Archivum Mathematicum

Eva Spénikova
Oscillatory properties of the solutions of differential system of neutral type

Archivum Mathematicum, Vol. 29 (1993), No. 3-4, 177--185

Persistent URL: http://dml.cz/dmlcz/107481

Terms of use:

© Masaryk University, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107481
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 29 (1993), 177 — 185

OSCILLATORY PROPERTIES OF THE SOLUTIONS
OF DIFFERENTIAL SYSTEM OF NEUTRAL TYPE

Eva SPANIKOVA

ABSTRACT. The purpose of this paper is to obtain oscillation criterions for the
differential system of neutral type.

In this paper we consider a differential system

[wi(@) + ai(®wi(9:D))" = pi®) filyigr (higa (1)), i=1,2
(S) ys(t) = —p3(t) fs(yr (R (1)), t€ Ry =1[0,00).

The following conditions are always assumed to be fulfilled:
(a) a; : Ry — [0, ], ¢ = 1,2, are continuous, JA; is a constant, 0 < A; < 1.
(b) ¢;: Ry — R, i=1,2, are continuous, ¢;(t) < ¢ and tlim ¢:(t) = oo.

(¢) hi : Ry — R, i=1,2,3, are continuous and tlim hi(t) = oo .

(@)

fi: R— R, i=1,2,3, are continuous and nondecreasing, uf;(«) > 0 for

u # 0.
(e) pi: Ry — (0,00), i=1,2,3, are continuous and " p;(t)dt = co for
=12

The purpose of this paper is to obtain oscillation criterions for the differential
system of neutral type. This paper is generalization of the results obtained in the
paper [2].

Let £ > 0. Denote

to= min{tiiltfogi(t),ti;ltfohj(t), i=1,2, j=1273}.

A function y = (y1, y2, ¥3) is a solution of the system (S), if there exists atg > 0
such that y is continuous on [tg, 00), y1(t) + a; (V)i (gi(t)), i = 1,2 and y3(t) are
continuously differentiable on [tg, o0) and y satisfies (S) on [tg, 00).
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Denote by W the set of all solutions y = (y1,y2,ys) of the system (S) which
exist on some ray [Ty, 00) C Ry and satisfy

3
sup lyi()|:¢>T >0 forany T >T,.
i=1

A solution y € W is nonoscillatory if there exists a 7, > 0 such that its every
component is different from zero for all ¢ > T,. Otherwise a solution y € W is said

to be oscillatory.
Denote

hi(t) = min{t, h; (1)}, i =1,2,3;

vi(t) =sup{s > 0,h1(s) <t}), t >0,i=1,2,3;
Bi(t) = sup{s > 0,9;(s) <}, >0, j =1,
y(t) = max{y1(t), y2(t), v3(t), Br(t), B=() };

(1) ui(t) = yit) + ai()yi(gi(t), i=1,2.

Lemma 1. ([1, Lemma 5]). Let y;(t) and w;(t) fulfil (1).
A) Ify(t)ui(t) > 0 fort > T, then there exists Ty > Ty such that

(2) (1= M) < [yi(0)] for > Ty, i=1,2.

B) Ify;(t)ul(t) < 0for t > Ty and tlim ui|(t)| = ks > 0, then there exist Ts < T}
and a constant r; : 0 < r; < 1 such that

3) rilus(O] < (0] < lus(0)]  for 1> Ty, i=1,2.

Lemma 2. Let y;(¢) and u;(¢) fulfil (1) and y;($)ui(t) < 0,i=1,2 fort >1Ty. If
tlim ui(t) = 0, then tlim yi(t)=0,i=1,2.

Proof of Lemma 2 is easy. a

Theorem 1. Let the following conditions be satisfied:
) xyfz(xy)>nyfl( Vi(y) (0< K =const.) i=1,2,3.

;(t) are nondecreasing functions, j = 2, 3.

