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Z-EQUILIBRIA IN MANY-PLAYER
STOCHASTIC DIFFERENTIAL GAMES

SVATOSLAV GAIDOV

ABSTRACT. In this paper N-person nonzero-sum games are considered. The dy-
namics is described by Ito stochastic differential equations. The cost-functions are
conditional expectations of functionals of Bolza type with respect to the initial
situation. The notion of Z-equilibrium is introduced in many-player stochastic dif-
ferential games. Some properties of Z-equilibria are analyzed. Sufficient conditions
are established guaranteeing the Z-equilibrium for the strategies of the players. In
a particular case of a linear-quadratic game the Z-equilibrium strategies are found
in an explicit form.

1. INTRODUCTION

In this paper we follow the approach of Fleming and Rishel [1] to the optimal
control of stochastic dynamic system, but applied in situations of conflicts, i.e. to
stochastic differential games. Let {1,..., N} be the set of players. The dynamics
is described by the following Ito stochastic differential equation:

de (t)= f(t a(), v, ... uy)dt + g(t, 2(t), uy, ..., un) dw(t), tE [to,T].

The control w; is chosen by the i-th player in the feedback form u; = w;(t, (1))
with the objective of minimizing the personal cost-function

Jilui, . un) = Eoy o (0T, 2(T)) + [} Li(t, x(t),un, ... un)dt}, i€l

As a solution of the game the concept of Z-equilibrium is proposed. In deter-
ministic differential games this notion is introduced by Zhukovskii in [8] and in
two-player stochastic differential games by the author in [2]. The Z-equilibrium
is based on the concept of Pareto-optimality, see Gaidov [3], [4] and represents a
further development in the theory in comparison with the Nash-equilibrium , see

Gaidov [3], [5].
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The present paper is organized as follows. In Section 2 we consider accurately
the formalization of the game and a model of a linear-quadratic game. In Section
3 we recall some definitions and quote some results {from our papers [3 — 6]. In
Section 4 we introduce the notion of Z-equilibrium in many-player stochastic dif-
ferential games and analyze some of its properties. Sufficient conditions for the
Z-equilibrium strategies of the players are established in Section 5. Finally in Sec-
tion 6 in the linear-quadratic game the Z-equilibrium strategies are found in an
explicit form.

2. FORMALIZATION OF THE GAMES

Let us consider the game

U={>,{U}icr, {Ji}ier) -

Here I = {1,..., N} is the set of players participating in the game T'. The evolution
of the dynamic system ) is described by Tto stochastic differential equation of the

type
(*) dze(t) = flt,2(), wiy . un) dt+ g (@), ure, .. un) dw(t), €€ [to, T

with initial condition #(ty) = x¢ € R™ where T" > ¢ > 0. The process W =
{w(t), t € [to, T]} is a standard m-dimensional Wiener process defined on some
complete probability space (£, F,P) and is adapted to a family F' = {F;,t €
[to, T]} of nondecreasing sub-o-algebras of F. The vector z(t) € R™ is the state
process and u; € U; C R™ is the control of the i-th player, i € I. Now let
us make the following assumptions about the functions f(t,#,w;,...,un) and
g(t, 2z, u1, ..., un). Suppose

J o, TIxR"xUp x - x Uy —R”

and
g: Lo, T xR"x Uy x -+ x Uy = R"xR™

have continuous partial derivatives in x,uq,...,uy and let C' > 0 be a constant
such that

|£(£,0,...,0)]+1]9(,0,...,0)| £ C,
| fo] 4 |92 +Zie[(|fu, + |9, ) <C.

Here | - | is a general symbol for the norms in the respective spaces.

Fach player has complete information about the state vector z(¢) at every mo-
ment ¢ € [tg, T] and constructs his strategy in the game I' as an admissible feedback
control, i.e.

up = ui(t, 2(t))
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where
wi(vy ) [to, T] x R™ = U
is a Borel function satisfying the conditions:
(i) There exists a constant M; > 0 such that

|ui(t, )] £ M;(1+ |x|) for all (¢,2) € [to, T] x R";

(ii) For each bounded set B C R™ and T* € (tg,T') there exists a constant
K; > 0 such that for arbitrary «,y € B and ¢ € [tg, T*]

|ui(t’ $) - ui(t’ y)| § [Xﬂl‘ - y| :

Denote by U; the set of strategies of the i-th player, i € [ and U = HZ»E[UZ', U=
[I;c;Ui- Let a vector of strategies u = (u;, ..., un) € U be called for brevity simply
a strategy.

