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3-CONFIGURATIONS WITH SIMPLE EDGE BASIS AND
THEIR CORRESPONDING QUASIGROUP IDENTITIES

V. J. HAVEL

ABSTRACT. There is described a procedure which determines the quasigroup iden-
tity corresponding to a given 3-coloured 3-configuration with a simple edge basis.

ParT 1 3-CONFIGURATIONS

1.1. MAIN NOTATIONS

Under a (3)- configuration we shall understand a finite incidence structure
(V, &, I)such that {y e S| 1y} < 3forallz € V. If, moreover, {y ¢ S|x1y} =
3forallz € Vand {ac V|x Iy} =2 2forall y € £, then we get a 3-configuration.
If one (3)-configuration is an incidence substructure of another (3)-configuration
we speak of a subconfiguration. Elements of V will be called vertices and elements
of & edges of a given (3)-configuration (V, &, ). After all, such (3)-configuration
are hypergraphs with vertices of degree < 3 and with the property that two distinct
vertices cannot lie simultaneously on two distinct edges.

If Iy then z,y are said to be adjacent. Two distinct vertices adjacent to the
same edge; respectively two or three mutually distinct edges adjacent to the same
vertex, are said to be neighbouring. A (3)-configuration is called connected if for
any distinct vertices a, b there is a finite sequence of edges e ;e ..., eg such that
ale b le, and that e;,e;  are neighbouring for all i € {1,...,k — 1}.
Troughout the paper every 3-configuration will be supposed to be connected.

Let there be given a 3-configuration €= (V, &, 1). We shall define a halfoper-
ation on &: for every couple (z,y) of neighbouring edges #,y their product z - y
is equal to the remaining edge which forms together with z and y a neighbouring
triple. We obtain the edge halfgroupoid (£,-) associated to C.
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1.2. BASES OF 3-CONFIGURATIONS

Let € = (V,&, ) be a 3-configuration. If X' is a non-void set of edges then
denote by [X] the set of such vertices which are adjacent to least two edges from

X.

Now start with a non-void set A of edges, construct a sequence A := A,

A =[A], A =JA], A =[A], ... and form the unions 4 := Ej A,

Va:= A, .Then (Va,E4, 1) is asubconfiguration in € generated by A; we

denote it by (A). We shall call the sequence (A4;)$°  the pillar over A. Further let
the stage of elements of A | respectively A be defined as 0, respectively 1. If the
stages of elements of A U.A U-.-U.A,; are already known then define the stage
of elements of.A; \.AZ' to be equal to ¢4+ 2. The edge, respectively vertex a of (A)
is said to be terminal if there is no edge, respectively no vertex of greater stage
neighbouring to a. Under a constituent we shall understand a term expression (by
means of -) of edges over A within the framework of the pillar. The set A will
be called independent if (A\{a}) # A for all @ € A. The set A is called an edge
basis of € if it is independent and if (A) =C€. The set of all element bases of a
given 3-configuration € = (V, &, 1) cannot be void: we can namely delete, step
by step, all dependent elements from the full edge set £. If B is an edge basis and
7 the set of all terminal elements (vertices, as well as edges, if they exist) then

V+ B= &4 7 (awell-known condition, cf. [1], pp. 50-51). Different edge
bases of € can we have different number of edges. Bases which lead to just one
terminal vertex or edge will be denoted as simple. Thus for simple bases we have

T= V+ B- &£=1, ie. B= &— V+1.

If B is a simple basis of € then in the corresponding sequence (B5;)° the
terminal vertex ¢ lies on two edges e, e’ with maximal stage (equal to stage of ¢
minus one) and still on the third edge ¢”’. This gives the equation e - ¢/ = ¢’ and
consequently the equation between corresponding terms over B in the halfgroupoid
(B,-). Analogously, if there is the terminal edge ¢ then it has maximal stage and
determines an equality between two corresponding terms over B in (€, -).

We give two examples: First let us investigate the 3-configuration € = (V, &, I)
on Fig. 1 with V=10, £=12, B={z,y,z}.