(4
(5)
(6) ha(ha(hy(1))) < .
(7) 7(0)102( oo, (t)pg( s)ds dt =0

1 ha(s
8) 7(7(0))])3( Vst me) i p(e)de ds di =
9) Oa m < 00, 0_ m < oo for every constant o > 0.
Then every solution y € W is either oscillatory or hm yi(t)=0, i=1,2,3.
Proof. Let y € W be anonoscillatory solution of the system (S). Then there exists
t; > 0 such that each of its components is a constant sign on [t1, 00). Without
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loss of generality we may suppose that y;(¢) > 0 for ¢ > ;. In the next we shall
consider the following cases:
I) Let yl(t) > Oa y3(t) < Oa t Z t.
In view of (S) and (1) we get
(10) ul(t) > Oa U/Z(t) < Oa yé(t) < Oa t Z ty = V(tl) .

Because y3(t) is negative and decreasing we have

ys(ha(t)) < —=C1 = ys(t1) <0, t > 13 = 7(t2).
The last inequality together (d) implies
(11) Ja(ys(hs(t))) < =Ca, >3,

where —C'y = fo(—=C1) < 0.
Integrating the second equation of (S) and then using (11), we have

t

(12) Uz(t) S Uz(tg) - Cz pz(s) dS, i Z t3 .
ta
From (12) and (e) for ¢ — oo we obtain tlim u2(t) = —oo. Then with regard to

Lemma 1 we have tlim ya2(t) = —oo and ya(t) < —C3 <0, ¢ >14 > 13,
—00

(13) Ji(y2(ha(t))) < =C4, t>t5 =7(ts),

where —Cy = f1(—C3) < 0.
Integrating the first equation of (S) and then using (13) and (e), we get tlim ur(t) =

—o0, which contradicts (16). The case T) cannot occur.
ITa) Let y1(t) > 0, y2(¢) <0, y3(t) >0, t > 11.
In view of (S) and (1) we get
(14) Ul(t) > 0, Uz(t) < 0,
ui(t) <0, uh(t) >0, wa(t) <0, £ >ty =7(t1).

We shall prove that tlim uwi(t)=0,4=1,2 and tlim ys(t) = 0.
Let tlim u2(t) = —ka < 0. In view of Lemma 1 there exists t3 > ¢5 such that
ya(t) < =Cj, t > t3, where C5 = ra - k3 > 0. We have

(15) Ji(y2(h2(1))) < fi(=C5) <0, >ty =7(t3).
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Integrating the first equation of (S) and then using (15) and (e), we get tlir& ur(t) =
—oo, which contradicts (14) and hence tlir& u2(t) = 0. Lemma 2 implies that
tlir& y2(t) = 0. Analogously we can show that tlirgo ys(t) = 0.
W(t) = k1 > 0. Lemma 1 implies that there exist {5 > t5 and a constant
Cs = r1 - k1 > 0 such that y;(¢) > Cs for t > t5. Then we get

(16) fa(yi(hi (1)) > C7y t>ts = 7(ts), where C7 = f35(Cs) > 0.

Integrating the third equation of (S) from ¢ to oo and then using (16) we have

oQ

ys(t) > Cr pa(s)ds, t>ts.
3

Then in view of (d), (4) and the last inequality we get

oQ

(17) f2(y2(hs(t))) > K f2(C7) fa . (t)PB(S) ds , t>tr=7(ts).

Integrating the second equation of (S) and then using (17) we get

13 00

ua(t) > ua(ty) + K f2(Cr) pa2(2) fa ( )pg(s) ds dz, t>17.
tr hs(z

By virtue of (7), the last inequality implies for t — oo that lim us(¢) = oo, which

t—o0

contradicts (14). Therefore tlim u1(t) = 0 and tlim y1(t) = 0.

Hb) Let yl(t >0, yz(t) >0, yg(t) >0,t> 1.
In view of (S) and (1) we have

uy(t) >0, why(t) >0, y3() <0, t>ty=7(t1).

