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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 187 { 1953{CONFIGURATIONS WITH SIMPLE EDGE BASIS ANDTHEIR CORRESPONDING QUASIGROUP IDENTITIESV. J. HavelAbstract. There is described a procedure which determines the quasigroup iden-tity corresponding to a given 3-coloured 3-con�guration with a simple edge basis.Part 1 3-configurations1.1. Main notationsUnder a (3)- con�guration we shall understand a �nite incidence structure(V; E ; I ) such that # fy 2 E��x I yg 5 3 for all x 2 V. If, moreover, # fy 2 E��x I yg =3 for all x 2 V and # fx 2 V��x I yg = 2 for all y 2 E , then we get a 3-con�guration.If one (3)-con�guration is an incidence substructure of another (3)-con�gurationwe speak of a subcon�guration. Elements of V will be called vertices and elementsof E edges of a given (3)-con�guration (V; E ; I ). After all, such (3)-con�gurationare hypergraphs with vertices of degree � 3 and with the property that two distinctvertices cannot lie simultaneously on two distinct edges.If x I y then x; y are said to be adjacent . Two distinct vertices adjacent to thesame edge; respectively two or three mutually distinct edges adjacent to the samevertex, are said to be neighbouring . A (3)-con�guration is called connected if forany distinct vertices a; b there is a �nite sequence of edges e
1

; e
2

; : : : ; ek such thata I e
1

, b I ek and that ei; ei+1

are neighbouring for all i 2 f1; : : : ; k � 1g.Troughout the paper every 3-con�guration will be supposed to be connected.Let there be given a 3-con�guration C= (V; E ; I ). We shall de�ne a halfoper-ation on E : for every couple (x; y) of neighbouring edges x; y their product x � yis equal to the remaining edge which forms together with x and y a neighbouringtriple. We obtain the edge halfgroupoid (E ; �) associated to C.1991 Mathematics Subject Classi�cation : Primary 05B30, Secondary 20N05.Key words and phrases: 3-con�guration, pillar (over an edge set), 3-web, closure condition,quasigroup identity.Received July 1, 1992.



188 V. J. HAVEL1.2. Bases of 3-configurationsLet C = (V; E ; I ) be a 3-con�guration. If X is a non-void set of edges thendenote by [X ] the set of such vertices which are adjacent to least two edges fromX .Now start with a non-void set A of edges, construct a sequence A
0

:= A,A
1

:= [A
0

], A
2

:= [A
1

], A
3

:= [A
2

], : : : and form the unions EA := 1Si=0

A
2 i,VA := 1Si=0

A
2 i+1

. Then (VA; EA; I ) is a subcon�guration in C generated by A; wedenote it by hAi. We shall call the sequence (Ai)1i=0

the pillar over A. Further letthe stage of elements of A
0

, respectively A
1

be de�ned as 0, respectively 1. If thestages of elements of A
0

[A
1

[ � � � [ Ai are already known then de�ne the stageof elements ofAi+2

�Ai to be equal to i+2. The edge, respectively vertex a of hAiis said to be terminal if there is no edge, respectively no vertex of greater stageneighbouring to a. Under a constituent we shall understand a term expression (bymeans of �) of edges over A within the framework of the pillar. The set A willbe called independent if hAnfagi 6= A for all a 2 A. The set A is called an edgebasis of C if it is independent and if hAi =C. The set of all element bases of agiven 3-con�guration C = (V; E ; I ) cannot be void: we can namely delete, stepby step, all dependent elements from the full edge set E . If B is an edge basis andT the set of all terminal elements (vertices, as well as edges, if they exist) then
# V + # B = # E + # T (a well-known condition, cf. [1], pp. 50-51). Di�erent edgebases of C can we have di�erent number of edges. Bases which lead to just oneterminal vertex or edge will be denoted as simple. Thus for simple bases we have

# T = # V + # B � # E = 1; i.e. # B = # E � # V + 1 :If B is a simple basis of C then in the corresponding sequence (Bi)1i=0

theterminal vertex t lies on two edges e; e0 with maximal stage (equal to stage of tminus one) and still on the third edge e00. This gives the equation e � e0 = e00 andconsequently the equation between corresponding terms over B in the halfgroupoid(B; �). Analogously, if there is the terminal edge t then it has maximal stage anddetermines an equality between two corresponding terms over B in (E ; �).We give two examples: First let us investigate the 3-con�guration C = (V; E ; I )on Fig. 1 with # V = 10, # E = 12, B = fx; y; zg.1 1 11� 0
12