The assumptions made above imply the existence and sample path uniqueness
of the solution X = {x(?),t € [to,T]} of Tto equation (%) corresponding to the
control w € U, see Fleming and Rishel [1]. Moreover, X is an a.s. continuous
Markov process and its infinitesimal operator A(u) has the form

A(u) V(t,x) = f'(t, z,u) Vp(t, o) + %tr [a(t, z,u) Vau(t, 2)],

where a = gg’ and prime denotes vector or matrix transpose. Here V (¢, ) is a
real-valued function with continuous partial derivatives up to second order for all
t€ty,T], 2 € R™.

Let L;, ¥; be continuous functions satisfying the polynomial growth conditions:

|Li(t, 2w, uw)| S Ci(1+ [l + e pluil)
Wi (t, 2)| < Ci(1 + |=))"

where Cj, k are positive constants. Introduce now the cost-function J;(u) of the
1-th player:

Ji(u) = By o {0 (T, 2(T)) + [ Li(t,2(t), w1, ... un)dt}y, i€l

The object of each player in the game I' is to minimize his own cost-function.
Now let us consider one particular but important case of the game described

above. Let l
Fl‘] = <I’Z ’{uil}iEI {Jiq}iEI> .

Here again I = {1,..., N}. The evolution of the dynamic system Zl is described
by the linear stochastic differential equation of the type

da(t) = [A(t) x(t) + 3, Bi(t)wil dt 4 g(t, 2(t), uy, . .., un) dw(t), t€ [to,T]
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with initial condition x(tg) = z¢ € R. Here z(t) € R is the state process, W =
{w(t), t € [to,T]} is an (N + 2)-dimensional standard Wiener process and u; €
U; C Ris the control of the i-th player, i € T. g(¢, 2(¢), u;, ..., un)is an 1 x (N+2)-
matrix of the form

g=(go®)z(t) g1(tH)ur ... gnBun gn1(?)) .

Henceforth A(t), B;(t), i € I, go(t), gn+1(2), ¢:(t), i € I are continuous real-
valued functions. The strategies of the i-th player are identified to functions of the
type u;(t, ) = Fi(t)z where F;(t) is a continuous real-valued function, ¢ € I. The
cost-function J#(u) of the i-th player is the functional

JH () = Bey oo 1Ds2*(T) + [ [Mi(1) &%(8) + X5, N (D) ud] dt}, i€l

Here D; are constants and M;(t), i € I, Nj(i)(t), 1,J € I are real-valued continuous
functions.

3. AUXILIARY NOTIONS AND RESULTS

For the completeness of presentation we need some facts from previous papers.
Definition 3.1. ([3], [4]). The strategy u? € U is said to be Pareto-optimal in
the game I" if the relations

Ji(uw) £ Ji(u®), i€l
for some strategy u € U imply the equalities

Ji(w) = J;(u"), iel.

Theorem 3.2. ([3], [4]). The strategy u” € U is Pareto-optimal in the game I
if there exist a vector A = (Ay,...,Any) ERY, X, >0,i €, A+ - +Ay =1
and real-valued function V(t,z) such that for all t € [to,T], + € R™ the following
conditions jointly hold:

(a) V, Vi, Vi, Vg are continuous;

(b) Hit,z,uf)=0;

(¢) Hx(t,z,u) 20 for each strategy u € U;

(@) V(T,2) = ey MU(T,2).

Here for allt € [ty,T], 2 € R w €U :
Hi(t,z,u) = Vi(t,2) + A(u) V(t, 2) + 5 A Li(t, ., u).
Denote

Dy =Yg MiDiy Ma(t) = Yoy MMi(1) and N (1) = 3, NP (1), el
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Proposition 3.3. ([3], [4]). Let there exist a vector A = (Ay,...,Ax) € RY such
that A\; > 0,i€ I, Ay +---+ Ay = 1, D, is a non-negative constant, M)(t) is a
non-negative function and N;\Z)(t) is a positive function for each t € [ty,T]. Then

uf = —[g2(OVKA(t) + NI Bt K (e, i€l

K3

are Pareto-optimal strategies in the game I'y; where K,(t) is the solution of the
nonlinear differential equation

Ka(t) 4 2A() K\ (1) + Ma(t) + g2 (1) K (1)
— K3 e [02 (0 EA () + NPT B(1) = 0

with the boundary condition Kx(T) = Djy.