Integrating the second equation of (S) we get

t

u2(t) — ua(ta) = pa(s)fa(ys(hs(s)))ds, t>12 and

2h2(t)
(18) us(ho(t)) > pa(s) fo(ys(ha(s))) ds, 2>tz =1(t2).

t2

In view of Lemma 1 there exists ¢4 > t3 such that

(19) (1= AoJua(ha(t)) < ya(ha®), > L.
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Using (d), (4), (5), (18), (19) and the monotonicity of fa(ys(hs(s))), we get

ha(t)
y2(ha(t)) > (1 = A2) f2(ys(hs(ha(1)))) pa(s)ds, t>1s and

ha(t)
Ji(y2(ha(t))) > Csfi(f2(hs(ha(1)))) f1 pa(s)ds , t>ty,

t2

where Cs = K2 f1(1 — Ag) > 0.
Integrating the first equation of (S) and then using the last inequality, we have

t ha(s)
(20) w1 (t) > Cs  pi(s)fi(fa(ys(ha(ha(s)))))fr pa(x)dzr ds,

ta t2
t>ta.

Using (6), (20) and the monotonicity of fi(fa2(ys(t))) we get

h1(t) ha(s)
(21)  wui(hi(t)) > Csfi(falys(?))) t r(s)fi t pa(x)dzr ds,
i Z t5 = ”)/(t4) .

In view of Lemma 1 there exists g > t5 such that
(22) (L= M )u (@) < (i (1), ¢ > 16

In view of (d), (4), (21) and (22) we have

(23) F3(y1(h1(1))) > Cofs(f1(f2(ys(1)))) x
hi(2) ha(s)
X f3 t r(s)fi t po(x)de ds , t>ts,

where Cy = K2 f3((1 — A1)Cs) > 0. Multiplying (23) by W&f))))’ using the
third equation of (S) and then integrating from g to t, we get

fe y5(2) dz

24
24 o B (mE)) -
t h1(2) ha(s)
>Cy  p3(2)fs pi(s)fi pa(x)de ds dz, t2>ts.
te ta 12

The inequality (24) for ¢ — oo gives a contradiction to (8) with (9). This case
cannot occur. The proof of Theorem 1 is complete. a
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Theorem 2. Suppose that (4), (5), (6), (7) hold and in addition
(25) fs(fi(fo(1) =t

o h1(t) ha(s)
(26) p3(t) fs p1(s)f1 pa(2)de ds dt = 0o
v(7(0)) 7(0) 0

where 0 < ¢ < 1. Then the conclusion of Theorem 1 holds.

Proof. Let y € W be a nonoscillatory solution of the system (S). As in the proof
of Theorem 1, we get three cases: I), IIa) and IIb). In the cases I) and ITa) we
proceed in the same way as in the proof of Theorem 1. Consider now the case ITb).
In this case the inequality (23) holds. Using (25), (23) implies

h1(t) ha(s)
(27) fa(yr(ha(1))) > Coys(t) fs pi(s)fi pa(x)de ds >0,

ta t2
t>ig.

Raising (27) to the (1 — &) power (0 < £ < 1) we obtain

h1(t) ha(s)
(28) [Coys(t)]'™° f3 r(s)fi pa(x)dx ds <

t4 t2

< [Fslyr (RN, t>t6.

Lemma 1 together (d) implies that there exist t7 > ¢ and a constant Dy > 0 such
that

(29) fsyr(ha (1)) > Dyt 2> 7.
Now (29) implies
(30) [fa(yr(h1 ()] ™% < Dafs(yr(ha(t))), t>t7,

where Dy = D7¥ > 0.
Combining (28) with (30), we get

L h1(t) ha(s)
(31) [Coys ()] ™% f3 p1(s)fr pa(x)dx ds <
ta to

< Dafs(yi(hi(t)), t>t7.

