
Archivum Mathematicum

Svatoslav Gaidov
Z-equilibria in many-player stochastic differential games

Archivum Mathematicum, Vol. 29 (1993), No. 3-4, 123--133

Persistent URL: http://dml.cz/dmlcz/107474

Terms of use:
© Masaryk University, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107474
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 123 { 133Z{EQUILIBRIA IN MANY{PLAYERSTOCHASTIC DIFFERENTIAL GAMESSvatoslav GaidovAbstract. In this paper N -person nonzero-sum games are considered. The dy-namics is described by Ito stochastic di�erential equations. The cost-functions areconditional expectations of functionals of Bolza type with respect to the initialsituation. The notion of Z-equilibrium is introduced in many-player stochastic dif-ferential games. Some properties of Z-equilibria are analyzed. Su�cient conditionsare established guaranteeing the Z-equilibrium for the strategies of the players. Ina particular case of a linear-quadratic game the Z-equilibrium strategies are foundin an explicit form. 1. IntroductionIn this paper we follow the approach of Fleming and Rishel [1] to the optimalcontrol of stochastic dynamic system, but applied in situations of con
icts, i.e. tostochastic di�erential games. Let f1; : : : ; Ng be the set of players. The dynamicsis described by the following Ito stochastic di�erential equation:dx (t) = f (t; x(t); u1; : : : ; uN ) dt+ g(t; x(t); u1; : : : ; uN) dw(t); t 2 [t0; T ] :The control ui is chosen by the i-th player in the feedback form ui = ui(t; x(t))with the objective of minimizing the personal cost-functionJi(ui; : : : ; uN) = Et0 ;x0f	i(T; x(T )) + R Tt0Li(t; x(t); u1; : : : ; uN ) dtg; i 2 I :As a solution of the game the concept of Z-equilibrium is proposed. In deter-ministic di�erential games this notion is introduced by Zhukovskii in [8] and intwo-player stochastic di�erential games by the author in [2]. The Z-equilibriumis based on the concept of Pareto-optimality, see Gaidov [3], [4] and represents afurther development in the theory in comparison with the Nash-equilibrium , seeGaidov [3], [5].1991 Mathematics Subject Classi�cation : 93E05.Key words and phrases: nonzero-sum game, many-player game, stochastic di�erential equa-tion, linear-quadratic game, Bolza functional, cost-function, strategy.Received June 1, 1988.



124 SVATOSLAV GAIDOVThe present paper is organized as follows. In Section 2 we consider accuratelythe formalization of the game and a model of a linear-quadratic game. In Section3 we recall some de�nitions and quote some results from our papers [3 { 6]. InSection 4 we introduce the notion of Z-equilibrium in many-player stochastic dif-ferential games and analyze some of its properties. Su�cient conditions for theZ-equilibrium strategies of the players are established in Section 5. Finally in Sec-tion 6 in the linear-quadratic game the Z-equilibrium strategies are found in anexplicit form. 2. Formalization of the gamesLet us consider the game� = hI;P; fUigi2I ; fJigi2Ii :Here I = f1; : : : ; Ng is the set of players participating in the game �. The evolutionof the dynamic systemP is described by Ito stochastic di�erential equation of thetype(*) dx(t) = f(t; x(t); ui; : : : ; uN) dt+ g(t; x(t); u1:; : : : ; uN) dw(t); t 2 [t0; T ]with initial condition x(t0) = x0 2 Rn where T > t0 � 0. The process W =fw(t); t 2 [t0; T ]g is a standard m-dimensional Wiener process de�ned on somecomplete probability space (
;F ;P) and is adapted to a family F = fFt; t 2[t0; T ]g of nondecreasing sub-�-algebras of F . The vector x(t) 2 Rn is the stateprocess and ui 2 Ui � Rni is the control of the i-th player, i 2 I. Now letus make the following assumptions about the functions f(t; x; ui; : : : ; uN) andg(t; x; u1; : : : ; uN ). Supposef : [t0; T ]�Rn� U1 � � � � � UN ! Rnand g : [t0; T ]�Rn� U1 � � � � � UN ! Rn�Rmhave continuous partial derivatives in x; u1; : : : ; uN and let C > 0 be a constantsuch that jf(t; 0; : : : ; 0)j+ jg(t; 0; : : : ; 0)j 5 C ;jfxj+ jgxj+Pi2I(jfui j+ jguij) 5 C :Here j � j is a general symbol for the norms in the respective spaces.Each player has complete information about the state vector x(t) at every mo-ment t 2 [t0; T ] and constructs his strategy in the game � as an admissible feedbackcontrol, i.e. ui = ui(t; x(t))