1 1 11

13 Fig.1
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;0 Loy 0z 2 ey 2 oyzs AL (ey)(ye); 6. a((xy)(y2));
8. (2@ (32)) () 10 . (@) ) (y); 10 . (e((zy)(y2)(y2)
12 ((@((xy)(y2)(y2)(xy)); 12 (((2((2y)(y2))(y2))(@y))y-

This basis is simple and determines just one terminal vertex ¢ of stage 13,
which results as the vertex adjacent to two neighbouring edges of stages 12.
The remaining edge through ¢ is one of edges of stage 10. The corresponding
term equality is thus ((((x((2y)(y2))(y2))(2y))y) - (x((2y)(y2))(y2))zy))z) =
((z((zy)(y2))(y2))=-

The second example deals with a 3-configuration € = (V, &, 1) on Fig. 2 with
V=5 &=17 B={xzy,z} There is just one terminal element ¢. It has stage
4 and determines the equality among terms (zy)(yz), (2y)z.

N

bl

1

0 ...,0 ...y, 0 ...z, 2 ..y, 2 .oyz, 2 ooxz 4 (ey)z .. (2y)(yz)
Fig. 2

Now let B be a simple edge basis of a given 3-configuration € = (V, &, 1) and
t =1t the term equality over B in (£,-) corresponding to the terminal element
(vertex or edge).

We shall find some properties of the equality ¢ =1 :

(i) The set B must contain at least three edges:
In fact, by the existence of just one edge in B or just two edges in B,
respectively, the pillar over B should have no vertices of stage 1 respectively
3 contrary to further size of the pillar.

(ii) Every z € B occurs at least twiceint =1t :
By exactly one occurence (in the subterm u -« of the pillar or in ¢ = #,
respectively ¢ = x) we should have on z only one vertex or we should

express € B by the edges from B (which contradicts the independence

of edges of the basis).
(iii) No constituent in (5;)°

stituents in (B5;)%° :

This follows at once from the definition of the pillar over B.

can be of the form u(uv) with « and v as con-
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(iv) Equations ¢ = uv ,t = uv , respectively t = u, t = uw, respectively
t =uv,t = u with constituents in (B;)§* are not possible:
The equality uv = uv or u = uw, respectively, should violate the fun-
damental properties of the 3-configuration (uv = uv = v = v , but on
the other side, v and v should be distinct edges as constituents in the
pillar; moreover, u = uv contradicts the fact that uv must be the third
edge neighbour to u and v).

(v) Lett andt be not formed by exactly one edge of B and let € B enters
in v = ux, where u, v are constituents of the pillar. Then z enters still in
some term v’ = w'x # v where also v/, v’ are constituents.

We can define a closure condition in a 3-configuration € = (V, &, 1) derived
from a 3-configuration €, = (V.,&., I*) having a simple basis B with terminal
element ¢ and with the main subconfiguration C. = Vs, EN\{t}, L.). The corre-
sponding closure condition claims:

For every incidence structure homomorphism o : €. —C there exists its prolonga-
tion onto a homomorphism ¢ :€, —C.

In the second part of our considerations we shall adapt this definition for 3-web
configurations and 3-webs. As we are familiar with the subject, only less is known
about closure conditions in general 3-configurations (or, more largely, in webs of
arbitrary number of parallel line pencils).

PART 2 CLOSURE CONDITIONS IN 3-WEBS

2.1. COLOURED CONFIGURATIONS

We say that a (3)-configuration is 3-coloured if for every vertex # an injective
map of the set of all edges through « into the colour set {1,2,3} is given such that
for all neighouring vertices x, y the colour assigned to the common adjacent edge
is the same. The edges with colour 1, 2, or 3, respectively will be called vertical,
horizontal or skew, respectively.

A 3-coloured (3)-configuration € is a subconfiguration of a coloured (3)-confi-
guration € if it is an incidence substructure preserving the colour of every edge
from € .

Now we shall define a 3-web independently on 3-configurations though it is
possible to take a (finite) 3-web as a special 3-configuration.

A 3-web is defined as an incidence structure (P, £, 1), P < 2, together with a
decomposition of the set £ onto mutually disjoint sets £ £ ;£ such that for
every € P and every i € {1,2,3} there is just one y € £; such that = [y and for
every # € L; and every y € £; for distinct ¢,j € {1,2,3} there is just one z € P
such that z [z and z I y. Elements of P are points, elements of £ lines, £ , L

and £ are pencils (of parallel lines). Lines from £ , £ or L , respectively, are
said to be wertical, horizontal or skew, respectively. If z I 2 and z Iy is true for
distinct lines x, y then z is called the intersection point of both lines.