Remark 3.4. It is important to mention that the existence of the function
Kx(t) =2 0, ¢t € [to, T] follows e.g. from the well-known Bellman quasilineariza-
tion method, see Roitenberg [7].

Let us recall two other definitions.

Definition 3.5. ([3], [5]). The strategy ™ € U is a Nash-equilibrium strategy in
the game T if for each u; € UY;

Ji(u, i gy uy) = Ji(u ) 2 Ji(u”), de .

Definition 3.6. ([6]). The strategy u! € U; is a guaranteeing strategy of the i-th
player in the game I if

: _ g
min max J;(u;, ur<;) = max J;(uf, ur<;).
U; Ui Ur~i

Here INi={1,...,i—1,i+1,... N} and ury; = (w4, ..., %—1,U%41,...,uN) €
HjEI\iuj =Ur;. Let also (u;, ur;) = u.

4. Z-EQUILIBRIUM. BASIC PROPERTIES
Now we generalize for many-player games the concept of Z-equilibrium , con-
sidered for two-player games in Gaidov [2].

Definition 4.1. The strategy u* € U is an active equilibrium strategy in the
game [ if for each player ¢« € I we have: for any strategy u; € U; there exists a
collection of strategies uy.; € Ur; such that

Ji(ui, ur) 2 Ji(u”).
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Definition 4.2. The strategy u? € U is a Z-equilibrium strategy in the game I
if uZ is both Pareto-optimal and an active equilibrium strategy.

Now we analyze some properties of the Z-equilibrium strategies and compare
them with other optimal strategies.

Property 4.3. (Pareto-optimality). By Definition 4.2 we have that Z-equilibria
are Pareto-optimal, i.e. they look after (guarantee) the collective interests of the
players.

Property 4.4. (Active stability of Z-equilibria against unilateral deviation of a
player.) Let uZ? € U be a Z-equilibrium point in the game I'. Then Definition 4.1
implies that for every strategy u; € U; of the i-th player (¢ € T) there is a collection
of strategies uy.; € Uy ; such that

Tilus, tri) 2 Ji(u?).

Thus, if the i-th player uses a strategy wu; different from uZ, then the other players
I~ ¢ can punish the deflecting one. Moreover, I ~\ ¢ generates an active response
Ur~; to each u;. Let us note that Nash-equilibria (see Definition 3.5) are also stable
versus the deflection of one player: for each u; € U;

where «® € U is a Nash-equilibrium point. However, here the penalty uf._; is
passive. In fact the players I ~ ¢ simply stick to their strategies from u”.

Property 4.5. (Individual rationality). Let u{ € U; be a guaranteeing (minimax)
strategy of the i-th player (see Definition 3.6) and let uZ € U be a Z-equilibrium.
Then for uf there exists . ; by Definition 4.2 such that

JZ'(UZ) < Ji(uf ar) € max Ji(uf, ur;) = min max J;(u), ‘€1 .

29
Ur~: Ui Ur~i

Thus, the values of the cost-functions in a Z-equilibrium point are at most equal
to the minimax values.

Property 4.6. (Pareto-optimal Nash-equilibria are Z-equilibria). The Pareto-
optimality is required for the Z-equilibrium. Thus we have to prove that the Nash-
equilibrium implies the active equilibrium. Let v € U be a Nash-equilibrium point
in the game I'. Then for each u; € U;

Ji(ui,uf ;) 2 Ji(u"), i€,

Thus, for each u; € U; we can choose #r.; = u}_, and by Definition 4.1 we
conclude that 4™ is an active equilibrium.
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Property 4.7. (Saddle-points in two-person zero-sum games are Z-equilibrium
points). Let us consider the two-person zero-sum game

Lo = ({1,2}, 52, {Uy, Us}, T (ur, us))

with the objection of minimizing J(uy,us) for the first player and maximizing
J(u1,us) for the second one. Let (uf,u}) be a saddle-point of I'g:

J(uy,uz) S J(uy, uy) S J(ur, up)

for each uy; € Uy, us € Us.