0 3 �0
2 11�hhhhhj1215 � 46AAAAA0

0AAAAA � � w12
0 } 13�AAAAAAAAAA218 �AAAAAAAAAA10

0 �4444410
1

t7 9 9 Fig.1



3{CONFIGURATIONS WITH SIMPLE EDGE BASIS 189Here: 0
0

: : :x; 0
1

: : : y; 0
2

: : : z; 2
0

: : :xy; 2
1

: : : yz; 4 : : : (xy)(yz); 6 : : :x((xy)(yz));8 : : : (x((xy)(yz)))(yz); 10
0

: : : ((x((xy)(yz)))(yz))(xy); 10
1

: : : ((x((xy)(yz))(yz))z;12
0

: : : (((x((xy)(yz)))(yz))(xy)); 12
1

: : : (((x((xy)(yz)))(yz))(xy))y.This basis is simple and determines just one terminal vertex t of stage 13,which results as the vertex adjacent to two neighbouring edges of stages 12.The remaining edge through t is one of edges of stage 10. The correspondingterm equality is thus ((((x((xy)(yz))(yz))(xy))y) � (((x((xy)(yz))(yz))xy))z) =((x((xy)(yz))(yz))z.The second example deals with a 3-con�guration C = (V; E ; I ) on Fig. 2 with
# V = 5, # E = 7, B = fx; y; zg. There is just one terminal element t. It has stage4 and determines the equality among terms (xy)(yz), (xy)z.1�1 � 0

2 0
2

[[[[[[[[[0
0[[[[[[[[['''''''''2

2

�012
1

� 3''''''''' 2
0 [[[[[[[[[ 4�30

0

: : : x, 0
1

: : : y, 0
2

: : : z, 2
0

: : : xy, 2
1

: : : yz, 2
2

: : : xz, 4 : : : (xy)z : : : (xy)(yz)Fig. 2Now let B be a simple edge basis of a given 3-con�guration C = (V; E ; I ) andt
1

= t
2

the term equality over B in (E ; �) corresponding to the terminal element(vertex or edge).We shall �nd some properties of the equality t
1

= t
2

:(i) The set B must contain at least three edges:In fact, by the existence of just one edge in B or just two edges in B,respectively, the pillar over B should have no vertices of stage 1 respectively3 contrary to further size of the pillar.(ii) Every x 2 B occurs at least twice in t
1

= t
2

:By exactly one occurence (in the subterm u � x of the pillar or in t
1

= x,respectively t
2

= x) we should have on x only one vertex or we shouldexpress x 2 B by the edges from B (which contradicts the independenceof edges of the basis).(iii) No constituent in (Bi)1i=0

can be of the form u(uv) with u and v as con-stituents in (Bi)1i=0

:This follows at once from the de�nition of the pillar over B.



190 V. J. HAVEL(iv) Equations t
1

= uv
1

, t
2

= uv
2

, respectively t
1

= u, t
2

= uv, respectivelyt
1

= uv, t
2

= u with constituents in (Bi)1i=0

are not possible:The equality uv
1

= uv
2

or u = uv, respectively, should violate the fun-damental properties of the 3-con�guration (uv
1

= uv
2

) v
1

= v
2

, but onthe other side, v
1

and v
2

should be distinct edges as constituents in thepillar; moreover, u = uv contradicts the fact that uv must be the thirdedge neighbour to u and v).(v) Let t
1

and t
2

be not formed by exactly one edge of B and let x 2 B entersin v = ux, where u; v are constituents of the pillar. Then x enters still insome term v0 = u0x 6= v where also u0; v0 are constituents.We can de�ne a closure condition in a 3-con�guration C = (V; E ; I ) derivedfrom a 3-con�guration C� = (V�; E�; I�) having a simple basis B with terminalelement t
2

and with the main subcon�guration Ĉ� = (V�; E�nftg; I �). The corre-sponding closure condition claims:For every incidence structure homomorphism � : Ĉ� !C there exists its prolonga-tion onto a homomorphism �� :C� !C.In the second part of our considerations we shall adapt this de�nition for 3-webcon�gurations and 3-webs. As we are familiar with the subject, only less is knownabout closure conditions in general 3-con�gurations (or, more largely, in webs ofarbitrary number of parallel line pencils).Part 2 Closure conditions in 3-webs2.1. Coloured configurationsWe say that a (3)-con�guration is 3-coloured if for every vertex x an injectivemap of the set of all edges through x into the colour set f1; 2; 3g is given such thatfor all neigbouring vertices x; y the colour assigned to the common adjacent edgeis the same. The edges with colour 1, 2, or 3, respectively will be called vertical ,horizontal or skew , respectively.A 3-coloured (3)-con�guration C
1