Z{EQUILIBRIA IN STOCHASTIC GAMES 125where ui(�; �) : [t0; T ]�Rn ! Uiis a Borel function satisfying the conditions:(i) There exists a constant Mi > 0 such thatjui(t; x)j 5 Mi(1 + jxj) for all (t; x) 2 [t0; T ]�Rn ;(ii) For each bounded set B � Rn and T � 2 (t0; T ) there exists a constantKi > 0 such that for arbitrary x; y 2 B and t 2 [t0; T �]jui(t; x)� ui(t; y)j 5 Kijx� yj :Denote by Ui the set of strategies of the i-th player, i 2 I and U = Qi2I Ui; U =Qi2IUi. Let a vector of strategies u = (ui; : : : ; uN ) 2 U be called for brevity simplya strategy.The assumptions made above imply the existence and sample path uniquenessof the solution X = fx(t); t 2 [t0; T ]g of Ito equation (�) corresponding to thecontrol u 2 U , see Fleming and Rishel [1]. Moreover, X is an a.s. continuousMarkov process and its in�nitesimal operator A(u) has the formA(u)V (t; x) = f 0(t; x; u)Vx(t; x) + 12 tr [a(t; x; u)Vxx(t; x)] ;where a = gg0 and prime denotes vector or matrix transpose. Here V (t; x) is areal-valued function with continuous partial derivatives up to second order for allt 2 [t0; T ]; x 2 Rn.Let Li, 	i be continuous functions satisfying the polynomial growth conditions:jLi(t; x; ui; : : : ; uN)j 5 Ci(1 + jxj+Pi2I juij)kj	i(t; x)j 5 Ci(1 + jxj)kwhere Ci; k are positive constants. Introduce now the cost-function Ji(u) of thei-th player:Ji(u) = Et0 ;x0f	i(T; x(T )) + R Tt0 Li(t; x(t); u1; : : : ; uN ) dtg; i 2 I :The object of each player in the game � is to minimize his own cost-function.Now let us consider one particular but important case of the game describedabove. Let �lq = hI;Pl; fU ligi2I fJqi gi2Ii :Here again I = f1; : : : ; Ng. The evolution of the dynamic system Pl is describedby the linear stochastic di�erential equation of the typedx(t) = [A(t)x(t) +Pi2IBi(t)ui] dt+ g(t; x(t); u1; : : : ; uN) dw(t); t 2 [t0; T ]



126 SVATOSLAV GAIDOVwith initial condition x(t0) = x0 2 R. Here x(t) 2 R is the state process, W =fw(t); t 2 [t0; T ]g is an (N + 2)-dimensional standard Wiener process and ui 2Ui � R is the control of the i-th player, i 2 I. g(t; x(t); ui; : : : ; uN ) is an 1�(N+2)-matrix of the formg = (g0(t)x(t) g1(t)u1 : : : gN (t)uN gN+1(t)) :Henceforth A(t); Bi(t); i 2 I; g0(t); gN+1(t); gi(t); i 2 I are continuous real-valued functions. The strategies of the i-th player are identi�ed to functions of thetype ui(t; x) = Fi(t)x where Fi(t) is a continuous real-valued function, i 2 I. Thecost-function Jqi (u) of the i-th player is the functionalJqi (u) = Et0 ;x0fDix2(T ) + R Tt0 [Mi(t)x2(t) +Pj2IN (i)j (t)u2j ] dtg; i 2 I :Here Di are constants andMi(t); i 2 I; N (i)j (t), i; j 2 I are real-valued continuousfunctions. 3. Auxiliary notions and resultsFor the completeness of presentation we need some facts from previous papers.De�nition 3.1. ([3], [4]). The strategy uP 2 U is said to be Pareto-optimal inthe game � if the relations Ji(u) 5 Ji(uP ); i 2 Ifor some strategy u 2 U imply the equalitiesJi(u) = Ji(uP ); i 2 I :Theorem 3.2. ([3], [4]). The strategy uP 2 U is Pareto-optimal in the game �if there exist a vector � = (�1; : : : ; �N ) 2 RN, �i > 0, i 2 I, �1 + � � �+ �N = 1and real-valued function V (t; x) such that for all t 2 [t0; T ], x 2 Rn the followingconditions jointly hold:(a) V; Vt; Vx; Vxx are continuous;(b) H�(t; x; uP ) = 0;(c) H�(t; x; u) = 0 for each strategy u 2 U ;(d) V (T; x) =Pi2I �i	i(T; x).Here for all t 2 [t0; T ], x 2 Rn, u 2 U :H�(t; x; u) = Vt(t; x) +A(u)V (t; x) +Pi2I�iLi(t; x; u):DenoteD� =Pi2I�iDi; M�(t) =Pi2I �iMi(t) and N (i)� (t) =Pj2I �jN (j)i (t) ; i 2 I :