We consider also the game

Lo = ({1,2}, 57, {th, Us}, {J1, J2})

where Jy(u1,u2) = J(ur,us) and Jo(ui,us) = —J(ug,uz). Here both players
choose their strategiess with the aim of minimizing their own cost-functions.

First we prove that the saddle-point (uf,u3) of I’y is Pareto-optimal in I's.

Suppose (u}, u3) is not Pareto-optimal in I's. Then there exists a pair of strategies

(u1,us) €Uy x U such that
Ji(ug,ug) £ Ji(u?,ug), 1=1,2
where at least one of these two inequalities is strict. Hence
Jy(ur, ug) + Ja(ug, ug) < Jl(u?, ug) + Jz(u?, ug)

1.e.
0= J(uy,uz) — J(u1, us) < J(u?,uo) — J(u?,ug) =0

which is wrong. Therefore the Pareto-optimality of (uf, u3) is established.

Second we show the active equilibrium property of (u,u3) in T'5. Indeed, for

each ui € Uy we put tug = ug and for each uy € Us we put uy; = u?. Thus we get
Ji(u,tz) = Ji(ur,uz) = J(ur, ug) 2 J(u, ug) = Ji(uf, up)

and

Jo(tiy, uz) = Jo(ul, up) = —J(uf, up) 2 —J(uf, uf) = Jo(uf, uj) .

Therefore we arrive at the conclusion that the notion of a Z-equilibrium includes
the notion of a saddle-point for zero-sum two-players games.
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5. SUFFICIENT CONDITIONS

In this section we shall find conditions which are sufficient for the Z-equilibrium
strategies. Denote

Gi(t,z,uw) = VIt o)+ AV O, 2) + Lit, e, u), i€

where t € [ty,T], t € R, ueU.

Theorem. Suppose for the strategy u? € U the next three groups of conditions

Jjointly hold:

1) There exist a vector A = (A, ..., Axy) ERN X, >0, i€, A+ +Ay=1
and a real-valued function V(t,x) such that for all t € [to,T], © € R" the
following conditions jointly hold:

(a1) V, Vi, Vi, Vyp are continuous;

(bl) Hk(ta$auz) = 0;
(1) Hi(t,z,u) 2 0 for each strategy v € U;
(d) V(T ) =3 ey MWi(T, ) .

2) There exist real-valued functions V)(t, x), i € I such that for allt € [ty, T], x €
R™ and ¢ € I the following conditions jointly hold:
(az) VO, Vt(i), Vx(i), Vi are continuous;
(ba)  Gi(t,z,u?)=0;
(c2)  VUT,z) = W(T,x).

3) For each i € I and arbitrary strategy u; € U; there exists a collection of strate-
gies uy.; € Ur; such that

Gi(t, @, u, ur ) 20 .
Then the strategy u? € U is a Z-equilibrium strategy in the game I,

Proof. Conditions 1) are equivalent to the conditions of Theorem 3.2, i.e. the
strategy u? € U is Pareto-optimal. Let the set of functions V(i)(t,x), v €1
with continuous derivatives be the solution of the system of equations (b2) with
boundary conditions (cz). Suppose X% = {Z(t), t € [to,T]} and X = {z(D(1),
t € [to, T]} are the solutions of Ito equation (%) corresponding to the strategies u?
and (w;, tr-;), respectively.

Next write the formula of Tto-Dynkin for V) (¢, z), u? and XZ:

Vil = B VO a(T) =[]V (7,22 ()4 AV O, ()] dr), i€
This representation in conjunction with (b2) and (c2) implies that

VO(t, 2) = B o {0(T, 2% (T)) + [ Li(r, 2% (r),u?)d7}, iel,
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and hence
VO (to, 20) = Fuy o (W (T, 2Z (1)) + [ Lit, 2?(t),u?)dt}, i€l

Now write again the formula of Ito-Dynkin for V(i)(t, z) but with (u;, 47;) and
X,

VO (t,2) = B (VO(T,24(T)) — [ [V (7, 20(r))
+ A(ug, ur) VO(r, D (r)]dr)y, iel.