A homomorphism of a 3-coloured (3)-configuration € = (V,&, 1) into a 3-
web W = (P, L, 1) is an incidence structure homomorphism which maps every
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vertical, horizontal or skew edge, respectively, onto a vertical, horizontal or skew
line, respectively.
On Fig. 3 we present a non-3-colourable 3-configuration (V, &, 1),

Fig. 3

with V = {a ,a,b,¢,d}, &€ = {e ,f,9 ,e,f,g9 ,h} having one edge adjacent
to just three vertices. If the colours of e ,f ,g ,h are i,j,k,1 € {1,2,3} then
i £ j # k # i so that every possibility for [ leads to a contradiction.

Let € = (V,&, ) be a 3-coloured 3-configuration and &€ , £ , £ sets of all

its horizontal, vertical or complementar edges, respectively. Then define a half-
operation (k) 1 & xE; — & such that (k]) (2;,2;) = 2y is defined if and only if z; €

¥ )

&, x5 € &, xp € & are neighbouring edges (( is an arbitrary permutation

ij k)
of the set {1,2,3}). So we obtain six parastrophic halfoperations associated to

€ which from a three-sorted edge halfquasigroup (€ ,€ ,& ,{( ) (Z»]» k) es })
associated to €.

k
ij
Let B be a basis of a simple 3-coloured 3-configuration € = (V, &, 1) with the

terminal element ¢. We express the edges of € as constituents in the pillar (5;)$°
over 5 with use of halfoperations (Zk]) The existence of ¢ leads to an equality
between constituents of greatest stage.

(o]

From the successive construction of constituents in (B5;);

lidity of the Position Property: In every occurence of the edge e as a constituent
(ih )(, -) or as a member of other constituents (.k? )(e, ), (.k?’ )(, e) the equalities
1J1 1272 23]3

=14 = j must hold.

we obtaln the va-

Now we see that Position Property implies that constituents of the form (Zlf]ll)

(u, ( k2 )(u, v)) with ¢ # ¢ do not occur. Property (iii) affirms that constituents

i2]2
of the form (21311)(% (21322) (u,v)) do not occur. Property (iv) excludes the equality
t =t witht = (Zk])(u, v),t = (Zk]) (u,v ) whereas the case t = (Zk]) (t ,v) with

i # 3 is excluded again by Position Property.
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If Position Property holds (v) can be reduced onto the occurence of a constituent
(Zk])(x, u'), v # u when a constituent (Zk])(x, u) occurs (with ¢ and ¢t different
from a single z € B).

When a 3-sorted quasigroup Q@ = (Q ,Q ,Q , {(Zk])|(” k) eS }) s given
with @ = @ = @ > 1thenlett =1t be a quasigroup identity for Q
with a finite set X, X < 3 of variables (the formal construction of terms t |
t is supposed as known, see e.g.[1], pp. 30-31). The subterms of ¢ = ¢ fulfill
necessarily this Posttion Property: In every occurence of a subterm 7 = (Zlf]ll)(, )
and subterms (25]22) (1,-), (25]33)(, 7') the equalities k¥ =¢ = j must hol.d.

We assume that following conditions are fulfilled: every x € X occursint =1
at least twice; the caset = (Zk])(u, v),t = (Zk])(u, v )is excluded; ift ;¢ are not

single variables and a subterm (Zk]) (z,u) occurs for £ € X then also a further sub-

term (Zk]) (z,u') with «' # u occurs; subterms are reduced by fundamental quasi-

groups identities (7,)(&, (Zk]) (§,n) = n) where ( )(€ ,£)=¢ & (Zk]) (&, &) =&
for all permutations (i]. k) Under these assumptions the subterm buildup of
the identity coincides with the edge generation of a convenient 3-coloured 3-
configuration over a simple basis corresponding to X'. We leave the details aside.