is a subcon�guration of a coloured (3)-con�-guration C
2

if it is an incidence substructure preserving the colour of every edgefrom C
1

.Now we shall de�ne a 3-web independently on 3-con�gurations though it ispossible to take a (�nite) 3-web as a special 3-con�guration.A 3-web is de�ned as an incidence structure (P;L; I ); # P 5 2, together with adecomposition of the set L onto mutually disjoint sets L
1

;L
2

;L
3

such that forevery x 2 P and every i 2 f1; 2; 3g there is just one y 2 Li such that x I y and forevery x 2 Li and every y 2 Lj for distinct i; j 2 f1; 2; 3g there is just one z 2 Psuch that z I x and z I y. Elements of P are points, elements of L lines, L
1

, L
2and L

3

are pencils (of parallel lines). Lines from L
1

, L
2

or L
3

, respectively, aresaid to be vertical , horizontal or skew , respectively. If z I x and z I y is true fordistinct lines x; y then z is called the intersection point of both lines.A homomorphism of a 3-coloured (3)-con�guration C = (V; E ; I ) into a 3-web W = (P;L; I ) is an incidence structure homomorphism which maps every



3{CONFIGURATIONS WITH SIMPLE EDGE BASIS 191vertical, horizontal or skew edge, respectively, onto a vertical, horizontal or skewline, respectively.On Fig. 3 we present a non-3-colourable 3-con�guration (V; E ; I ),c�a � a
0 h[[[[[[[[[e

1'''''''''h e
2

�f1f
2

� b''''''''' g
1 [[[[[[[[[ g

2�dFig. 3with V = fa
0

; a; b; c; dg, E = fe
1

; f
1

; g
1

; e
2

; f
2

; g
2

; hg having one edge adjacentto just three vertices. If the colours of e
1

; f
1

; g
1

; h are i; j; k; l 2 f1; 2; 3g theni 6= j 6= k 6= i so that every possibility for l leads to a contradiction.Let C = (V; E ; I ) be a 3-coloured 3-con�guration and E
1

, E
2

, E
3

sets of allits horizontal, vertical or complementar edges, respectively. Then de�ne a half-operation � ki j� : Ei�Ej ! Ek such that � ki j�(xi; xj) = xk is de�ned if and only if xi 2Ei, xj 2 Ej, xk 2 Ek are neighbouring edges (�1 2 3i j k� is an arbitrary permutationof the set f1; 2; 3g). So we obtain six parastrophic halfoperations associated toC which from a three-sorted edge halfquasigroup (E
1

; E
2

; E
3

;�� ki j�����1 2 3i j k� 2 S
3

	)associated to C.Let B be a basis of a simple 3-coloured 3-con�guration C = (V; E ; I ) with theterminal element t. We express the edges of C as constituents in the pillar (Bi)1i=0over B with use of halfoperations � ki j�. The existence of t leads to an equalitybetween constituents of greatest stage.From the successive construction of constituents in (Bi)1i=0

we obtain the va-lidity of the Position Property : In every occurence of the edge e as a constituent� k1i1j1�(�; �) or as a member of other constituents � k2i2j2�(e; �), � k3i3j3�(�; e) the equalitiesk
1

= i
2

= j
3

must hold.Now we see that Position Property implies that constituents of the form � k1i1j1�(u; � k2i2j2�(u; v)) with i
1

6= i
2

do not occur. Property (iii) a�rms that constituentsof the form �k1ij1�(u; �k2ij2�(u; v)) do not occur. Property (iv) excludes the equalityt
1

= t
2

with t
1

= � ki j�(u; v1

), t
2

= � ki j�(u; v2

) whereas the case t
2

= � ki j�(t1

; v) withi 6= 3 is excluded again by Position Property.