Z{EQUILIBRIA IN STOCHASTIC GAMES 127Proposition 3.3. ([3], [4]). Let there exist a vector � = (�1; : : : ; �N ) 2 RN suchthat �i > 0, i 2 I, �1 + � � �+ �N = 1, D� is a non-negative constant, M�(t) is anon-negative function and N (i)� (t) is a positive function for each t 2 [t0; T ]. ThenuPi = �[g2i (t)K�(t) + N (i)� (t)]�1Bi(t)K�(t)x; i 2 Iare Pareto-optimal strategies in the game �lq where K�(t) is the solution of thenonlinear di�erential equation_K�(t) + 2A(t)K�(t) +M�(t) + g20(t)K�(t)�K2�(t)Pi2I [g2i (t)K�(t) + N (i)� (t)]�1B2i (t) = 0with the boundary condition K�(T ) = D�.Remark 3.4. It is important to mention that the existence of the functionK�(t) = 0, t 2 [t0; T ] follows e.g. from the well-known Bellman quasilineariza-tion method, see Roitenberg [7].Let us recall two other de�nitions.De�nition 3.5. ([3], [5]). The strategy un 2 U is a Nash-equilibrium strategy inthe game � if for each ui 2 UiJi(un1 ; : : : ; uni�1; ui; uni+1; : : : ; unN ) = Ji(unjjui) = Ji(un); i 2 I :De�nition 3.6. ([6]). The strategy ugi 2 Ui is a guaranteeing strategy of the i-thplayer in the game � ifminui maxuIri Ji(ui; uIri) = maxuIri Ji(ugi ; uIri):Here I r i = f1; : : : ; i� 1; i+ 1; : : : ; Ng and uIri = (ui; : : : ; ui�1; ui+1; : : : ; uN ) 2Qj2IriUj = UIri. Let also (ui; uIri) = u.4. Z-equilibrium. Basic propertiesNow we generalize for many-player games the concept of Z-equilibrium , con-sidered for two-player games in Gaidov [2].De�nition 4.1. The strategy u� 2 U is an active equilibrium strategy in thegame � if for each player i 2 I we have: for any strategy ui 2 Ui there exists acollection of strategies ûIri 2 UIri such thatJi(ui; ûIri) = Ji(u�) :