Multiplying (31) by ps(t)[Coys(t)]* ™!, using the third equation of (S), integrating
from ¢7 to t and then using the fact that ys(¢) is positive and decreasing, we have

t By (1) ha(s) I-¢

p3(2) fs p1(s)f pa(z)de  ds dz <
t7 tq ta
< Dz(Cg)a_l '6_1 . [yg(t7)]€ <oo, t>ir,

which contradicts (26). Therefore the case ITb) cannot occur. The proof of Theorem
2 1s complete. a
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Theorem 3. Suppose that (4), (7), (9) hold and in addition

(32) ha(t) >, hs(t) <t
00 h(t) s
(33) p3(t)f3 p1(s)fr pa(z)dr ds dt = oo
v(7(0)) 7(0) 0

where h(t) = hi(t) = min{t, h1(¢)}. Then the conclusion of Theorem 1 holds.

Proof. Let y € W be a nonoscillatory solution of the system (S). Further pro-
ceeding in the same way as in the proof of Theorem 2, we consider only the case
ITb). Lemma 1 together (d) and (4) implies that there exists t3 > t2 such that

(34) fi(y2(ha(t))) > Dsfi(ua(ha(t))), t>ts,

where D3 = K f1(1 — A2) > 0. Using (32), (34) and the monotonicity of fi(ua(?))
on [tz,o0) the first equation of (S) implies

(35) ui(t) > Dapr(t) fi(uz(t)), t>ts.

In view of (32) and the monotonicity of f2(ys(t)) on [ts, o0), the second equation
of (S) implies

(36) us(t) > pa(t) fa(ys(t)), > ts.
Analogously as (35) we have
(37) ys(t) < —Dapa(t) fs(ui(h(1))), t>1s,

where Dy = K f3(1 — A1) > 0.
In view of (35), (36), (37), we modify the system (S) to the form

(%) uy(t) > Dspi(t) fi(ua(t))
us(t) > pa(t) f2(ys(t))
y5(t) < —Daps(t) fs(ui(h(t))), t>ts5.
System (S*) implies
(38) u1(t) > D3 tpl(s)fl(uz(s)) ds, t>t3 and

(39) ua(s) > p2(2) falys(z))de, s>t3.
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In view of (d), (4) and the monotonicity of fa(ys(z)) on [t3, 00), from (39) we have

5

(40) Ji(ua(s)) > K fi(f2(ya(s) fr pa(x)de , s>t3.

ta
Combining (38) with (40), we get

13 s

(41) Ul(t) Z [{Dg pl(s)fl (fz(yg(s)))fl pz(l‘) dl‘ dS, t Z t3 .

ts ts

Using (d), (4), the monotonicity of fi(f2(ys(s))) on [ts,o0) and (41), we have

(42) fa(ui(h(1))) >
h(t) s
> Ds f3(f1(f2(ys(1)))) f5 t p1(s)f t pa(x)de ds |
t>ta,

where D5 = K2 f3(K D3) > 0.

Multiplying (42) by Daps(t)[f3(f1(f2(y5(2))))]7}, integrating from ¢4 to ¢, using
the third inequality of (S*) and (9), for ¢ — oo we get

t h(z) s
DaDs  p3(2)fs p1(s)f pa(x)dr ds dz <
ty t3 t3
ys(ty) dz
< 0,

vs(ty  J3(f1(f2(2)))

which contradicts (33). Therefore the case ITb) cannot occur. The proof of Theorem
3 is complete. a

Theorem 4. Suppose that (4), (7), (25), (32) hold and in addition

[ h(t) s I—e

(43) ps(t) fs pi(s)fi pa(x)de  ds dt = oo
y(v(0)) 7(0) 0

0<ex<l,
where h(t) = hi(t). Then the conclusion of Theorem 1 holds.
We can prove Theorem 4 analogously as Theorem 2 and Theorem 3.

Remark. Theorem 1 — Theorem 4 we can easily extend for the following system:

[yi(t) + a:(O)yi(g:()] = (=1)"pi(V) fi(Yip1 (hig1 (1)), i=1,2
ys(1) = (=1)"°ps(t) fs(y1 (h1(t))), t € R4
v;e{0,1} j=12,3 and wm+rvi+rv3s=1 (mod2).
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