As an example we shall investigate a 3-coloured 3-configuration € = (V, &, I)
on Fig. 4 with a simple basis B={«x ,z ,y ,y }, where ;& are vertical edges,
y ,y horizontal edges and the terminal element is the vertex b. The edges of
stages 4 determine the remaining edge through b. This leads to the equality ((l‘ :

y)/y)@’ \(l’ ~y)):x "y Where( ):., ( )I/,( ):\.Wecanwrite

equivalently (z -y )/y =(x -y )/(x \(z -y)).

1 1

Fig. 4

The stages of single edges and vertices are written as labels on Fig. 4 as well as
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the corresponding constituents. We can readily confirm that properties (i)-(v) are

fulfilled.

We say that a 3-web W = (P, L, 1) satisfies the closure condition I'(€, B)
derived from a 3-coloured 3-configuration € = (V,&, 1) with a simple basis B
if every homomorphism o : € — W can be prolonged onto a homomorphism
7 : € —W. Here € = (W\{t},&, 1) or € = (V,E\{t}, 1) where t is the terminal

vertex or edge.

To a given 3-web W = (P, £, 1) with pencils £ , £ , £L we associate the co-
ordinatizing 3-sorted quasigroup (L L ,C ,{(Zk])|(” k) € S }) which is defined

by (Zk]) L x L — Ly, (x5, 2;) — xp where z;, x;, ), are concurrent lines.

Let a given 3-web W with pencils £ , £ | £ satisfy the closure condition
derived from a 3-coloured 3-configuration € with a simple basis B. Then the corre-
sponding term equality in € over B can be interpreted as an identity with respect
to the coordinatizing 3-sorted quasigroup Q and B as the set of variables. Thus
W determines the corresponding identity over Q.

We shall return to the 3-configuration € on Fig. 4 and suppose that a 3-web 'W
satisfies a closure condition T'(C, B) Then the coordinatizing 3-sorted quasigroup

satisfies the identity (» /y =(z - /(x \(x -y )) with variables # ,z of

“position” 1 and Varlables y,y of ¢ p051t10n” 2.

If we take a homomorphism ¢ : € — W with o(b) = o(a

") = o(a’) we get a
subconfiguration € of € on Fig. 5 with a simple basis B = { Y
"y

y }. The closure
condition F(G B) determines the identity (= /y = (x / . Thus in W
from T'(€, B) it follows that T'(C, B).
1 3
0
4
2 0 2
4
0
3 1
0 ...z, 0 ..oy, 0 .oy, 2 v vy, 2 oy 4 (e oY)y,
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Fig. 6

Now we map C under a homomorphism into W as on Fig. 6 and suppose that
F(é, B) holds in W. We construct the intersection point F' of the lines a and d
and apply F(é, B) onto the images @ ,a ,a of basis edges so that ¢ = f . We
apply F(é, B) once more namely onto the images b ,a ,e of basis elements so
that f must go through the intersection point G of b and e . Thus G lies on
¢ and T'(€,B) holds when applied onto the images a ;b ,a ,¢ of basis edges.
Thus T'(€, B) implies T(€, B) so that T'(€,B) < T'(€,B) in W and consequently

(x -y )/y =(x -y )/(x \(z -y ) (z y)y =@ -y )/y are equivalent
identities in @@. Note that the second identity has the same left side as the first
one whereas on the right side there occur variables  ;x |y ,y , respectively only
variables ¢ |y ,y .

These “geometric” considerations will be now complemented by direct algebraic
ones.

Let us consider quasigroup identities

() y)fy =@y)/\Ey))
(i) (x-y) /y=x~y )]y

once again.
Let (i) be valid in a 3-sorted quasigroup @. Puttingz y =2 y ,* = & we rewrite

the right side of (i J:y/ \ :(J:y)/( \( Y=(x-y) /y.
The left side of (i ) (x -y )/y SO that (11) is valid in Q.
Conversely, let (ii) be valid in Q. Write a duplicate of (ii)

(' @9y =6 ) [y
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withae' -y =2y, ¢y =y .Thusy = x’\(x -y ) and, after substitution into
(i), we get &'y [\ )= y) v, ie @) [ \@ o) =

(l“y)/y

Writing here z = 2 , ' =« we get (i).
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