128 SVATOSLAV GAIDOVDe�nition 4.2. The strategy uZ 2 U is a Z-equilibrium strategy in the game �if uZ is both Pareto-optimal and an active equilibrium strategy.Now we analyze some properties of the Z-equilibrium strategies and comparethem with other optimal strategies.Property 4.3. (Pareto-optimality). By De�nition 4.2 we have that Z-equilibriaare Pareto-optimal, i.e. they look after (guarantee) the collective interests of theplayers.Property 4.4. (Active stability of Z-equilibria against unilateral deviation of aplayer.) Let uZ 2 U be a Z-equilibrium point in the game �. Then De�nition 4.1implies that for every strategy ui 2 Ui of the i-th player (i 2 I) there is a collectionof strategies ûIri 2 UIri such thatJi(ui; ûIri) = Ji(uZ) :Thus, if the i-th player uses a strategy ui di�erent from uZi , then the other playersI r i can punish the de
ecting one. Moreover, I r i generates an active responseûIri to each ui. Let us note that Nash-equilibria (see De�nition 3.5) are also stableversus the de
ection of one player: for each ui 2 UiJi(ui; unIri) = Ji(un); i 2 Iwhere un 2 U is a Nash-equilibrium point. However, here the penalty unIri ispassive. In fact the players I r i simply stick to their strategies from un.Property 4.5. (Individual rationality). Let ugi 2 Ui be a guaranteeing (minimax)strategy of the i-th player (see De�nition 3.6) and let uZ 2 U be a Z-equilibrium.Then for ugi there exists ûIri by De�nition 4.2 such thatJi(uZ) 5 Ji(ugi ; ûIri) 5 maxuIri Ji(ugi ; uIri) = minui maxuIri Ji(u); i 2 I :Thus, the values of the cost-functions in a Z-equilibrium point are at most equalto the minimax values.Property 4.6. (Pareto-optimal Nash-equilibria are Z-equilibria). The Pareto-optimality is required for the Z-equilibrium. Thus we have to prove that the Nash-equilibrium implies the active equilibrium. Let un 2 U be a Nash-equilibrium pointin the game �. Then for each ui 2 UiJi(ui; unIri) = Ji(un); i 2 I :Thus, for each ui 2 Ui we can choose ûIri = unIri and by De�nition 4.1 weconclude that un is an active equilibrium.



Z{EQUILIBRIA IN STOCHASTIC GAMES 129Property 4.7. (Saddle-points in two-person zero-sum games are Z-equilibriumpoints). Let us consider the two-person zero-sum game�0 = hf1; 2g;P; fU1;U2g; J(u1; u2)iwith the objection of minimizing J(u1; u2) for the �rst player and maximizingJ(u1; u2) for the second one. Let (u01; u02) be a saddle-point of �0:J(u01; u2) 5 J(u01; u02) 5 J(u1; u02)for each u1 2 U1; u2 2 U2.We consider also the game�2 = hf1; 2g;P; fU1;U2g; fJ1; J2giwhere J1(u1; u2) = J(u1; u2) and J2(u1; u2) = �J(u1; u2). Here both playerschoose their strategiess with the aim of minimizing their own cost-functions.First we prove that the saddle-point (u01; u02) of �0 is Pareto-optimal in �2.Suppose (u01; u02) is not Pareto-optimal in �2. Then there exists a pair of strategies(u1; u2) 2 U1 � U2 such thatJi(u1; u2) 5 Ji(u01; u02); i = 1; 2where at least one of these two inequalities is strict. HenceJ1(u1; u2) + J2(u1; u2) < J1(u01; u02) + J2(u01; u02)i.e. 0 = J(u1; u2)� J(u1; u2) < J(u01; u02) � J(u01; u02) = 0which is wrong. Therefore the Pareto-optimality of (u01; u02) is established.Second we show the active equilibrium property of (u01; u02) in �2. Indeed, foreach u1 2 U1 we put û2 = u02 and for each u2 2 U2 we put û1 = u01. Thus we getJ1(u1; û2) = J1(u1; u02) = J(u1; u02) = J(u01; u02) = J1(u01; u02)and J2(û1; u2) = J2(u01; u2) = �J(u01; u2) = �J(u01; u02) = J2(u01; u02) :Therefore we arrive at the conclusion that the notion of a Z-equilibrium includesthe notion of a saddle-point for zero-sum two-players games.