Taking into account conditions 3) and (cz2), we get
VO, ) = Fy o {0(T, 2 O(T)) + [T Li(r, 2D (1), w5, 07) dr}, i€l
which leads to
VO (to, 20) = Feg o (W (1,2 D(T) + [ Lilt, 2 D(t), wg up)dt}, i€l
Finaly we have
VO(tg,x0) = Ji(u?) < Jius, ures), €1 .

This means that u? is an active equilibrium strategy in I' and hence u? is a

Z-equilibrium strategy. So the proof of the Theorem is completed. a

6. LINEAR-QUADRATIC GAME

Now consider the linear-quadratic stochastic differential game I';,, described in
Section 2. Let the conditions of Proposition 3.3 hold. Then the strategies

w? = ulf = —[g2(OVEA(t) + N7 Bi(t) Kx(t)z, i€l

K3 K3

are Pareto-optimal strategies in the game I';,.
Further we follow the procedure of searching the Z-equilibrium from the The-
orem of Section b and construct the functions

Gilt,z,u) =V 0) + [AW) 2 + Yjep By (0w] V(¢ @)

IR0 2+ s 20 +ann O]V, 2)
FMi(t) et + e NPl el

We search V)(¢,z) as a solution of the equation

Gi(t,z,u?) =0
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with the boundary condition V(i)(T, z) = D;z? in the following special form
VO, z) = 0;(t) 2* + ri(t)

where 0;(t) and r;(t) are real-valued functions, ¢ € I. thus we get for each ¢ € |
the nonhomogeneous linear differential equation

B:(1) + 2A(1)0;(t) — 20,(t) Ka(t)Y ;¢ B ()93 (8) Ea(t) + N ()]
R )0:() + X e R (O(t) Ka(t) + N ()72 BH(1) K3(1) 6:(1)
FMi (1) + e NI ()3 (1) Ka(t) + N (1))72 B (1) K3(t) = 0
with boundary condition 8;(T) = D; and

Fi(t) + g (D0 (1) = 0 .

Suppose D; is a non-negative constant and M;(t), N]»(Z)(t), j € I are non-negative
functions, ¢ € I. Taking into account this assumption and the continuity of the co-
efficients of the last equation we get the existence and uniqueness of its continuous
solution 6;(¢) which is non-negative for each ¢ € [to, 7.

Now we can have the following representation

Gilt, 2, u) = @ {6 (1) + 2A(1) 6:(1) + g3 (1) 0:(1) + Mi(1)}
425 s Bi(O) wibi(t) 2+ 3 p g3 (1) wd0:(t) + 50 N (1)

Next, take arbitrary ¢ € I and let u; = F( Jz. Fix j € I~ 7 and let u; = ax
where @ 1s a positive constant. Also let ug = uk , k€ I~{i,j}. Then for a suitable
S(t) we can write G;(¢, #, u) in the form

Gt e, w) = #*{S(1) + 2aB; ()0 (1) + @[3 (1) 0:(0) + N} (1)]}
Suppose N],(i)(t) is a positive function for each ¢ € [to, 7. Then g7 (1) 0; (1) _|_N](i)(t)

is a positive as well. This implies the existence of a positive number a¢* such that
the quantity

S() + 20" B; (1) 6:(6) + (a”)[g7() 0:(1) + N} (1)
is positive for all ¢t € [to, T]. Hence, if we put uj = a*z we get
Gi(t, @, us,ur) 20

where ur; = {uj, uZ, ke I~{ij}}. Thus u? = uf is an active equilibrium in
the game I';; and we come to the following result.
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Proposition. Let D; i € I be non-negative constants, M;(t), i € I and Nj(i)(t),
i,j € I be non-negative functions for each t € [to,T]. Let there exist a vector
A=A, An) ERN such that \; >0, i € I, \j+--+Ay = Land N\ (t), i € T
are positive functions for each t € [ty,T). Let for every i € I there exist j € I~ i

such that the function N]»(i)(t) is positive for all t € [to,T]. Then u? is a Z-
equilibrium strategy in the game I'y,.
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