192 V. J. HAVELIf Position Property holds (v) can be reduced onto the occurence of a constituent� ki j�(x; u0), u0 6= u when a constituent � ki j�(x; u) occurs (with t
1

and t
2

di�erentfrom a single x 2 B).When a 3-sorted quasigroup Q = (Q
1

; Q
2

; Q
3

, �� ki j�j�1 2 3i j k � 2 S
3

	) is givenwith # Q
1

= # Q
2

= # Q
3

> 1 then let t
1

= t
2

be a quasigroup identity for Qwith a �nite set X , # X � 3 of variables (the formal construction of terms t
1

,t
2

is supposed as known, see e.g.[1], pp. 30-31). The subterms of t
1

= t
2

ful�llnecessarily this Position Property : In every occurence of a subterm � = � k1i1j1�(�; �)and subterms � k2i2j2�(�; �), � k3i3j3�(�; � ) the equalities k1

= i
2

= j
3

must hold.We assume that following conditions are ful�lled: every x 2 X occurs in t
1

= t
2at least twice; the case t

1

= � ki j�(u; v1

), t
2

= � ki j�(u; v2

) is excluded; if t
1

, t
2

are notsingle variables and a subterm � ki j�(x; u) occurs for x 2 X then also a further sub-term � ki j�(x; u0) with u0 6= u occurs; subterms are reduced by fundamental quasi-groups identities � jik�(�; � ki j�(�; �) = �) where � 3

12

�(�
1

; �
2

) = �
3

, � ki j�(�i; �j) = �kfor all permutations �1 2 3i j k�. Under these assumptions the subterm buildup ofthe identity coincides with the edge generation of a convenient 3-coloured 3-con�guration over a simple basis corresponding to X . We leave the details aside.As an example we shall investigate a 3-coloured 3-con�guration C = (V; E ; I )on Fig. 4 with a simple basis B = fx
1

; x
2

; y
1

; y
2

g, where x
1

; x
2

are vertical edges,y
1

; y
2

horizontal edges and the terminal element is the vertex b. The edges ofstages 4 determine the remaining edge through b. This leads to the equality �(x
1

�y
1

)�y
2

� � �x
2

�(x
1

� y
2

)� = x
2

� y
1

where � 3

12

� = � ; � 1

32

� = �,� 2

13

� = �. We can writeequivalently (x
1

� y
1

)�y
2

= (x
2

� y
1

)�(x
2

n(x
1

� y
2

)).1 1
0� 0

2 �hhhhhk2
2� �0

1 3
1u5

0 4
1�4

0 AAAAAAAAAAAA2
00

3

�����������2
1

0
0

u (x
2

� y
1

).(x
2

/(x
1

� y
2

))3
0

10
0

: : : x
1

, 0
1

: : : x
2

, 0
2

: : : y
1

, 0
3

: : : y
2

, 1
0

: : : a0, 2
0

: : : x
1

� y
1

, 2
1

: : : x
1

� y
2

,2
2

: : : x
2

� y
1

, 3
0

: : : a, 3
1

: : : a00, 4
0

: : : (x
1

� y
1

)�y
2

, 4
1

: : : x
2

�(x
1

� y
2

), 5
0

: : : bFig. 4The stages of single edges and vertices are written as labels on Fig. 4 as well as



3{CONFIGURATIONS WITH SIMPLE EDGE BASIS 193the corresponding constituents. We can readily con�rm that properties (i)-(v) areful�lled.We say that a 3-web W = (P;L; I ) satis�es the closure condition �(C, B)derived from a 3-coloured 3-con�guration C = (V; E ; I ) with a simple basis Bif every homomorphism � : Ĉ ! W can be prolonged onto a homomorphism�� : Ĉ !W. Here Ĉ = (Vnftg; E ; I ) or Ĉ = (V; Enftg; I ) where t is the terminalvertex or edge.To a given 3-web W = (P;L; I ) with pencils L
1

, L
2

, L
3

we associate the co-ordinatizing 3-sorted quasigroup (L
1

;L
2

;L
3

; f� ki j�j�1 2 3i j k� 2 S
3

g) which is de�nedby � ki j� : L1

�Lj ! Lk; (xi; xj) 7! xk where xi; xj; xk are concurrent lines.Let a given 3-web W with pencils L
1

, L
2

, L
3

satisfy the closure conditionderived from a 3-coloured 3-con�guration C with a simple basis B. Then the corre-sponding term equality in C over B can be interpreted as an identity with respectto the coordinatizing 3-sorted quasigroup Q and B as the set of variables. ThusW determines the corresponding identity over Q.We shall return to the 3-con�guration C on Fig. 4 and suppose that a 3-webWsatis�es a closure condition �(C;B). Then the coordinatizing 3-sorted quasigroupsatis�es the identity (x
1