130 SVATOSLAV GAIDOV5. Sufficient conditionsIn this section we shall �nd conditions which are su�cient for the Z-equilibriumstrategies. DenoteGi(t; x; u) = V (i)t (t; x) +A(u)V (i)(t; x) + Li(t; x; u); i 2 Iwhere t 2 [t0; T ], x 2 Rn, u 2 U .Theorem. Suppose for the strategy uZ 2 U the next three groups of conditionsjointly hold:1) There exist a vector � = (�1; : : : ; �N ) 2 RN; �i > 0; i 2 I, �1 + � � �+ �N = 1and a real-valued function V (t; x) such that for all t 2 [t0; T ]; x 2 Rn thefollowing conditions jointly hold:(a1) V; Vt; Vx; Vxx are continuous;(b1) H�(t; x; uZ) = 0;(c1) H�(t; x; u) = 0 for each strategy u 2 U ;(d1) V (T; x) =Pi2I �i	i(T; x) .2) There exist real-valued functions V (i)(t; x); i 2 I such that for all t 2 [t0; T ]; x 2Rn and i 2 I the following conditions jointly hold:(a2) V (i); V (i)t ; V (i)x ; V (i)xx are continuous;(b2) Gi(t; x; uZ) = 0;(c2) V (i)(T; x) = 	i(T; x).3) For each i 2 I and arbitrary strategy ui 2 Ui there exists a collection of strate-gies ûIri 2 UIri such that Gi(t; x; ui; ûIri) = 0 :Then the strategy uZ 2 U is a Z-equilibrium strategy in the game �.Proof. Conditions 1) are equivalent to the conditions of Theorem 3.2, i.e. thestrategy uZ 2 U is Pareto-optimal. Let the set of functions V (i)(t; x), i 2 Iwith continuous derivatives be the solution of the system of equations (b2) withboundary conditions (c2). Suppose XZ = fxZ(t); t 2 [t0; T ]g and X(i) = fx(i)(t),t 2 [t0; T ]g are the solutions of Ito equation (�) corresponding to the strategies uZand (ui; ûIri), respectively.Next write the formula of Ito-Dynkin for V (i)(t; x); uZ and XZ :V (i)(t;x) = Et;xfV (i)(T; x(T ))�R Tt [V (i)t (�; xZ(� ))+A(uZ )V (i)(�; xZ(� ))] d�g; i 2 I :This representation in conjunction with (b2) and (c2) implies thatV (i)(t; x) = Et;xf	i(T; xZ(T )) + R Tt Li(�; xZ(� ); uZ) d�g; i 2 I ;



Z{EQUILIBRIA IN STOCHASTIC GAMES 131and henceV (i)(t0; x0) = Et0 ;x0f	i(T; xZ(T )) + R Tt0 Li(t; xZ(t); uZ) dtg; i 2 I :Now write again the formula of Ito-Dynkin for V (i)(t; x) but with (ui; ûIri) andX(i): V (i)(t; x) = Et;xfV (i)(T; xi(T )) � R Tt [V (i)t (�; x(i)(� ))+A(ui; ûIri)V (i)(�; x(i)(� ))] d�g; i 2 I :Taking into account conditions 3) and (c2), we getV (i)(t; x) = Et;xf	i(T; x(i)(T )) + R Tt Li(�; x(i)(� ); ui; ûIri) d�g; i 2 Iwhich leads toV (i)(t0; x0) = Et0 ;x0f	i(T; x(i)(T )) + R Tt0 Li(t; x(i)(t); ui; ûIri) dtg; i 2 I :Finaly we have V (i)(t0; x0) = Ji(uZ) 5 Ji(ui; ûIri); i 2 I :This means that uZ is an active equilibrium strategy in � and hence uZ is aZ-equilibrium strategy. So the proof of the Theorem is completed. �6. Linear-quadratic gameNow consider the linear-quadratic stochastic di�erential game �lq , described inSection 2. Let the conditions of Proposition 3.3 hold. Then the strategiesuZi = uPi = �[g2i (t)K�(t) +N (i)� (t)]�1Bi(t)K�(t)x; i 2 Iare Pareto-optimal strategies in the game �lq .Further we follow the procedure of searching the Z-equilibrium from the The-orem of Section 5 and construct the functionsGi(t; x; u) = V (i)t (t; x) + [A(t)x+Pj2I Bj(t)uj]V (i)x (t; x)+12[g20(t)x2 +Pj2I g2j (t)u2j + gN+1(t)]V (i)xx (t; x)+Mi(t)x2 +Pj2I N (i)j (t)u2j ; i 2 I :We search V (i)(t; x) as a solution of the equationGi(t; x; uZ) = 0



