso GDZ(G)D Gy foreach AEA. Let 0<a={(...,ay,...)E

G. Then

a= Vv (g,
AEA
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where @y = (0,...,0,a,,0,...,0) € Ga(XA € A). Since Z is closed-kernel, a €
Z(G). Hence G = Z(G) and G € Z. O

Suppose that Z, 7 € Ty2. We define the product Z- 7= {G € 4|G/Z%Z(G) €
T}, Let 7 € Ti2 and ¢ be an ordinal number. We define an assending sequence
T T2 ..., 7°, ... as follows:

, F. g1 if ¢ 1s not a limit ordinal
7 {G|G = L<J FT*G)} if o is a limit ordinal .

It is easy to show that 77 is a 12-class for each ordinal ¢. Define 7% = UZ°7.
Similarly to the proof of Theorem 1.6 and Theorem 1.7 of [10] we can prove

Lemma 2. Let Z be a 12-class. Then Z* is the smallest complete 12-class con-
taining Z. Z is complete if and only if # = R*. #* C #*-.

Proposition 3. For 12is. . .ig-classes of {-groups we have the following relations:

Ti28 € Ti26 € Th23 C Thag € T12 D Thiogr D Thog
Ul
Ti25
Ul
Tia7.

Proof. Tis3 C 11930 C T12 D Tisar are clear. By Lemma 1 and Lemma 2 we get
Ti26 C Thas and Tia7 C Tya5. It follows from Lemma 2.2 of [8] or Lemma 1.5 of [2]
that T128 g T126. O

Now suppose that Z € T15. Put
R = (U E Tigis. i) |UD R

Then 2t ¢ T2y i, 1t is called the 12i5...dp-closure of Z or 12:3...4-
class generated by #Z and we have the closure operator Z — Z°3** on T15. By
Proposition 3 we have

Proposition 4. Let Z be a radical class. Then

RSO R DR ORY D RC RY C B*
al
%5
al
748
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In [5] M. Darnel determined some closure operators. Let G be an ¢-group. Then

(1) 2Z4(G) = \/(%(G)){C' € 6(G)| there exists H € #
and L €.Z(H) suchthat C=H/L},

(2) #°(G) = 2(G)g

(3) 27(G)=2(G)g -

By Lemma 2 we have Z° = #Z*. In the following we will determine the closure
operator Z — #° on Ts.

Theorem 5. Suppose that Z is a K-radical class. Then
(I) if A € (), then Z(A) = ANZ(G);
(I1) if ¢ is a K-isomorphism between G and G, then ¢(Z(G)) = Z ().

Conversely, if we associate to each ¢-group G an ¢-ideal Z(G) € K(G) subject
to (I) and (IT) above, and let Z = {G|Z7(G) = G}, then Z is a K-radical class,
and for each ¢-group G, Z(G) = 7 (G).

Proof. The assertion (I) is known (cf. e.g. [5]). If K(G) is isomorphic to K(G")
with K-isomorphism ¢, ¢ (Z(G)) = Z(G’) by the property b) of [4, p. 187].
Conversely, suppose that we associate to each f-group G an (-ideal T (G) €
K(G) subject to (I) and (IT) above, and let Z = {G € 4|7 (G) = G}. Tt is easy
to see that Z is a radical class. Let T" be the class of all lattice L such that there
exists G € Z and L is isomorphic to K(G). Thus, (IT) implies that #Z is a K-
radical class. Let G be an f-group. 7 (G) € # implies Z(G) O F(G). On the
other hand, Z(G) = Z(Z(G)) = Z(G) N T(G), so Z(G) C Z(G). Therefore
Z(G) = T(G). O

Any mapping f : G — Z(() on 9satisfying the above properties (I) and (IT) is
called a K-radical mapping. Theorem 5 indicates that a K-radical class is uniquely
determined by its K-radical mapping.

Theorem 6. Let Z be a radical class and G be an (-group. Then G — Z3(G) =
VIEENIA € K(G)|A is K-isomorphic to some A € Z} is a K-radical mapping
and Z% = {G|#3(G) = G} is the K-radical class generated by Z.

This theorem is a corollary of Theorem 2.9 in [8], hence the proof is omitted.

Corollary 7. Let #Z be a radical class. Then the K-radical class generated by Z
is #% = Jx L(Z).

This corollary is also a result of Theorem 2.9 of [8].

Suppose that 2y # %5 € Ti2,. 4, If the interval [y, Xs] = {X1, X2}, we say
that %> covers %, or that %> 1s an atom over #;. The set of all atoms over %,
will be denoted by A9, 4, (Z1). Let Zo = {{0}} be the least element of Thai, 4,
We put Ayai,. i, (%0) = Ar2i,. .. In [7] J. Jakubik proved that, if ¥ £ Z € Ti,,
then Aj2(Z) is a proper class. In particular Ay, is a proper class. In this paper
we will prove that, if Z € Tia5 (T126, Th27 and Tias) and Z # 9, then A125(Z)
(A126(Z), A127(Z) and A135(#)) is nonempty.
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Lemma 8. Suppose that Z € Ti2i, i, and Z1 € A12(R). If forany Z' € Tiai, i,
with @ < @' < R, @' (B, # B. Then B> € Avag, 1, (R).

Proof. Let Z' € Tia, i, suchthat Z < #' < Z% "% . Then Z < #'N%, < %1
Since Z, € Alz(g), 74 N = #,. That iS, 74 > .. But ' e Tl?ia...ika SO

R’ > R Therefore Z' = R and 2% € Ayai, i, (2). O
Lemma 9. (Proposition 3.3 of [7]) Let 4 # # € Tis. Then A13(#) is a proper
class.

Theorem 10. Let 9# # € T1a6. Then Aq126(2) is nonempty.

Proof. . Since Z # ¥, A12(Z) is a proper class by Lemma 9. For any Z2 €
A15(R), let B' € Tia6 such that Z < Z' < #¢,. By the formula (2) we have
%S, = {G € 9|G = %15 (G)}. So the element G of Z’ has the form G = 2,5 (G).
If %,2(G) € Z for all elements G of %', then since #Z € Tia6, Z' = #. This
contradicts to Z < #Z'. Hence there exists Gy = Z(G1) € Z’ such that Z12 (G1) €
40 \4% But %, (Gl) S %(Gl), SO A1 (Gl) cx NZ1-. This means 74 N1 ;é
Z. The Lemma 8 implies 2%, € A126(Z). |

Theorem 11. Let 9# # € T12s. Then Aq28(Z) is nonempty.

Proof. A15(#) is a proper class. Let Z15 € A12(#Z) and Z' € Tias such that
R < R < R%,. By Proposition 3 2’ € Tias and Z%, € Ti26. From the proof of
Theorem 10 we see that 2/ N\ %12 # Z. So Lemma 8 implies 2%, € A125(#). O

Theorem 12. Let 9# # € T125. Then Aq125(Z) is nonempty.

Proof. Let 215 € A12(#) and #' € Ti25 such that Z < #' < %, = #%,. It
follows from the definition of 275, that 2’ N %12 # #. So by Lemma 8 we have
A3y € Ar2s(Z). O

Theorem 13. Let 9# # € T1a7. Then A127(Z) is nonempty.

The proof of this theorem is similar to that for Theorem 11.
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