� y
1

)�y
2

= (x
2

� y
1

).(x
2

�(x
1

� y
2

)) with variables x
1

; x
2

of\position" 1 and variables y
1

; y
2

of \position" 2.If we take a homomorphism % : Ĉ ! W with %(b) = %(a0) = %(a00) we get asubcon�guration C of C on Fig. 5 with a simple basis B = fx
1

; y
1

; y
2

g. The closurecondition �(C;B) determines the identity (x
1

� y
1

)�y
2

= (x
1

� y
2

)�y
1

. Thus in Wfrom �(C, B) it follows that �(C;B).1 3� 0
1 �4

1�4
0 �������2

00
2

��������2
1

0
03 10

0

: : : x
1

, 0
1

: : : y
1

, 0
2

: : : y
2

, 2
0

: : : x
1

� y
1

, 2
1

: : : x
1

� y
2

, 4
0

: : : (x
1

� y
1

)=y
2

,4
1

: : : (x
1

� y
2

)=y
1 Fig. 5



194 V. J. HAVELA B F� a
2 ������b3

�''''''''''' d
3

E f
1

�u e
2

b
1�c1'''''''''''a

3 c
2 �a

1C D Fig. 6Now we map Ĉ under a homomorphism into W as on Fig. 6 and suppose that�(C;B) holds in W. We construct the intersection point F of the lines a
2

and d
3and apply �(C;B) onto the images a

1

; a
2

; a
3

of basis edges so that c
1

= f
1

. Weapply �(C;B) once more namely onto the images b
1

; a
2

; e
2

of basis elements sothat f
1

must go through the intersection point G of b
3

and e
2

. Thus G lies onc
1

and �(C;B) holds when applied onto the images a
1

; b
1

; a
2

; c
2

of basis edges.Thus �(C;B) implies �(C;B) so that �(C;B) , �(C;B) in W and consequently(x
1

� y
1

).y
2

= (x
2

� y
1

).(x
2

�(x
1

� y
2

)), (x
1

� y
1

)�y
2

= (x
1

� y
2

).y
1

are equivalentidentities in Q. Note that the second identity has the same left side as the �rstone whereas on the right side there occur variables x
1

; x
2

; y
1

; y
2

, respectively onlyvariables x
1

; y
1

; y
2

.These \geometric" considerations will be now complemented by direct algebraicones.Let us consider quasigroup identities(i) (x
1

y
1

).y
2

= (x
2

y
1

).(x
2

�(x
1

y
2

)),(ii) (x � y
1

).y
2

= (x � y
2

)�y
1once again.Let (i) be valid in a 3-sorted quasigroupQ. Putting x

1

y
2

= x
2

y
1

, x
1

= x we rewritethe right side of (i): (x
2

y
1

.(x
2

/(x
1

y
2

)) = (x � y
2

).(x
2

�(x
2

y
1

)) = (x � y
2

).y
1

.The left side of (i) is (x � y
1

)�y
2

so that (ii) is valid in Q.Conversely, let (ii) be valid in Q. Write a duplicate of (ii)(ii0) (x0 � y0
1

).y0
2

= (x0 � y0
2

).y0
1



3{CONFIGURATIONS WITH SIMPLE EDGE BASIS 195with x0 � y0
2

= x � y
2

; y0
1

= y
1

. Thus y0
2

= x0/(x � y
2

) and, after substitution into(ii0), we get (x0 � y0
1

.(x0/(x � y
2

)) = (x0 � y
2

).y0
1

; i.e. (x0 � y
1

).(x0/(x � y0
2

)) =(x � y
2

).y
1

.Writing here x = x
1

, x0 = x
1

we get (i).References[1] Belousov, V. D., Con�gurations in algebraic nets, Kishinev, 1979. (in Russian)[2] Krape�z, A., Taylor, M. A., Bases of web con�gurations, Publications de l' Institut math�e-matique (nouvelle s�erie) 38(52), 21-30.[3] Bro�z��kov�a, E., On universal quasigroup identities, Math. Bohem. 17 (1992), 20-32.V. J. HavelDepartment of MathematicsTechnical UniversityKrav�� hora 21602 00 Brno, CZECH REPUBLIC
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