132 SVATOSLAV GAIDOVwith the boundary condition V (i)(T; x) = Dix2 in the following special formV (i)(t; x) = �i(t)x2 + ri(t)where �i(t) and ri(t) are real-valued functions, i 2 I. thus we get for each i 2 Ithe nonhomogeneous linear di�erential equation_�i(t) + 2A(t)�i(t) � 2�i(t)K�(t)Pj2IB2j (t)[g2j (t)K�(t) +N (j)� (t)]�1+g20(t)�i(t) +Pj2I g2j (t)[g2j (t)K�(t) +N (j)� (t)]�2B2j (t)K2�(t) �i(t)+Mi(t) +Pj2I N (i)j (t)[g2j (t)K�(t) + N (j)� (t)]�2B2j (t)K2�(t) = 0with boundary condition �i(T ) = Di and_ri(t) + g2N+1(t)�i(t) = 0 :Suppose Di is a non-negative constant and Mi(t), N (i)j (t), j 2 I are non-negativefunctions, i 2 I. Taking into account this assumption and the continuity of the co-e�cients of the last equation we get the existence and uniqueness of its continuoussolution �i(t) which is non-negative for each t 2 [t0; T ].Now we can have the following representationGi(t; x; u) = x2f _�i(t) + 2A(t) �i(t) + g20(t) �i(t) +Mi(t)g+2Pj2I Bj(t)uj�i(t)x+Pj2I g2j (t)u2j�i(t) +Pj2IN (i)j (t)u2j :Next, take arbitrary i 2 I and let ui = Fi(t)x. Fix j 2 I r i and let uj = axwhere a is a positive constant. Also let uk = uZk , k 2 Irfi; jg. Then for a suitableS(t) we can write Gi(t; x; u) in the formGi(t; x; u) = x2fS(t) + 2aBj(t)�i(t) + a2[g2j (t) �i(t) +N (i)j (t)]g :Suppose N (i)j (t) is a positive function for each t 2 [t0; T ]. Then g2j (t) �i(t)+N (i)j (t)is a positive as well. This implies the existence of a positive number a� such thatthe quantity S(t) + 2a�Bj(t) �i(t) + (a�)2[g2j (t) �i(t) +N (i)j (t)]is positive for all t 2 [t0; T ]. Hence, if we put u�j = a�x we getGi(t; x; ui; ûIri) = 0where ûIri = fu�j ; uZk ; k 2 I r fi; jgg. Thus uZ = uP is an active equilibrium inthe game �lq and we come to the following result.



Z{EQUILIBRIA IN STOCHASTIC GAMES 133Proposition. Let Di ; i 2 I be non-negative constants, Mi(t); i 2 I and N (i)j (t),i; j 2 I be non-negative functions for each t 2 [t0; T ]. Let there exist a vector� = (�1; : : : ; �N ) 2 RN such that �i > 0; i 2 I, �1+� � �+�N = 1 and N (i)� (t); i 2 Iare positive functions for each t 2 [t0; T ]. Let for every i 2 I there exist j 2 I r isuch that the function N (i)j (t) is positive for all t 2 [t0; T ]. Then uZ is a Z-equilibrium strategy in the game �lq .Acknowledgement. The problems considered in the present paper, as well asseveral other topics were a subject of my discussions with Dr. Jordan Stoyanov. Iuse the opportunity to express my gratitude for his support and helpful talks.References[1] Fleming,W. H., Rishel, R. W., Deterministic and Stochastic Optimal Control, Springer-Ver-lag, Berlin { Heidelberg { New York, 1975.[2] Gaidov, S. D., Z-Equilibrium in Stochastic Di�erential Games, (in Russian), In: Many PlayerDi�erential Games, Centre of Mathematics, Technical University, Rouse, Bulgaria (1984),53-63.[3] Gaidov, S. D., Basic Optimal Strategies in Stochastic Di�erential Games, C. R. Acad. Bul-gare Sci. 37 (1984), 457-460.[4] Gaidov, S. D., Pareto-Optimality in Stochastic Di�erential Games, Problems of Control andInformation Theory 15 (1986), 439-450.[5] Gaidov, S. D., Nash Equilibrium in Stochastic Di�erential Games, Computers and Mathe-matics with Applications 12A (1986), 761-768.[6] Gaidov, S. D., Guaranteeing Strategies in Many Player Stochastic Di�erential Games, In:Mathematics and Educatin in Mathematics, Proceedings of 15th Spring Conference of UBM(1986), 379-383.[7] Roitenberg, Y. N., Automatic Control, (in Russian), Nauka, Moscow, 1978.[8] Vaisbord, I. M., Zhukovskii, V. I., Introduction into Many Player Di�erential Games, (inRussian), Sovetskoe Radio (1980), Moscow.Svatoslav GaidovDepartment of MathematicsPlovdiv UniversityBG-4000 Plovdiv, BULGARIA
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